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On practical synchronization of heterogeneous networks of nonlinear systems

Elena Panteley Antonio Lorı́a Laurie Conteville

Abstract— We employ stability theory to study the problem of
synchronization of networked heterogeneous systems. Typically,
for the case of homogeneous networks, this comes to analyzing
the stability and attractivity of a synchronization manifold.
In the case of heterogeneous networks, the synchronization
manifold does not necessarily exist. Instead, we show that an
average dynamics emerges to which the dynamics of all nodes in
the networks converge asymptotically. Also, we give conditions
under which the average dynamics has an attractor. Then, one
can establish that the nodes synchronize in a practical sense,
that is, their motions approach the attractor of the average
dynamics and remain arbitrarily close to it.

I. INTRODUCTION

We consider groups of nonlinear dynamical systems whose
individual dynamics, for each unit, is given by

ẋi = fi(xi) +Bui, (1a)
yi = Cxi, i ∈ I = [1, . . . , N ] (1b)

where xi ∈ Rn, ui ∈ Rm and yi ∈ Rm denote the state, the
input and the output of the ith unit, respectively.

Generally speaking, synchronization is commonly under-
stood as the property of the units which consists in having
or acquiring a correlated motion. Analysis of complex in-
terconnected systems and their ability to produce collective
i.e., synchronized, behavior has been an active research field
during the last decades in many disciplines, including biology,
sociology, physics, computer science, telecommunications,
statistics, dynamical systems and automatic control.

Synchronization of complex systems over networks depends
on several key factors, which include the network structure, the
dynamics of the individual units, the type and strength of the
interconnections and, in some cases, external and/or internal
disturbances as well as delays.

The network structure is typically described by using graph
theory [14] while the nodes’ dynamics are typically described
by ordinary differential or difference equations (or both, in the
case of hybrid systems).

The interaction between the nodes depends e.g. on the
strength of the interconnection, the variables that are mea-
sured, the inputs that are available. The coupling may be linear,
as in [14] or nonlinear, as e.g. in the case of the the Kuramoto
model –cf., [1], [3], [9]. We consider the generic case of
diffusive coupling, that is, we assume that all units have inputs
and outputs of the same dimension and the coupling between
the units [i] and [j] is defined as a weighted difference of the
form γ(yi − yj), where yi, yj are outputs of the units i and j
and γ > 0 is a constant –see [11], [12].
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Depending on whether the dynamics are identical (fi(x) =
fj(x) for all i, j ∈ I) or different the network is said to be
homogeneous or heterogeneous. For a network of physically
(structurally) similar units, e.g., predator-pray or neuronal
network, heterogeneity of the network may come through
variation of the parameters that characterize the dynamics of
these units.

Now, from a control viewpoint, the synchronization prob-
lem is often recasted in terms of stability analysis of a synchro-
nization manifold defined in function of the systems’ states or
outputs. For instance, for homogeneous networks synchroniza-
tion is often formulated as a problem of asymptotic stability of
the synchronization manifold

S = {x ∈ RnN : x1 = x2 = . . . = xN} (2)

and such stability problem may be approached in a number
of ways using tools developed for semi-passive, incrementally
passive or incrementally input-output stable systems –see [12],
[11], [5], [8], [15], [4]. If the manifold is stabilized one says
that the networked units are synchronized. The behavior of the
networks with non-identical units is more complex due to the
fact that the synchronization manifold S does not necessarily
exist, due to the differences in the dynamics of the units.
Yet, a heterogeneous network may exhibit collective behavior;
such is the case if the differences between the dynamical
evolution of the agents in the network are at least bounded
or if, moreover, they become smaller for larger values of
the interconnection gains. In this case we speak of practical
synchronization, a concept reminiscent of practical asymptotic
stability –see [2], [17].

In this paper, for general heterogeneous, networks we char-
acterize the evolution of the network’s dynamics in terms
of two different properties: synchronization of the units and
stability of emergent dynamics. More precisely, in the case that
the adjacency matrix is symmetric, for large values of network
interconnections, the collective behavior may be decomposed
in two parts: the first is defined via the dynamics of an
averaged (also called “mean-field”) unit and whose state is
defined by

xs =
1

N

N∑
i=1

xi ∈ Rn, (3)

and has its own dynamics that is, ẋs = fs(xs). The second
part describes the dynamics of the network units relative to the
dynamics of the averaged unit xs. The average dynamics is
assumed to have a stable behavior. By the latter we mean that
there exists an attractor A in the phase-space of xs such that,
roughly speaking, all solutions of ẋs = f(xs) are attracted to
A asymptotically and remain close to it.



The rest of the paper is organized as follows. In Section
II we describe the network model under study and give a
precise problem formulation. In Section III we present our
main results. In Section IV we present a brief example that
includes some numerical simulations. Finally, we conclude
with some remarks in Section V.

II. MATHEMATICAL SETTING

A. Network model
Consider the group of dynamic systems (1) under the fol-

lowing hypothesis.

A1 The functions fi : Rn → Rn are locally Lipschitz and
the product CB of the matrices B ∈ Rn×m and C ∈ Rm×n
satisfies the similarity condition that there exists U such that
U−1CBU = Λ where Λ is diagonal positive –cf. [12], [13].

By virtue of Assumption A1, the dynamics of each system (1)
in the network can be equivalently written in the following
normal form (see [11], [13])

ẏi = f1
i (yi, zi) + ui (4a)

żi = f2
i (yi, zi), i ∈ I = {1, . . . , N}. (4b)

where zi ∈ Rn−m, f1
i : Rm × Rn−m → Rm, f2

i : Rm ×
Rn−m → Rn−m. The subsystem (4b) corresponds to the zero
dynamics of the unit. We assume that the nodes are diffusively
coupled that is, for each unit, we have

ui = −σ
[
di1(yi − y1) + · · ·+ diN (yi − yN )

]
, (5)

where the scalar σ corresponds to the coupling strength among
the units and dij are the interconnection weights between the
outputs of the ith and the jth units. Regarding the network
structure, we consider that the graph of the network is con-
nected and undirected therefore, dij = dji. These constants
may be collected in the adjacency matrix D = [dij ]i,j∈IN .
The corresponding Laplacian matrix is defined as

L =


∑N
i=2 d1i −d12 . . . −d1N

−d21

∑N
i=1,i6=2 d2i . . . −d2N

...
...

. . .
...

−dN1 −dN2 . . .
∑N−1
i=1 dNi

 (6)

of which all row sums are equal to zero. Since the matrix L
is symmetric and the network is connected all eigenvalues of
the Laplacian matrix are real and, moreover, L has exactly one
eigenvalue (λ1) equal to zero, while others are negative, 0 =
λ1 > λ2 ≥ . . . ≥ λN .

Also, as for instance in [16], [12], [13], [10], [7], we assume
that the dynamics of each agent in the network defines a
passive map:

A2 All the units (4) are strictly semi-passive with respect to
the input ui and output yi with continuously differentiable
and radially unbounded storage functions Vi : Rn → R+,
where i ∈ I. That is, there exist positive definite and radially
unbounded storage functions Vi, positive constants ρi, contin-
uous functionsHi and positive continuous functions %i(·) such
that

V̇i(xi) ≤ y>i ui −Hi(xi) (7)

and Hi(xi) ≥ %i(‖xi‖) for all ‖xi‖ ≥ ρi.

Finally, we assume that the systems are convergent –see [12]–
[11] in the following sense.

A3 There exist continuously differentiable positive definite
functions V◦i : Rn−m → R+ and constants ᾱi > 0 (with
i ∈ I) such that the following inequalities are satisfied

∇V >◦i (z1 − z2)
[
f2
i (y, z1)− f2

i (y, z2)
]
≤ −ᾱi|z1 − z2|2

(8)
for all z1, z2 ∈ Rn−m and y ∈ Rm.

For further development and with a mild abuse of notation,
we rewrite the network dynamics in compact form; we define
the output, input and state vectors of the network as

y =


y1

y2

...
yN

 ∈ RmN ,

u =


u1

u2

...
uN

 ∈ RmN ,

x =



y1

z1

y2

z2

...
yN
zN


∈ RnN

and the function F : RnN → RnN by

F (x) =

 F1(x1)
...

FN (xN )

 , Fi(xi) =

[
f1
i (yi, zi)

f2
i (yi, zi)

]
.

∀ i ∈ I
(9)

Then, using (5), the diffusive coupling between the units can
be written in the form

u = −σ(L⊗ Im)y,

where the symbol ⊗ stands for the Kronecker product and the
dynamics of the whole network can be written in the following
compact form

ẋ = F (x)− σ(L⊗ Em)y (10a)
y = (E>m ⊗ 1N )x, (10b)

where Em = [Im, 0m×(n−m)]
> and 1 ∈ RN is a vector of

ones.

B. Emergent behavior: average dynamics

A fundamental part in our study of dynamic consensus of
heterogeneous systems over networks is the average dynamics.
This corresponds to the average of the drift vector-fields fi of
each agent in (1). That is, the collective behavior of the systems
over the network is studied relatively to this average dynamics,
which we define next.

In accordance with (10b) let ys =
[
E>m ⊗ 1N

]
xs and let

the state of the average unit be partitioned as xs = [y>s , z
>
s ]>



then, since the sum of all rows of L equal to zero, we obtain

ẏs =
1

N

N∑
i=1

f1
i (yi, zi) (11a)

żs =
1

N

N∑
i=1

f2
i (yi, zi). (11b)

Then, introducing

f1
s (ys, zs) :=

1

N

N∑
i=1

f1
i (ys, zs),

f2
s (ys, zs) :=

1

N

N∑
i=1

f2
i (ys, zs),

we see that, by a direct computation, that the equations in (11)
become

ẏs = f1
s (ys, zs) +

1

N

N∑
i=1

[
f1
i (yi, zi)− f1

i (ys, zs)
]

żs = f2
s (ys, zs) +

1

N

N∑
i=1

[
f2
i (yi, zi)− f2

i (ys, zs)
]
.

The latter may be regarded as if constituted of a “nominal” part

ẏs = f1
s (ys, zs) (12a)

żs = f2
s (ys, zs) (12b)

and a “perturbation” determined by the difference between the
dynamics of each individual node and the average dynamics
i.e., f1

i (yi, zi) − f1
i (ys, zs) and f2

i (yi, zi) − f2
i (ys, zs). We

shall say that the network is practically synchronized when
these are “small”.

The nominal dynamics (12) is referred to as emergent dy-
namics since they determine the collective emergent behavior
of the network; we assume that it satisfies the following
assumption.

A4 For the trajectories of the system (12) there exists a com-
pact invariant set A ⊂ Rn which is asymptotically stable with
a domain of attraction D ⊂ Rn. Moreover, we assume that
there exists a continuously differentiable Lyapunov function
VA : Rn → R≥0 and functions αi ∈ K∞, i ∈ {1, . . . , 4} such
that for all xs ∈ D,

α1

(
‖xs‖A

)
≤ VA

(
xs
)
≤ α2

(
‖xs‖A

)
V̇A
(
xs
)
≤ −α3

(
‖xs‖A

)∥∥∥∥ ∂

∂xs
VA
(
xs
)∥∥∥∥ ≤ α4

(
‖xs‖

)
,

where ‖x‖A := inf
y∈A
‖x− y‖.

C. Network dynamics
As we have explained, from a control viewpoint, the syn-

chronization problem may be recasted as a stability problem
with respect to sets. The originality of our work is that it relies
on the study of a stability problem for the synchronization
error dynamics with respect to the average dynamics, as well

as on the analysis of the latter itself. With this in mind, now we
derive the error dynamics. Let

e = x− 1⊗ xs ey = y − 1⊗ ys,

denote, respectively, the state and the output synchronization
errors. Then, it may be showed that the network dynamics can
be written as

ẋs = fs(xs) +Gs(e,xs), (13a)
ė = −σ

(
L⊗ Em

)
ey + PF̃ (e,xs) + ∆F (xs) klj(13b)

where

Gs(e,xs) =
1

N

N∑
i=1

[
Fi(ei + xs)− Fi(xs)

]
, (14)

P = InN −
1

N
(11>)⊗ In

F̃ (e,xs) = F (e + 1⊗ xs)− Fs(xs)
∆F (xs) = Fs(xs)− (1⊗ In)fs(xs)

Fs(xs) :=
[
F1(xs)

> · · · FN (xs)
>]> .

In (13a) the term fs(xs) corresponds to the average nominal
drift, given by 1

N

∑N
i=1 Fi(xs) –see (9) and Gs(e,xs) may

be seen as a perturbation. The synchronization error dynamics
(13b) includes three terms: the first is linear in the output error,
ey , which reflects the effect of diffusive coupling amongst the
nodes; the second term, PF̃ (e,xs), vanishes when e = 0 and
the third term, ∆F (xs), represents the variation between the
dynamics of individual units xi and the averaged unit xs; we
remark here that this term equals to zero when all the functions
that define the zero dynamics of all the units are identical.

The practical output synchronization problem of networked
heterogeneous systems is recasted as a stability analysis prob-
lem for the system (13). The rest of the paper is devoted to
the analysis of this problem. As it shall become clearer in the
succeeding section, the form (13) is more suitable for analysis
of consensus using stability theory.

III. MAIN RESULTS

Two properties of the networked systems (13) are inves-
tigated. Firstly, we characterize how the diffusive coupling
may affect the synchronization of the network; secondly, how
network synchronization may contribute to the appearance of
the emergent dynamics. In the first case we establish a stability
result for the subsystem (13b), while in the second case we
analyze the subsystem (13a).

A. Analysis framework

We use the averaged unit not only for analysis of the
emergent synchronized behavior but also to analyze synchro-
nization properties of the network. To that end, similarly to (2),
we introduce the state synchronization manifold

Sx = {x ∈ RnN : x1 − xs = · · · = xN − xs = 0} (15)

and the output synchronization manifold

Sy = {y ∈ RnN : y1 − ys = · · · = yN − ys = 0}, (16)



where ys = E>mxs. We relate state and output synchronization
of the network to practical asymptotic stability of the synchro-
nization manifolds Sx and Sy respectively. To that end, we
introduce the following definition of the practical stability of
closed, not necessarily compact, sets, which is similar to that
of practical stability of an equilibrium point introduced in [17],
[2].

Consider a parametrized system of differential equations

ẋ = f(x, ε), (17)

where x ∈ Rn, f : Rn → Rn is locally Lipschitz and ε > 0 is
a scalar parameter, we assume that ε ∈ (0, ε◦].

Definition 1 For the system (17), we say that the closed set
A ⊂ Rn is practically uniformly asymptotically stable if there
exists a closed set D such that A ⊂ D ⊂ Rn and:
(1) the system is forward complete for all x◦ ∈ D;
(2) for any given δ > 0 and R > 0 there exists ε∗ ∈ (0, ε◦]

and a class KL function βδR such that for all ε ∈ (0, ε∗]
and all x◦ ∈ D such that ‖x◦‖ ≤ R we have

‖x(t, x◦, ε)‖A ≤ δ + βδR(‖x◦‖A, t).

In what follows, we establish for (10) uniform practical asymp-
totic stability with respect to the synchronization manifolds Sy
and Sy; the tuning parameter ε corresponding to the inverse of
the interconnection gain i.e., ε = 1/σ.

B. Ultimate boundedness of solutions of the nonlinear net-
worked system

As a first step in the analysis of the behavior of the
diffusively-coupled network we formulate conditions that en-
sure that solutions of the nonlinear networked system (10)
are ultimately bounded, which, roughly speaking, means that
all solutions eventually end up within some bounded domain.
More precisely, following [6], we define ultimate boundedness
of solutions in the following way.

Definition 2 (Ultimate boundedness) The solutions of the
system ẋ = f(x), (t, x◦) 7→ x, are said to be ultimately
bounded if there exist positive constants ∆◦ and c such that
for every ∆ ∈ (0,∆◦), there exists a positive constant T (∆)
such that, for all x◦ ∈ B∆ = {x ∈ Rn : ‖x‖ ≤ ∆} they
satisfy

‖x(t, x◦)‖ ≤ c ∀t ≥ T.

If this bound holds with ∆◦ = +∞ then the solutions are
globally ultimately bounded.

The following statement, which is an adaptation of Corollary
1 in [11] , gives conditions under which solutions of (10) are
ultimately bounded.

Proposition 1 Consider a network of N diffusively coupled
units (10). Let the graph of the network interconnections be
undirected and connected and all the units of the network be
strictly semi-passive (Assumption A2). Then, the solutions of
the system (10) are ultimately bounded.

Remark 1 If the graph of the network is directed and con-
nected, the result of Proposition 1 is still valid, however, the
analysis of this type of networks is beyond the scope of this
paper.

C. Practical synchronization under diffusive coupling

We present conditions that ensure practical global asymp-
totic stability of the sets Sx and Sy; these conditions imply
practical synchronization and practical output synchronization
of the network, respectively. The proof of Theorem 1 below is
provided in the Appendix.

Theorem 1 Consider the system (10) and let Assumptions A1,
A2 be satisfied. Then, the system is forward complete and the
set Sy is practically uniformly globally asymptotically stable.

In the particular case that the interconnection between the
network units depends on the whole state rather than on an
output, that is if y = x then, it follows from the previous theo-
rem that the systems “practically synchronize” under diffusive
state coupling.

Corollary 1 Consider the system (10). Let Assumptions A1,
A2 be satisfied and y = x. Then the system is forward
complete and the set Sx is practically uniformly globally
asymptotically stable.

Roughly speaking, the results presented above exploit only
two properties of the networked system, namely, negative
definiteness of the second smallest eigenvalue of the Laplacian
metric L and semi-passivity of the units, which allows to
ensure uniform boundedness of the trajectories of the system
(10). Below, we refine these results and give better estimates
on the network behavior by exploiting additional properties
of the network’s zero-dynamics –see Assumption A3. In par-
ticular, we establish that in this case the network is output
practically synchronized while the upper bound on the (state)
synchronization error depends on the mismatch between dy-
namics of the averaged unit and those of the individual units
of the network.

Theorem 2 Consider the system (10) and let Assumptions A1-
A3 be satisfied. Then, the system is forward complete and the
set Sy is practically uniformly globally asymptotically stable.
Furthermore, there exists a function β ∈ K∞ such that for any
ε ≥ 0 and any ball of initial conditions BR = {x◦ : ‖x◦‖ ≤
R}, there exists a T ∗ > 0 and σ > 0 such that for all t ≥ T ∗

the synchronization error satisfies the following bound

‖e(t,x◦)‖ ≤ β(∆f), (18)

where ∆f = max
‖x‖≤Bx

max
1≤k≤N

{
‖f2
k (x)− f2

s (x)‖
}

.

In case when the zero dynamics of the units are identical,
and therefore ∆f = 0, it follows from the theorem above that
the network is practical state synchronized.

Corollary 2 Consider the system (10) and let Assumptions
A1-A3 be satisfied. Assume that the functions f2

i (·) that define



zero dynamics of the network units are all identical, i.e.,
f2
i (x) = f2

j (x) for all i, j ∈ I and all x ∈ RnN . Then, the
set Sx is practically uniformly globally asymptotically stable.

D. On practical stability of the collective network behavior
Now we analyze the behavior of the averaged dynamics

(13a) and (14), under Assumptions A1-A4. In words, the
results presented below establish that stability of the attractor
of the average unit is preserved, to some extent, in the net-
work interconnection. First we consider the general case of
diffusively-coupled network for which the following result is
valid.

Theorem 3 Consider the system (10) and let Assumptions A1-
A4 be satisfied. Then the set Sy is output practically uniformly
globally asymptotically stable. Moreover, for any R, c > 0
there exist a constant T ∗ > 0 and a domain D0 ∈ RnN such
that for all initial conditions x◦ ∈ D0

‖xs(t,x◦)‖A ≤ c ∀t ≥ T ∗. (19)

In the case that the network units are state practically
synchronized, it follows that the set A is practically stable for
the average system.

Corollary 3 Consider the system (10), equivalently (13), and
let Assumptions A1-A4 be satisfied. If, moreover, the set Sx
is practically uniformly globally asymptotically stable for this
system, then there exists a domain D0 ∈ RnN , such that for
all x◦ ∈ D0 the set A is practically asymptotically stable for
the the average dynamics (13a).

IV. EXAMPLE

For the purpose of illustration, we present a brief example of
a heterogeneous network, which we analyze via numeric simu-
lation. The network consists in three chaotic Lorenz oscillators
with equal dynamics but different parameters hence, different
attractors. The Lorenz system’s dynamics, with one input, is
given by

ẋi = γ(yi − xi) + ui (20a)
ẏi = ρxi − yi − xizi (20b)
żi = xiyi − βzi (20c)

We assume that the circuits are interconnected via the inputs

ui = −σ
3∑

i=1,i6=j
dij [xi − xj ].

For these Lorenz systems, we have B = C = 1 so
the similarity Assumption, A1, holds trivially. The systems
are semi-passive (Assumption A2) from the inputs ui to the
outputs xi, since the derivative of H(x) = ‖x‖2 satisfies

Ḣ(x) = uixi−
3∑
i=1

[
γix

2
i + y2

i +βiz
2
i − (γi +ρi)yi(t)xi(t)

]
and yi(t), xi(t) are bounded. The zero dynamics for each unit
is convergent (Assumption A3), as it may be showed using the
function

V (zi − zj) = ‖zi − zj‖2, zi = [yi zi]
>.

whose total derivative along the trajectories of (20b), (20c)
yields

V̇ (zi − zj) = −2‖zi − zj‖2.

Fig. 1. Attractors for the three Lorenz oscillators and their average
dynamics, for different values of the interconnection gain σ

In the case study we consider three different sets of param-
eters which lead to a chaotic behavior:

γ1 = 10, ρ1 = 28, β1 = 8/3;
γ2 = 10, ρ2 = 99.96, β2 = 8/3;
γ3 = 16, ρ3 = 45.6, β3 = 4.

and the interconnection gains are set to d12 = d21 = 2, d13 =
d31 = 4, d23 = d32 = 3.

The numerical results are illustrated in Figure 1 for the three
Lorenz systems as well as that corresponding to the average
unit (13), in magenta. In the upper-left plot we depict the
attractors in the case that all oscillators evolve independently
that is, σ = 0. The upper-right and lower-left plots illustrate
the attractors for higher values of the interconnection gain,
σ = 10 and σ = 70, respectively. The lower-right plot
shows the norm of the output synchronization errors that is
‖ey(t)‖, for the three values of σ. The property of practical
synchronization is clearly appreciated as the synchronization
errors diminish significantly as σ is increased.

V. CONCLUSIONS

For heterogeneous systems over networks, we have intro-
duced the concept of dynamic consensus. This consists in
exhibiting an emerging average dynamics which possesses
a stable attractor such that the motions of all nodes in the
network converge to a neighborhood of it, asymptotically.
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APPENDIX

Proof of Theorem 1 : Consider the system (10) with
initial conditions x◦ ∈ RnN such that ‖x◦‖ ≤ R, where
R > is an arbitrary constant. The existence and uniqueness
of solutions, at least on a finite time interval, follows from
Lipschitz continuity of F . Furthermore, by Proposition 1 the
solutions are ultimately bounded, hence the system is forward
complete.

From ultimate boundedness there exist constants Bx > 0
and T = T (R) > 0 such that

‖x(t,x◦)‖ ≤ Bx for all t ≥ T. (21)

Next, let us consider the dynamics of the system written in
terms of synchronization errors e, that is equation (13b) and let
us introduce the Lyapunov function candidate Vy : RmN →
R+ defined as Vy(ey) = 1

2e
>
y ey , where

ey =
[
IN ⊗ E>m

]
e =

(
IN ⊗ [Im, 0m×(n−m)]

)
e

Differentiating Vy(ey) along trajectories of (13b) we obtain

V̇y(ey) = −σ e>y (IN ⊗ E>m)(L⊗ Em)ey

+e>y (IN ⊗ E>m)PF̃ (e,xs)

+e>y (IN ⊗ E>m)PFs(xs).

Using the identities (IN ⊗E>m)(L⊗Em) = L⊗ (E>mEm) =
L⊗ Im and the triangle inequality we obtain

V̇y(ey) ≤ −σe>y (L⊗ Im)ey

+
[∥∥PF̃ (e,xs)

∥∥+ ‖PFs(xs)‖
]
‖ey‖

≤ −σλ2(L)‖ey‖2

+
[∥∥PF̃ (e,xs)

∥∥+ ‖PFs(xs)‖
]
‖ey‖.

Since the solutions are ultimately bounded and (21) holds we
have ‖xs(t)‖ ≤ Bx for all t ≥ T . On the other hand, for all
‖xs‖ ≤ Bx there also exist constants C1, C2 > 0 such that

‖PF̃ (e,xs)‖ ≤ C1‖ey‖
‖PFs(xs)‖ ≤ C2

therefore,

V̇y(ey) ≤ −σ [λ2(L)− C1] ‖ey‖2 + C2‖ey‖

≤ −σ
[
λ2(L)− C1 −

C2

2

]
‖ey‖2 +

C2

2
.

Notice that the constants C1 and C2 depend only on the
functions F̃ , F and on the constant Bx and are independent
of σ. Then, denoting C = C1 + C2

2 we obtain that for all
σ ≥ σ∗ = C/λ2(L),

V̇y(ey) ≤ −1

2
σλ2(L)‖ey‖2 +

C2

2
. (22)

Next, applying Proposition 2 (see below) with Z := Sy ,
α1(s) = α2(s) = 1

2s
2 and α3(s) = 1

2σλ2(L)s2, we obtain
that for any ε > 0 there exists T1 = T1(ε) > 0 such that

‖ey(t,x◦)‖ ≤ r + ε, ∀t ≥ T + T1,

where r =
√
C2/σλ2(L). Since r is inversely proportional to√

σ, it follows that r → 0 as σ → +∞. Therefore the set Sy
is practically uniformly globally asymptotically stable.

Proposition 2 Consider the system ẋ = f(x), where x ∈ Rn
and f is continuous, locally Lipschitz. Assume that the system
is forward complete, there exists a closed set Z ⊂ Rn and a
C1 function V : Rn → R+ as well as functions α1, α2 ∈
K∞, α3 ∈ K and a constant c > 0, such that the following
inequalities are satisfied:

α1(‖x‖)Z) ≤ V (x) ≤ α2(‖x‖Z)

V̇ ≤ −α3(‖x‖Z) + c.

Then for anyR, ε > 0 there exists a T = T (R, ε) such that for
all t ≥ T and all x◦ such that ‖x◦‖Z ≤ R

‖x(t,x◦)‖Z ≤ r + ε,

where r = α−1
1 ◦ α2 ◦ α−1

3 (c).


