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On practical synchronisation and collective
behaviour of networked heterogeneous

oscillators

Elena Panteley Antonio Loria

CNRS, LSS-Supelec, 3 Rue Joliot Curie, 91192 Gif sur Yvette, France
(e-mail:panteley@lss.supelec.fr)

Abstract: We present preliminary results on synchronisation of nonlinear oscillators interconnected in
heterogeneous networks that is, we assume that the systems’ dynamic models are different, albeit of the same
dimension. Under mild conditions, we show that the synchronisation errors may be diminished by increasing the
interconnection gain. That is, we establish results on practical synchronisation. Although this problem has been
studied in the literature, our approach is novel from an analytical perspective: the behaviour of the interconnected
systems is determined by two main components, the stability of an averaged dynamics, relative to an attractor
of what we call emergent dynamics and, secondly, the synchronisation of each individual oscillator relative to
the emergent dynamics. Our framework is general, it covers as a particular case that of (set-point) consensus
but also trajectory-tracking synchronisation and consensus over manifolds.
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1. INTRODUCTION

The collective behaviour of network-interconnected com-
plex systems depends on some key factors, such as: the dy-
namics of the individual units, the interconnection among
the nodes and the network structure. Network dynamics
may be modelled via ordinary differential equations –cf.
Pogromski and Nijmeijer (2001); Pogromski et al. (2002),

ẋi = fi(xi) +Bui, i ∈ I := {1, . . . , N} (1a)

yi = Cxi, (1b)

where xi ∈ Rn, ui ∈ Rm and yi ∈ Rm denote the state,
the input and the output of the ith unit, respectively. Usu-
ally, graph theory is employed to describe the topological
(structural) properties of networks; a network of N nodes
is defined by its N ×N adjacency matrix D = [dij ] whose
(i, j) element, denoted by dij , specifies an interconnection
between the ith and jth nodes. From a dynamical-systems
viewpoint a general setting such as e.g., in Blekhman
et al. (1997); Nijmeijer and Rodŕıguez-Angeles (2003), syn-
chronisation may be qualitatively measured by equating a
functional of the trajectories to zero and measuring the
distance of the latter to the synchronisation manifold. In
the case of a network of identical nodes, i.e., if fi = fj
for all i, j ∈ I this may be defined in the space of
x := [x>1 , · · · , x>N ]> as

S = {x ∈ RnN : x1 = x2 = · · · = xN} (2)

Such stability problem may be approached in a number
of ways, e.g., using tools developed for semi-passive, in-
crementally passive or incrementally input-output stable
systems –see Pogromski and Nijmeijer (2001); Pogromski
et al. (1999); Jouffroy and Slotine (2004); Lohmiller and
Slotine (2005); Scardovi et al. (2009); Franci et al. (2011).
If the manifold S is stabilised one says that the networked
units are synchronised.

In general, the nodes’ interconnections depend on the
strength of the coupling and on the nodes’ state variables

or on functions of the latter, i.e., outputs which define
the coupling terms. This may be nonlinear, as e.g., in
the case of the the well-known Kuramoto’s oscillator –see
Belykh et al. (2005); Corson et al. (2012). In this paper we
consider a particular case of coupling which is known in
the literature as diffusive coupling. We assume that all the
units have inputs and outputs of the same dimension and
that the coupling between the ith and jth units is defined
as a weighted difference: dij(yi−yj), where yi and yj are
the outputs of the units i and j respectively, and dij > 0
is constant.

Thirdly, depending on whether the nodes are identical
or not the network is respectively called homogeneous
or heterogeneous. The behaviour of networks of systems
with non-identical models is more complex due to the fact
that the synchronisation manifold S does not necessarily
exist. An alternative approach based on stability theory,
is to address the synchronisation problem in a practical
sense that is, to admit that, asymptotically, the differences
between the units’ motions are bounded and become
smaller for larger values of the interconnection gain γ, but
they do not necessarily vanish. This is the approach that
we pursue here.

For the purpose of analysis we propose to analyse the
behaviour of network-interconnected systems via two sepa-
rate properties: the stability of what we call the emergent
dynamics and the synchronisation errors of each of the
units’ motions, relative to an averaged system, also called
“mean-field” system. This formalism covers the classical
paradigm of consensus of a collection of integrators, in
which case the emergent dynamics is null and the mean
field trajectory corresponds to a weighted average of the
nodes’ trajectories. Moreover, for a balanced graph, we
know that all units reach consensus and the steady-state
value is an equilibrium point corresponding to the av-
erage of the initial conditions –see Ren et al. (2007).
In our framework, the emergent dynamics possesses a
stable attractor, in contrast to (the particular case of)



an equilibrium point. Then, we say that the network
presents dynamic consensus if there exists an attractor A,
in the phase-space of the emergent state, such that the
trajectories of all units are attracted to A asymptotically
and remain close to it. In the setting of heterogeneous
networks, only practical synchronisation is achievable in
general that is, the trajectories of all units converge to a
neighbourhood of the attractor of the emergent dynamics
and remain close to this neighbourhood.

In section 2 we present the network model, suitable for
analysis; in Section 4 we present our main statements,
whose proofs are provided in Panteley (2015). In Section
5 we present some illustrative simulation results, before
concluding with some remarks in SectionPsec:concl.

2. NETWORKS OF HETEROGENEOUS SYSTEMS

2.1 System model

We consider a network composed of N heterogeneous
diffusively coupled nonlinear dynamical systems in normal
form:

ẏi = f1i (yi, zi) + ui (3a)

żi = f2i (yi, zi) (3b)

where ui ∈ Rm denote the inputs, yi ∈ Rm the outputs
to be synchronised and the state zi corresponds to that
of the ith agent’s zero-dynamics i.e., żi = f2i (0, zi). The
functions f1i : Rm × Rn−m → Rm, f2i : Rm × Rn−m →
Rn−m are assumed to be locally Lipschitz. We consider
that the network units are connected via diffusive coupling,
i.e., for the i-th unit the coupling is given by

ui = −σ
N∑
j=1

dij(yi − yj), dij = dji (4)

where σ > 0 corresponds to the coupling gain between
the units and the individual interconnections weights, dij
which define the so-called Laplacian matrix,

L =



N∑
i=2

d1i −d12 . . . −d1N

−d21
N∑

i=1,i6=2

d2i . . . −d2N

...
...

. . .
...

−dN1 −dN2 . . .

N−1∑
i=1

dNi.


. (5)

By construction, all row sums of L are equal to zero
and all its eigenvalues of are real, exactly one of which
(say, λ1) equal to zero, while others are positive, i.e.,
0 = λ1 < λ2 ≤ · · · ≤ λN .

Next, let y = [y>1 · · · y>N ]>, u = [u>1 · · · u>N ]>, x =
[x>1 · · · x>N ]>, and define F : RnN → RnN as

F (x) =

 F1(x1)
...

FN (xN )

 , Fi(xi) =

[
f1i (yi, zi)

f2i (yi, zi)

]
i∈I

. (6)

With this notation, the diffusive coupling inputs ui, de-
fined in (4), can be re-written in the compact form

u = −σ[L⊗ Im]y,

where the symbol ⊗ stands for the right Kronecker prod-
uct. Then, the network dynamics becomes

ẋ = F (x)− σ[L⊗ Em]y (7a)

y = [IN ⊗ E>m]x, (7b)

where E>m = [Im, 0m×(n−m)]. The qualitative analysis of
the solutions to the latter equations is our main subject of
study.

2.2 Dynamic consensus and practical synchronisation

We generalise the consensus paradigm by introducing what
we call dynamic consensus. This property is achieved by
the systems interconnected over a network if and only
if their motions converge to one generated by what we
call emergent dynamics. In the case that the Laplacian is
symmetric, the emergent dynamics is naturally defined as
the average of the units’ drifts that is, via the functions
f1s : Rm×Rn−m → Rm, f2s : Rm×Rn−m → Rn−m, defined
as

f1s :=
1

N

N∑
i=1

f1i (ye, ze), f2s :=
1

N

N∑
i=1

f2i (ye, ze) (8)

hence, the emergent dynamics may be written in the
compact form

ẋe = fs(xe) xe = [y>e z>e ]>, fs := [f1>s f2>s ]>. (9)

For the sake of comparison, in the classical (set-point)
consensus paradigm, all systems achieving consensus con-
verge to a common equilibrium point that is, fs ≡ 0 and
xe is constant. In the case of formation tracking control,
Equation (9) can be seen as the reference dynamics to the
formation.

Next, we introduce the average state (also called mean-
field) and its corresponding dynamics. Let

xs =
1

N

N∑
i=1

xi (10)

which comprises an average output, ys ∈ Rm, defined as
ys = E>mxs and the state of the average zero dynamics,
zs ∈ Rn−m, that is, xs = [y>s , z

>
s ]>. Now, by differentiat-

ing on both sides of (10) and after a direct computation
in which we use (3), (4) and the fact that the sums of the
elements of the Laplacian’s rows equal to zero, i.e.,

1

N

N∑
i=1

−σ
[
di1(yi − y1) + · · ·+ diN (yi − yN )

]
= 0,

we obtain

ẏs =
1

N

N∑
i=1

f1i (yi, zi), żs =
1

N

N∑
i=1

f2i (yi, zi).

Next, in order to write the latter in terms of the average
state xs, we use the functions f1s and f2s defined above so,
after (8) the average dynamics may be expressed as

ẏs = f1s (ys, zs) +
1

N

N∑
i=1

[
f1i (yi, zi)− f1i (ys, zs)

]
,

żs = f2s (ys, zs) +
1

N

N∑
i=1

[
f2i (yi, zi)− f2i (ys, zs)

]
.

The latter equations may be regarded as composed of
the nominal parts ẏs = f1s (ys, zs), żs = f2s (ys, zs)



and the perturbation terms
[
f1i (yi, zi) − f1i (ys, zs)

]
and[

f2i (yi, zi)− f2i (ys, zs)
]
. The former functions correspond

exactly to (9), only re-written with another state variable.
In the case that dynamic consensus is achieved (that is,
in the case of complete synchronisation) and the graph
is balanced and connected, we have (yi, zi) → (ys, zs).
The latter is possible only for homogeneous connected and
balanced networks. In the case of a heterogeneous network,
asymptotic synchronisation cannot be achieved in general
hence, yi /→ ys and, consequently, the terms

[
f1i (yi, zi)−

f1i (ys, zs)
]

and
[
f2i (yi, zi) −f2i (ys, zs)

]
remain.

Thus, from a dynamical systems viewpoint, the average
dynamics may be considered as a perturbed variant of
the emergent dynamics. Consequently, it appears natural
to study the problem of dynamic consensus, recasted in
that of robust stability analysis, in a broad sense hence,
we introduce the manifold

Sy = {y ∈ RmN : y1−ys = y2−ys = · · · = yN −ys = 0}.
(11)

For heterogeneous networks one may only aspire at estab-
lishing stability of the output synchronisation manifold Sy
in a practical sense. The following definition covers that
of practical stability used in Teel et al. (1999); Chaillet
and Loria (2006), by considering a stability property with
respect to sets.

Consider a parameterised system of differential equations

ẋ = f(x, ε), (12)

where x ∈ Rn, the function f : Rn → Rn is locally
Lipschitz and ε is a scalar parameter such that ε ∈ (0, ε◦]
with ε◦ < ∞. Given a closed set A, we define the norm
|x |A := inf

y∈A
‖x− y‖.

Definition 2.1. For the system (12), we say that the closed
set A ⊂ Rn is practically uniformly asymptotically stable
if there exists a closed set D such that A ⊂ D ⊂ Rn and:

(1) the system is forward complete for all x◦ ∈ D;
(2) for any given δ > 0 and R > 0, there exist ε∗ ∈ (0, ε◦]

and a class KL function βδR such that, for all ε ∈
(0, ε∗] and all x◦ ∈ D such that |x◦ |A ≤ R, we have

|x(t, x◦, ε) |A ≤ δ + βδR
(
|x◦ |A, t

)
.

3. NETWORK DYNAMICS

For the purpose of analysis we stress that the networked
dynamical systems model (7) is equivalent, up to a coordi-
nate transformation, to a set of equations composed of the
average system dynamics with average state xs and a syn-
chronisation errors equation with state e = [e>1 . . . e>N ]>

where ei = xi − xs for all i ∈ I –see Panteley (2015).

The states xs and e are intrinsic to the network and
not the product of an artifice with purely theoretical
motivations –see Panteley (2015). Hence, the general syn-
chronisation problem is recasted in the study of stability
of the dynamics of e and xs. We proceed to derive the
differential equations in terms of the average state xs and
the synchronisation errors e.

3.1 Dynamics of the average unit

Using the network dynamics equations (7a), as well as (10),
which is equivalent to

xs =
1

N
(1> ⊗ In)x, 1 := [1 1 · · · 1]> (13)

we obtain

ẋs =
1

N
(1> ⊗ In)F (x)− 1

N
σ(1> ⊗ In)[L⊗ Em]y. (14)

Now, using the property of the Kronecker product,

(A⊗B)(C ⊗D) = AC ⊗BD, (15)

and in view of the identity 1>L = 0 we obtain

(1> ⊗ In)(L⊗ Em) = (1>L)⊗ (InEm) = 0. (16)

This reveals the important fact that the average dynamics,
i.e., the functions on the right-hand side of (14), are
independent of the interconnections gain σ, even though
the solutions xs(t) are, certainly, affected by the synchro-
nisation errors hence, by the coupling strength.

Now, using (6) and defining

fs(xs) :=
1

N

N∑
i=1

Fi(xs) (17)

we obtain

ẋs = fs(xs) +
1

N

N∑
i=1

[
Fi(xi)− Fi(xs)

]
.

Therefore, defining

Gs(e,xs) :=
1

N

N∑
i=1

[
Fi(ei + xs)− Fi(xs)

]
, (18)

we see that we may write the average dynamics in the
compact form,

ẋs = fs(xs) +Gs(e,xs). (19)

Furthermore, since the functions Fi, with i ∈ I, are locally
Lipschitz so is the function Gs and, moreover, there exists
a continuous, positive, non-decreasing function k : R+ ×
R+ → R+, such that

‖Gs(e,xs)‖ ≤ k
(
‖e‖ , ‖xs‖

)
‖e‖ . (20)

In summary, the average dynamics is described by the
equations (19), which may be regarded as the nominal
system (9), which corresponds to the emergent dynamics,
perturbed by the synchronisation error of the network.

3.2 Dynamics of the synchronisation errors

To study the effect of the synchronisation errors, e(t),
on the emergent dynamics, we start by introducing the
vectors

Fs(xs) :=
[
F1(xs)

> · · · FN (xs)
>]> (21)

F̃ (e,xs) = F (x)− Fs(xs). (22)

Then, differentiating on both sides of

e = x− (1⊗ In)xs (23)

and using (7a) and (19), we obtain

ė =−σ[L⊗ Em]y + F (x)− (1⊗ In) [fs(xs) +Gs(e,xs)]

=−σ[L⊗ Em]y + [F (x)− Fs(xs)] + Fs(xs)

−(1⊗ In) [fs(xs) +Gs(e,xs)]

=−σ[L⊗ Em]y +
[
Fs(xs)− (1⊗ In)fs(xs)

]
+
[
F̃ (e,xs)− (1⊗ In)Gs(e,xs)

]
. (24)



Next, let us introduce the output synchronisation errors
eyi = yi − ys, ey = [e>y1, · · · , e>yN ]>, which may also be
written as

ey = y − 1⊗ ys, (25)

and let us consider the first term and the two groups of
bracketed terms on the right-hand side of (24), separately.
For the term

(
L⊗ Em

)
y we observe, from (25), that

[L⊗ Em]y = [L⊗ Em]
[
ey + 1⊗ ys

]
and we use (15) and the fact that L1 = 0 to obtain

[L⊗ Em]y = [L⊗ Em] ey.

Secondly, concerning the first bracket on the right-hand
side of (24) we observe that, in view of (17) and (21),

fs(xs) =
1

N
(1> ⊗ In)Fs(xs)

therefore,

Fs(xs)− (1⊗ In)fs(xs) = Fs(xs)− 1
N (1⊗ In)(1> ⊗ In)Fs(xs).

Then, using (15) we see that

1

N
(1⊗ In)(1> ⊗ In) =

1

N
(11>)⊗ In (26)

so, introducing

P = InN −
1

N
(11>)⊗ In,

we obtain

Fs(xs)− (1⊗ In)fs(xs) = PFs(xs). (27)

Finally, concerning the term F̃ (e,xs) − (1 ⊗ In)Gs(e,xs)
on the right-hand side of (24), we see that, by definition,

G(e,xs) = 1
N

(
1> ⊗ In

)
F̃ (e,xs) hence, from (26), we

obtain

(1⊗ In)Gs(e,xs) =
1

N

[
(11>)⊗ In

]
F̃ (e,xs)

and

F̃ (e,xs)− (1⊗ In)Gs(e,xs) = PF̃ (e,xs). (28)

Using (27) and (28) in (24) we see that the latter may be
expressed as

ė = −σ
[
L⊗ Em

]
ey + P

[
F̃ (e,xs) + Fs(xs)

]
.

The utility of this equation is that it clearly exhibits
three terms: a term linear in the output ey which reflects
the synchronisation effect of diffusive coupling between
the nodes, the term PF̃ (e,xs) which vanishes with the
synchronisation errors, i.e., if e = 0, and the term

PFs(xs) =


F1(xs)−

1

N

N∑
i=1

Fi(xs)

...

FN (xs)−
1

N

N∑
i=1

Fi(xs)


=

F1(xs)− fs(xs)
...

FN (xs)− fs(xs)



which represents the variation between the dynamics of the
individual units and the average unit. This term equals to
zero when the nominal dynamics, fi in (1a), of all the units
are identical that is, in the case of a homogeneous network.

4. MAIN RESULTS

For the networked systems dynamics

ẋs = fs(xs) +Gs(e,xs), (29a)

ė = −σ
[
L⊗ Em

]
ey + P

[
F̃ (e,xs) + Fs(xs)

]
(29b)

we make some statements on stability with respect to a
compact attractor which is proper to the emergent dynam-
ics and we establish conditions under which the average of
the trajectories of the interconnected units remains close to
this attractor. We formulate conditions that ensure practi-
cal global asymptotic stability of the manifold Sy –see (11).
This implies practical state and output synchronisation of
the network, respectively. Furthermore, we show that the
upper bound on the state synchronisation error depends
on the mismatches between the dynamics of the individual
units of the network.

One of our main hypotheses is that the solutions are ulti-
mately bounded in a compact “ball of radius Bx”; which
holds for chaotic oscillators. Our second main assumption
is that the zero-dynamics is convergent, uniformly in the
passive outputs, in a practical sense:

A1. For any compact sets Bz ⊂ Rn−m, By ⊂ Rm, there
exist continuously differentiable positive definite functions
V◦i : Bz → R+ and constants ᾱi, βi > 0, i ∈ I, such that

∇V >◦i (z1− z2)
[
f2i (y, z1)− f2i (y, z2)

]
≤ −ᾱi|z1− z2|2 +βi

(30)
for all z1, z2 ∈ Bz and y ∈ By.

Theorem 1. (Output synchronisation). Let the solutions
of the system (7) be globally ultimately bounded. Then,
the set Sy is practically uniformly globally asymptotically
stable with ε = 1/σ. If, moreover, Assumption A1 holds,
then there exists a function β ∈ K∞ such that for any
ε ≥ 0 and R > 0 there exist BR := {x◦ : ‖x◦‖ ≤ R},
T ∗ > 0 and σ∗ > 0 such that the solutions of (29b) with
σ = σ∗ satisfy

‖e(t,x◦)‖ ≤ β(∆f ), ∀ t ≥ T ∗, x◦ ∈ BR (31)

where

∆f = max
‖x‖≤Bx

max
k,i∈N

{∥∥f2k (xk)− f2i (xk)
∥∥}. (32)

The proof of the theorem is provided in Panteley (2015).
Roughly speaking, the first statement (synchronisation)
follows from two properties of the networked system –
namely, negative definiteness of the second smallest eigen-
value of the Laplacian metric L and global ultimate bound-
edness.

Some interesting corollaries, on state synchronisation –cf.
Pogromski and Nijmeijer (2001); Pogromski et al. (2002),
follow from Theorem 1. For instance, if the interconnec-
tions among the network units depend on the whole state,
that is, if y = x.

Corollary 1. Consider the system (7). Let Assumption A1
hold and let y = x. Then, the system is forward complete
and the set

Sx = {x ∈ RnN : x1 − xs = x2 − xs = · · · = xN − xs = 0}
is practically uniformly globally asymptotically stable with
ε = 1/σ.

The constant ∆f represents the maximal possible mis-
match between the dynamics of any individual unit and
that of the averaged unit, on a ball of radius Bx. The more
heterogeneous is the network, the bigger is the constant
∆f . Conversely, in the case that all the zero dynamics of
the units are identical, we have ∆f = 0.



Corollary 2. Consider the system (7) under Assumption
A1. Assume that the functions f2i , which define zero dy-
namics of the network units, are all identical i.e., f2i (x) =
f2j (x) for all i, j ∈ I and all x ∈ Rn. Then the set Sx
is practically uniformly globally asymptotically stable with
ε = 1/σ.

4.1 On practical stability of the collective network behaviour

To analyse the behaviour of the average unit, whose
dynamics is given by the equations (29a). We naturally
assume that the nominal dynamics of average-unit (i.e.,
with e = 0) has a stable compact attractor A and we
establish that the stability properties of this attractor
are preserved under the network interconnection, albeit,
slightly weakened. This assumption is notably satisfied by
chaotic oscillators.

A2. For the system (9), there exists a compact invariant
set A ⊂ Rn which is asymptotically stable with a domain
of attraction D ⊂ Rn. Moreover, we assume that there
exists a continuously differentiable Lyapunov function VA :
Rn → R≥0 and functions αi ∈ K∞, i ∈ {1, . . . , 4} such that
for all xe ∈ D we have

α1(|xe |A) ≤ VA(xe) ≤ α2(|xe |A) (33a)

V̇A(xe) ≤ −α3(|xe |A) (33b)∥∥∥∥∂VA∂xe

∥∥∥∥ ≤ α4(‖xe‖). (33c)

The second part of the assumption (the existence of V )
is purely technical whereas the first part is essential to
analyse the emergent synchronised behaviour as well as
the synchronisation properties of the network, recasted
as a (robust) stability problem. The following statement
applies to the general case of diffusively coupled networks.

Theorem 2. For the system (7) assume that the solutions
are globally ultimately bounded and Assumptions A1, A2
hold. Then, there exist a non-decreasing function γ : R+×
R+ → R+ and, for any R, ε > 0 there exists T ∗ = T ∗(R, ε),
such that for all t ≥ T ∗ and all x◦ such that |x◦ |A ≤ R,

|xs(t,x◦) |A ≤ γ(∆f , R) + ε. (34)

In the case that the network is state practically synchro-
nised, it follows that the set A is practically stable for the
network (7).

Corollary 3. Consider the system (7) under Assumption
A2. If the set Sx is practically uniformly globally asymp-
totically stable for this system, then the attractor A defined
in Assumption A2 is practically asymptotically stable for
the average unit (19).

5. EXAMPLE

To illustrate our theoretical findings we present a brief
case-study of analysis of interconnected heterogeneous sys-
tems via diffusive coupling. We consider three chaotic os-
cillators, two of the well-known Lorenz type, with different
parameters, and a Lü system. The dynamics equations are

LORENZ:
ẋi = γi(yi − xi), i = 1, 2

ẏi = rixi − yi − xizi
żi = xiyi − bizi

LÜ:
ẋ3 =− αβ

α+ β
x3 − 2y3z3 + δ

ẏ3 = αy3 + x3z3

ż3 = βz3 + x3y3.
A direct computation shows that the corresponding emer-
gent dynamics for these systems is given by

3ẋe =−
[
γ1 + γ2 +

αβ

α+ β

]
xe + [γ1 + γ2 − 2ze]ye + δ,

3ẏe = [r1 + r2]xe − [2− α]ye

3że = 3xeye + [β − b1 − b2]ze.

The values of the parameters of the three systems are fixed
in order for them to exhibit a chaotic behaviour:

γ1 = 10 γ2 = 16 α = −10

r1 = 45.6 r2 = 99.96 β = −4

b1 = 4 b2 = 8/3 δ = 10

Since the three chaotic systems are oscillators their tra-
jectories are globally ultimately bounded –see Figure 1.
Moreover, as it may be appreciated from Figure 2, the
solutions remain bounded under the diffusive coupling
which, for this test, we defined to be:
u1 =−σ

[
d12(x1 − x2) + d13(x1 − x3)

]
, d12 = 2, d13 = 4,

u2 =−σ
[
d21(x2 − x1) + d23(x2 − x3)

]
, d23 = 3,

u3 =−σ
[
d31(x3 − x1) + d32(x3 − x2)

]
.

That is, the zero dynamics with respect to the output
yi = xi has dimension two. For each Lorenz system, the
zero dynamics is practically convergent (Assumption A1
holds), as it may be showed using the function

V (zi − z′i) = ‖zi − z′i‖
2
, zi = [yi zi]

>, i ∈ {1, 2}.
whose total derivative yields

V̇ (zi − z′i) ≤ −2 min{bi, 2} ‖zi − z′i‖
2
.

For the Lü system, we have, defining z = [y3 z3]>,

V̇ (z− z′) ≤ −2α|y3 − y′3|2 − 2β|z3 − z′3|2

+4|x3(t)||y3(t)− y′3(t)||z3(t)− z′3(t)|.
Convergence in a practical sense (Assumption A1) holds
since the trajectories are ultimately bounded hence, so
is the last term on the right-hand side of the previous
inequality.

Simulation results for different values of the interconnec-
tion gain σ are showed in Figure 2; it may be appreciated
that the the synchronisation errors ey(t) diminish as the
interconnection gain is increased. The phase portraits of
the three oscillators and that of the average dynamics, are
also showed for three different values of σ.

In Figure 3 we show the phase portrait of the average
dynamics (29a), for different values of the interconnection
gain, compared to that of the emergent dynamics (9). As
it is appreciated, the solutions generated by the emergent
dynamics converge to an equilibrium –approximately, the
point (2.9, 29.43) that is, in this case the attractor A,
defined in Assumption A2, is a point in the phase space.
The average dynamics possesses a double scroll attractor
for “small” values of σ and it becomes a point in the
space at short distance from A, roughly for σ > 15.
This illustrates that the emergent dynamics constitutes, to
some extent, a good “estimate” of the network’s collective
behaviour.



Fig. 1. Phase portraits of the three chaotic oscillators as well as that
of the average dynamics, in the absence of interconnection, i.e.,
with σ = 0.

Fig. 2. First three plots: phase portraits of the three chaotic
oscillators compared to that of the average unit, for different
values of the interconnection gain σ. In all the plots the
ordinates axes refer to ys(t). The lower-right plot depicts the
synchronisation errors ‖ey(t)‖.

The lower-right plot in Figure 3 depicts ‖xs(t)− xe(t)‖ =
|xs(t) |A which corresponds to the difference between the
solutions xs(t) of the average system (29a) and xe(t),
solution of the emergent dynamics ẋe = fs(xe). Note
that this difference diminishes as the interconnection gain
increases however, it does not vanish as σ →∞ –see (34).

6. CONCLUSION

We have presented some preliminary but general state-
ments on dynamic consensus and practical synchronisation
of systems interconnected in heterogeneous networks. We
establish the strongest property that may be achieved, that
is practical synchronisation. Current work focuses on the
use of this approach for controlled synchronisation.
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