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e study of oscillations, from a dynamical-systems-theory viewpoint is a subject of interest in a variety of research domains ranging from physical sciences to engineering. One of the main motivations to study the behaviour of solutions of these complex systems lies in their role in modelling of collective behaviour, such as synchrony, which appears naturally in some biological systems but also in technological creations such as power grids. In particular, Stuart-Landau oscillators are used to model the so-called Andronov bifurcation, from oue equilibrium to a limit cycle. In this paper, we employ modern tools of stability theory to analyse the behaviour of solutions of Stuart-Landau forced and unforced oscillators. We establish su cient conditions for global asymptotic and input-to-state stability with respect to sets.

INTRODUCTION

Generally speaking, an oscillation may be thought of as the repetition of a pa ern; examples of oscillations in nature are endless: circadian rhythm, heart beating, neuron ring, breathing cycles, re ies' lightening, etc. For the purpose of analysis of oscillating phenomena, as well as motivated by technology design, scientists and engineers have come up with a number of famous (mathematical) models of oscillators: the Lorenz system [START_REF] Lorenz | Deterministic nonperiodic ow[END_REF], the van der Pol system van der [START_REF] Van Der Pol | A theory of the amplitude of free and forced triode vibrations[END_REF], the Lotka-Volterra equations [START_REF] Lotka | Contribution to the theory of periodic reaction[END_REF] etc. While the la er correspond to so-called self-sustained autonomous oscillators, certain coupled limit-cycle oscillators constitute mathematical models that allow to analyse collective behaviour. is plays an important role in physics, chemistry, biology, neuroscience, engineering, robotics [START_REF] Kamimura | Automatic locomotion pa ern generation for modular robots[END_REF] and even computer animation [START_REF] Park | Design of dynamical stability properties in character animation[END_REF]. Hence, coupled nonlinear oscillators appear in various se ings as e.g., in gene regulatory networks [START_REF] Hasty | Computational studies of gene regulatory networks: in numero molecular biology[END_REF], neuro-muscular regulation of movement and posture [START_REF] Kelso | Information and control: A macroscopic analysis of perception-action coupling[END_REF]; Haken et al. (1985a), electronic oscillator circuits [START_REF] Ramana | Experimental evidence of time-delay-induced death in coupled limitcycle oscillators[END_REF] and Josephson-junction arrays [START_REF] Wiesenfeld | Synchronization transitions in a disordered josephson series array[END_REF] to name a few.

A particularly signi cant phenomenon, intrinsically linked to collective behaviour of oscillators, is synchronisation. Roughly speaking, this is the capability of (self-sustained) oscillators to coordinate their motion as a consequence of weak interaction, e.g., to oscillate at the same frequency, with or without phase dri .

One of the pioneering schools in the formal study of synchronisation of oscillators is that of A. A. Andronov -see e.g., [START_REF] Andronov | eory of oscillators[END_REF], (2nd ed. 1959 in Russian). e so-called is article is supported by Government of Russian Federation (grant 074-U01) Andronov-Hopf bifurcation, which consists in the birth of a limit cycle out of an equilibrium point, is modelled by the equations of the same name (also known as Stuart-Landau oscillators). eir limit case, has become one of the most popular models of oscillators, in the control community, the so-called Kuramoto's model, which consists in a set of phase oscillators rotating at disordered intrinsic frequencies and with nonlinear couplings (the sine of their phase di erences) [START_REF] Kuramoto | Self-entrainment of a population of coupled non-linear oscillators[END_REF].

is model is broadly used, for instance, in the analysis of power grids Dör er et al. ( 2013) and neuronal activity. Indeed, neuronal synchrony is involved in many healthy brain functions but can also lead to pathological phenomena such as Parkinson disease or epilepsy, which are known to be linked to coherent neuronal hyper-activity. It is well accepted [START_REF] Tass | Phase rese ing in medicine and biology: stochastic modelling and data analysis[END_REF]; [START_REF] Sarnthein | alamic theta eld potentials and eeg: high thalamocortical coherence in patients with neurogenic pain, epilepsy and movement disorders[END_REF] that appearance of such pathological brain rhythms is caused by the synchronisation in a large population of interacting neurons.

Whether they represent a collective behaviour or an isolated phenomenon, mathematical models of oscillators, in spite of their relative simplicity, capture fundamental characteristics of many a priory di erent systems with oscillatory behaviour. Whence the importance of studying oscillators' solutions. Indeed, the analysis of coupled oscillators is an area of active research not only in these application domains but also in dynamical systems [START_REF] Nicolis | Self-organization in nonequilibrium systems[END_REF]; [START_REF] Jackson | Perspectives of nonlinear dynamics[END_REF] and automatic control E mov (2014); [START_REF] Sha | Synchronization of di usively-coupled limit cycle oscillators[END_REF]; [START_REF] Pogromsky | A non-quadratic criterion for stability of forced oscillations[END_REF]; see also some of the references therein.

One approach of analysis, in the case when some type of collective synchrony appears, consists in considering each oscillator as being forced by a weak time-dependent input from other oscillators in the network [START_REF] Izhikevich | Dynamical systems in neuroscience[END_REF]. Motivated by such a qualitative consideration, analysis of the collective behaviour can be reduced to to that of a low-dimensional dynamics (see e.g., [START_REF] Pyragas | Adaptive control of unknown unstable steady states of dynamical systems[END_REF]; [START_REF] Reddy | Dynamics of a limit cycle oscillator under time delayed linear and nonlinear feedbacks[END_REF]; [START_REF] Tukhlina | Feedback suppression of neural synchrony by vanishing stimulation[END_REF] and therefore on a macroscopic level, the collective dynamics can be viewed as a projection of a highdimensional system describing the coupled oscillators onto a centre manifold corresponding to the synchronised motion.

At another level of abstraction, a mathematical concept that captures well the oscillatory behaviour is recurrence. e function x : R → R n is called recurrent if for any ε > 0 there exists T ε > 0 such that for any t ≥ 0 there exists T (t, ε) ∈ (0, T ε ) such that |x(t + T (t, ε)) -x(t)| < ε In words, a recurrent trajectory keeps on passing arbitrarily close to any point and the time intervals between passages through a point and its ε-vicinity are not necessarily equal but their length cannot grow inde nitely. e concept of recurrence clearly points at well-established notions in stability theory, in particular, stability of sets [START_REF] Yoshizawa | Stability theory by Lyapunov's second method[END_REF]; [START_REF] Lin | A smooth converse Lyapunov theorem for robust stability[END_REF]; [START_REF] Teel | Integral characterizations of uniform asymptotic and exponential stability with applications[END_REF] and orbital stability. For instance, when studying the behaviour of a dynamic autonomous system with an oscillatory behaviour, one may want to know whether there exist closed orbits with the property that solutions starting away from them converge asymptotically to them or whether trajectories starting arbitrarily close to the orbits remain close to it forever a er.

In this paper we analyse the behaviour of the Stuart-Landau oscillator from such a stability-theory viewpoint. e di culty in the study of stability for Stuart-Landau oscillators is that the set of solutions of the di erential equations is composed of two disjoint subsets: one closed orbit and one equilibrium point; the former being stable and a ractive and the la er being antistable (unstable and repelling). Our contribution is twofold: rst, we study the stability of the unforced oscillator and then, with respect to additive bounded disturbances. We employ modern tools of input to state stability, tailored for systems with disjoint sets of equilibria [START_REF] Angeli | On input-to-state stability with respect to decomposable invariant sets[END_REF]. e behaviour of limit cycle oscillators under external disturbances was considered e.g., in [START_REF] Mackey | Noiseinduced global asymptotic stability[END_REF]; [START_REF] Wieczorek | Noise synchronisation and stochastic bifurcations in lasers[END_REF] where the e ects of stochastic external signal were analysed or in [START_REF] Montbrió | Synchronization in ensembles of nonisochronous oscillators[END_REF] where e ects of high-frequency external signals were considered. Beyond the analysis of oscillations' slutions, control of is also an important problem in many applications -see e.g., [START_REF] Fradkov | Introduction to control of oscillations and chaos[END_REF]. e rest of this paper is organised as follows. In the next section we discuss the model of the generalised Stuart-Landau oscillator, which is described in complex coordinates. In Section 2 we present our main results, before concluding with some remarks, in Section 3.

Notation. For a complex number, z ∈ C, we use the common notation z = z R + iz I where i := √ -1 and z R , z I ∈ R denote, respectively, the real and imaginary parts of z. We denote by z the complex conjugate of z, i.e., z = z Riz I . Correspondingly, for complex vectors 

z ∈ C N , z = [z 1 • • • z N ] (

THE GENERALIZED STUART-LANDAU OSCILLATOR

e Stuart-Landau equation, which represents a normal form of the Andronov-Hopf bifurcation, is given by ż = -ν|z| 2 z + µz (1) where z ∈ C denotes the state of the oscillator, ν, µ ∈ C are parameters de ned as ν = ν R + iν I and µ = µ R + iµ I .

e real component of µ, µ R , determines the distance from the Andronov-Hopf bifurcation. In the literature, the system (1) with µ R > 0, is known as the Stuart-Landau oscillator [START_REF] Aoyagi | Network of neural oscillators for retrieving phase information[END_REF], [START_REF] Kentaro | Intermi ent switching for three repulsively coupled oscillators[END_REF]Yasumasa (2008), Ma hews et al. (1991). It is also known as the Andronov-Hopf oscillator [START_REF] Perko | Di erential Equations and Dynamical Systems[END_REF].

e Stuart-Landau equation is in normal form, which means that the limit cycle dynamics of many other oscillators can be transformed onto or can be approximated by the dynamics given by equation ( 1), Iooss and Adelmeyer (Jan 1999). We cite, for example, the papers Haken et al. (1985b), [START_REF] Tass | Synchronization in networks of limit cycle oscillators[END_REF] where the van der Pol oscillator and the Haken-Kelso-Bunz (HKB) model in the neuro-physiological applications are approximated by the equations ( 2a) and ( 2b). e analysis of oscillators ( 1) is well documented in the literature via, e.g., Lyapunov-exponents methods (see e.g., [START_REF] Kuznetsov | Elements of Applied Bifurcation eory[END_REF] and [START_REF] Perko | Di erential Equations and Dynamical Systems[END_REF], for a detailed overview), or using the second Lyapunov method (see e.g., Ma hews and [START_REF] Ma Hews | Phase diagram for the collective behavior of limit-cycle oscillators[END_REF] and [START_REF] Pham | Stable concurrent synchronization in dynamic system networks[END_REF]). Of particular interest in the study Stuart-Landau oscillators is the case when ν R > 0 since otherwise, in the case that ν R < 0, the solutions of the system may explode in nite time and if ν R = 0, the oscillator becomes a simple rst-order linear system. It is also clear that the origin is unstable if µ R > 0. Its behaviour on the phase plane is illustrated in Figure 1 e behaviour of the system is more clearly illustrated in polar coordinates. at is, let z = re iϕ then, the equations for the radial amplitude r and the angular variable ϕ can be decoupled into:

ṙ = µ R r -ν R r 3 (2a) φ = µ I -ν I r 2 . ( 2b 
) When µ R < 0, Equation (2a) has only one stable xed point at r = 0. Moreover, the la er is Lyapunov (globally exponentially) stable. However, if µ R > 0, this equation has a stable xed point r = µ R ν R , while r = 0 becomes unstable. is implies, in this case, that the trajectories of the system converge to a circle of radius r, starting from initial conditions either inside or outside the circle. us, the la er is an a ractor and the system (1) exhibits periodic oscillations. In this case, z represents the position of the oscillator in the complex plane and z(t) has a stable limit cycle of the amplitude |z| = µ R ν R on which it moves at its natural frequency. e bifurcation of the limit cycle from the origin that appears at the value µ R = 0 is known in the literature as the Andronov-Hopf bifurcation.

e curves

Γ α = µ R ν R cos(t) sin(t) (3) 
de ne the limit cycle of the system. Remark 1. In the analysis of (the solutions of) (1) we use some statements originally formulated for systems whose state space is Euclidean. In this regard, it is convenient to stress that, for a dynamical system ẋ = f (x), with x ∈ C N , one can de ne stability in the sense of Lyapunov similarly as for systems whose state-space is restricted to R N . Indeed, for a complex vector x = x R + ix I ∈ C N , we may de ne the vector

x ∈ R 2N as x := [x R x I ] . Note that, in particular, |x| 2 = |x| 2 . en, provided that f admits the decomposition f (x) := f R (x R , x I ) + if I (x R , x I ), we may re-express the dynamics of ẋ = f (x) in a 2N -dimensional Euclidean space, via ẋR = f R (x R , x I ) ẋI = f I (x R , x I )
and stability of the origin {x = 0} ⊂ C N is equivalent to the stability of {x = 0} ⊂ R 2N . Consequently, we may safely invoke statements originally formulated for systems on Euclidean spaces, to draw conclusions regarding stability of solutions of systems in the complex (hyper)plane.

Furthermore, note that the assumption that f admits the previous factorisation is a mild assumption that holds for (at least once) di erentiable functions, in particular polynomials, the exponential function etc.

Stability of the unforced Stuart-Landau oscillator

As we have explained, the set

W := z ∈ C : |z| = µ R ν R {z = 0} (4) 
is invariant for the trajectories of the unforced oscillator (1). More precisely, the following theorem generalises a statement from [START_REF] Pham | Stable concurrent synchronization in dynamic system networks[END_REF] concerning the case of real coe cients, i.e., with ν R = 1 and ν I = 0. eorem 1. For the unforced Stuart-Landau oscillator, de ned by Equation (1), the following statements hold true:

(1) if µ R ≤ 0 then the origin z ≡ 0 is globally exponentially stable;

(2) if µ R > 0 then the limit cycle W 1 = z ∈ C : |z| = µ R /ν R is almost globally asymptotically stable and the origin {z = 0} is antistable 1 . Moreover, in this case, the oscillation frequency on W 1 is de ned by

ω = µ I - ν I ν R µ R .
1 at is, the poles of the linearised system have all positive real parts.

Proof of Item 1. Global asymptotic stability of the origin {z = 0} may be established using the Lyapunov function candidate V (z) = |z| 2 = zz. Indeed, taking the derivative of V along trajectories of (1) we obtain

V (z) = -ν|z| 2 z + μz z + z -ν|z| 2 z + µz = -(ν + ν)|z| 4 + (µ + μ)|z| 2 = -2ν R |z| 4 + 2µ R |z| 2 .
Since µ R ≤ 0, we have V (z) ≤ -|µ R ||z| 2 for all z ∈ C and global exponential stability of the origin follows.

Proof of Item 2. Anti-stability of the origin follows trivially by evaluating the total derivative of V (z) = |z| 2 along the trajectories of Equation ( 1) linearised around the origin, i.e., ż = µz. Indeed, locally,

V (z) = µ R |z| 2 where µ R > 0.
Next, to analyse the stability of the limit cycle W 1 , we introduce the Lyapunov function candidate

V (z) = 1 4ν R |z| 2 -α 2 , ( 5 
)
where α = µ R /ν R . Notice that V (z) = 0 for all z ∈ W 1 and it is positive otherwise.

Evaluating the total derivative of V , along the solutions of (1), we get

V (z) = 1 2ν R |z| 2 -α żz + z ż = 1 2ν R |z| 2 -α (-ν|z| 2 z + μz)z + z(-ν|z| 2 z + µz)
and, a er regrouping the terms in the last bracket, we obtain

V (z) = 1 2ν R |z| 2 -α -(ν + ν)|z| 4 + (µ + μ)|z| 2 = 1 ν R |z| 2 -α -ν R |z| 2 + µ R |z| 2 = -|z| 2 -α 2 |z| 2 .
We conclude that V is negative de nite with respect to W 1 that is, V < 0 for all z ∈ W 1 and V = 0 for all z ∈ W 1 . Since the origin is an antistable equilibrium point, W 1 is almost globally asymptotically stable.

It also follows that r → µ R /ν R hence, a er Equation ( 2b) and

ω = φ, we have ω → µ I -(ν I µ R )/ν R .

Stability of the forced Stuart-Landau oscillator

For the case when µ R > 0, in the previous section we proved that the Stuart-Landau oscillator without input, given by (1), presents a limit cycle which is almost globally asymptotically stable. Now, we analyse the stability and robustness of the solutions of a forced generalised Stuart-Landau oscillator, as de ned by the equation ż = -ν|z| 2 z + µz + u (6) where u ∈ C is an input to the oscillator. at is, we analyse the input-to-state stability of this system, i.e., stability with respect to external disturbances. Furthermore, the notion of almost input-to-state stability, introduced in Angeli (2001) (see also [START_REF] Angeli | Stability robustness in the presence of exponentially unstable isolated equilibria[END_REF]), applies to the case of an equilibrium point which is stable for all initial states except for a set of measure zero. For Stuart-Landau oscillators, for which there exists a disjoint invariant set, not consituted of disjoint equilibria, we use a recently developed re ned tool for inputto-state stability with respect to decomposable invariant sets -see [START_REF] Angeli | On input-to-state stability with respect to decomposable invariant sets[END_REF]. For the sake of clarity we start by pu ing in context the essential technical tools that we use. e mathematical se ing e main advantage of the approach introduced in Angeli and E mov ( 2013) is that it allows to analyse the robustness properties of the complex invariant sets without the use of tools involving manifolds and dimensionality arguments, while being applicable to the case when the invariant set is compact. For the sake of self-containedness, we brie y recall below the essential de nitions and statements from [START_REF] Angeli | On input-to-state stability with respect to decomposable invariant sets[END_REF] which are required for the robustness analysis of (6). Consider a nonlinear system ẋ = f (x, d), (7) where the map f : M × D → T x M is assumed to be of class C 1 , M is an n dimensional C 2 connected and orientable Riemannian manifold without boundary and D is a closed subset of R m containing the origin.

Let W be a compact invariant set containing all α and ω limit sets of the unforced system ẋ = f (x, 0) and which admits a nite decomposition without cycles, i.e.,

W = k i=1 W i (8) 
where W i denote non-empty disjoint compact sets which form a ltration ordering of W. According to [START_REF] Angeli | On input-to-state stability with respect to decomposable invariant sets[END_REF] cycles and ltration ordering are de ned as follows. First, we introduce the "domains of a raction" and "repulsion" of a set Λ, respectively, as

W s (Λ) := x • ∈ M : |x(t, x • , d)| Λ → 0 as t → +∞ W u (Λ) := x • ∈ M : |x(t, x • , d)| Λ → 0 as t → -∞ .
en, for two subsets, Λ ⊂ M and Γ ⊂ M , we de ne the relation

Λ ≺ Γ as Λ ≺ Γ ⇔ W s (Λ) ∩ W u (Γ) = ∅. (9) 
Based on these notations, we say that the decomposition W 1 , . . . , W k of W presents an r-cycle if there is an ordered r-

tuple such that W 1 ≺ • • • ≺ W r ≺ W 1 ; a 1-cycle if for some i we have [W u (Λ i ) ∩ W s (Λ i )] -Λ i = ∅.
Finally, a ltration ordering is an ordered sequence of sets Λ i such that Λ i ≺ Λ j for i ≤ j.

For the case of the Stuart-Landau oscillator, we have the following. Firstly, W ⊂ C de ned in (4) is a compact invariant set which contains the α and ω limit sets of (6). is set admits the nite decomposition in compact sets:

W = W 1 ∪ W 2 , W 1 := z ∈ C : |z| = µ R ν R
W 2 := z = 0 . en, we have following for the system (6):

• W s (W 1 ) = z • ∈ C : |z(t, z • )| W 1 → 0 as t → +∞ .
is corresponds to the set of initial conditions gener-ating trajectories which converge to the circumference W 1 . Since, according to eorem 1, W 1 is almost globally asymptotically stable,

W s (W 1 ) = C -{0}. • W u (W 1 ) = z • ∈ C : | z(t, z • ) | W 1 → 0 as t → -∞
. is corresponds to the set of initial conditions generating trajectories that are repulsed away from the circle W 1 hence, W u (W 1 ) = ∅ since W 1 is almost globally a ractive.

• W s (W 2 ) = z • ∈ C : |z | W 2 = |z(t, z • )| → 0 as t →
+∞ . is corresponds to the domain of a raction of the origin, however, we know from the proof of eorem 1 that {0} is antistable hence,

W s (W 2 ) = ∅. • W u (W 2 ) = z • ∈ C : | z(t, z • ) | W 2 → 0 as t → -∞ .
is corresponds to the set of initial states generating trajectories which are repulsed away from the origin, hence, it corresponds to the disk whose boundary corresponds to W 1 , taken away the origin, i.e.,

W u (W 2 ) = z ∈ C : 0 < |z| < µ R /ν R .
We conclude that W admits the ltration ordering

W 1 ≺ W 2 because [C -{0}] ∩ W u (W 2 ) = ∅ but it contains no 2-cycle because W 2 ≺ W 1 since W s (W 2 )∩W u (W 1 ) = ∅. It contains no 1-cycle either because [W u (W 1 ) ∩ W s (W 1 )] -W 1 = ∅ and [W u (W 2 ) ∩ W s (W 2 )] -W 2 = ∅.
e previous characterisation of decomposable compact invariant sets constitutes a formal framework to establish conditions under which a perturbed system admits an input-tostable stability Lyapunov function, as de ned next. De nition 2.1. [START_REF] Angeli | On input-to-state stability with respect to decomposable invariant sets[END_REF]. We say that a C 1 function V : M → R is an input-to-state-stability Lyapunov function for (7) if there exist K ∞ functions α 1 , α 2 , α and γ, and a non-negative real c such that α

1 (| x | W ) ≤ V (x) ≤ α 2 (| x | W ) + c, (10 
) the function V is constant on each W i and the following dissipation condition holds:

DV (x)f (x, d) ≤ -α(| x | W ) + γ(|d|). (11) 
e following statement, which corresponds to a paraphrasis of [START_REF] Angeli | On input-to-state stability with respect to decomposable invariant sets[END_REF], eorem 1), serves to establish robust stability of Stuart-Landau oscillators (6). Indeed, as we show farther below, Stuart-Landau oscillators admit input-tostate stability Lyapunov functions.

eorem 2. Consider the nonlinear system (7) and let W correspond to the union of disjoint compact invariant sets containing all α and ω and limit sets of the unforced system ẋ = f (x, 0), such that W admits a ltration ordering without cycles. en, the following are equivalent:

• the system (7) possesses the asymptotic gain property, i.e., there exists η ∈ K ∞ such that, for all x ∈ M and all measurable essentially bounded inputs d, the solutions of (7), with initial conditions x • , are de ned for all t ≥ 0 and lim sup

t→+∞ |x(t, x • , d) | W ≤ η( d ∞ ) (12) 
where d ∞ := sup t≥0 |d(t)|.

• e system (7) admits an input-to-state stability Lyapunov function therefore, it is input to state stable with respect to the input u and the set W.

Robustness analysis of Stuart-Landau oscillator

We are ready to apply the framework brie y recalled above to analysis of the system (6) which, as we have showed, possesses an invariant set decomposable in invariant compacts which admit a ltration ordering with no cycles. ese compacts correspond to the (antistable) origin of the complex plane and the almost globally asymptotically stable circle of radius µ R /ν R . According to eorem 2, in order to establish input to state stability with respect to W it is su cient and necessary to establish that the Stuart-Landau oscillator possesses the asymptotic gain property. To that end, we start by de ning the norm | • | W , as follows.

W 2 W 1 √ α √ α/2 Fig. 2. Illustration of | z | W |z | W =    √ 3 |z| if |z| ≤ √ α/2, |z| 2 -α if |z| ≥ √ α/2 (13) 
α := µ R /ν R e following result ensures that the system (6) possesses the asymptotic gain property, i.e., asymptotically, the distance between the oscillator's trajectory and set W becomes proportional to the size of perturbations, d ∞ .

eorem 3. Consider the system (6) with initial conditions z • ∈ C and let the set W be de ned by (4). en, the system (6) has the asymptotic gain property, i.e., lim sup

t→+∞ |z(t, z • , u)| W ≤ η u ∞ . (14) 
Proof. It follows using the input-to-state-stability Lyapunov function candidate V de ned in (5), which we used previously to prove almost global asymptotic stability for the system (6).

One can show that this function satis es the inequalities (10), (11). is is omi ed here due to space constraints.

CONCLUSIONS

We presented two results on the stability of disjoint sets of equilibria for Stuart-Landau oscillators. Our results are motivated by the study of collective behaviour of interconnected oscillators, in particular, by the capacity of these systems to exhibit synchrony. Current research is carried out in this direction.
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 1 Fig. 1. Trajectories of the Stuart-Landau oscillator on the complex plane.