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The control of infinite dimensional systems with constraints is a notoriously difficult task. We consider a general class of linear systems governed by partial differential equations with boundary control. This problem is here treated in a quite natural manner through the freeness property, the analogue of differential flatness for linear systems. Any variable is then expressed as infinite order differential operators applied to the basis components, the analogue of the flat output components. The specialisation of the basis components are functions which are both of Gevrey regularity (in order for the infinite order differential operators to be convergent) and pertaining the flexibility of polynomial splines. An illustration is made through an Euler Bernoulli beam example.

I. INTRODUCTION

Control of infinite dimensional systems with constraints is known to be a difficult task. We here consider the case of systems giverned by partial differential equations with a control at the boundary. We shall study the class of free systems, the linear analogue of nonlinear finite dimensional differentially flat systems, and make use of algebraic techniques. The differential flatness (see [START_REF] Fliess | Flatness and defect of non-linear systems: introductory theory and applications[END_REF]) gives a solution to systems governed by ordinary differential equations. As noticed in [START_REF] Fliess | Flatness and defect of non-linear systems: introductory theory and applications[END_REF], this method is not restricted to ordinary differential equations and can be adapted to delay differential systems and partial differential equations with boundary control.

The freeness of a certain modules, whose properties are obtained through homological arguments (see, e.g., [START_REF] Eisenbud | Commutative Algebra with a View Toward Algebraic Geometry[END_REF], [START_REF] Lang | Algebra[END_REF]; We especially use the resolution of Serre's conjecture by Quillen [START_REF] Quillen | Projective modules over polynomial rings[END_REF] and Suslin [START_REF] Suslin | Projectives modules over a polynomial ring are free (in russian)[END_REF], already exploited in [START_REF] Mounier | Propriétés structurelles des systèmes linéaires à retards : aspects théoriques et pratiques[END_REF]; see also [START_REF] Fliess | Quelques propriétés structurelles des systèmes linéaires à retards constants[END_REF], [START_REF] Fliess | Interpretation and comparison of various types of delay system controllabilities[END_REF], [START_REF] Fabiaska | Applications of the Quillen-Suslin theorem to multidimensional systems theory[END_REF], [START_REF] Quadrat | An introduction to constructive algebraic analysis and its applications, les cours du CIRM[END_REF]), enables, by assigning a trajectory to a basis of this module, to obtain the desired trajectory tracking.

We shall, as systematized in [START_REF] Rudolph | Motion planning and open loop control design for linear distributed parameter systems with lumped controls[END_REF], envision the equations of the system as a Cauchy problem in the spatial variable, a problem which is well posed in some suitable spaces of generalized functions: the desired convolutional system is obtained by first solving the Cauchy problem and plugging its solution into the boundary conditions, i.e., the equations imposed by the boundary conditions further restrict the Cauchy data.

Differentially flat systems with constraints are generally attacked through the use of optimal control problems (see, e.g. [START_REF] Faiz | Differentially Flat Systems with Inequality Constraints: An Approach to Real-Time Feasible Trajectory Generation[END_REF], [START_REF] Faulwasser | Optimal Exact Path-Following for Constrained Differentially Flat Systems[END_REF], [START_REF] Oldenburg | Flatness and higher order differential model representations in dynamic optimization[END_REF], [START_REF] Petit | Inversion based constrained trajectory optimization[END_REF], [START_REF] Sira-Ramírez | Differentially flat systems[END_REF]). We here propose to embed the constraint fulfillment in the trajectory design. We thus specialize the basis (or flat output) to the convolution of a so called Gevrey function with a polynomial B-spline.

In Section II we briefly recall general definitions about Rlinear systems. In the next Section, bounday value problems are modeled as modules over a ring parametrized by space. In Section IV various controllability definitions are recalled. Section V is the main section of the paper, dealing with constraints fulfillment. Application to an Euler-Bernoulli beam is the subject of Section VI.

II. R-LINEAR SYSTEMS

We shall consider in this section quite general definitions for linear systems viewed as modules over a ring. In the next section, we shall be more specific in order to describe boundary value problems as modules over a ring parametrized by space.

Definition 1: An R-system Λ, or a system over R, is an R-module. A presentation matrix of a finitely presented Rsystem Σ is a matrix

P such that Σ ∼ = [v]/[P v] where [v]
is free with basis v. An output y is a subset, which may be empty, of Λ. An input-output R-system, or an input-output system over R, is an R-dynamics equipped with an output. The next definition allows, by extension of scalars, to obtain much nicer algebraic properties when needed.

Definition 2: Let A be an R-algebra and Λ be an R-system. The A-module A ⊗ R Λ is an A-system, which extends Λ.

III. BOUNDARY VALUE PROBLEMS AS SYSTEMS PARAMETRIZED BY SPACE

We shall here consider boundary value PDE systems as modules over rings. A space parametrization is embedded in the chosen rings.

A. Model class

Models are here considered as space dynamics with time differential operator coefficients.

1) Distributed equations: The envisioned model equations are based on a Cauchy-Kowalevski form:

∂ x w i = A i w i + B i u, w i : Ω i → (D * ) p , u ∈ (D * ) m , A i ∈ (R[∂ t ]) pi×pi , B i ∈ (R[∂ t ]) pi×m , i ∈ {1, . . . , l} (1a) 
where w 1 , . . . , w l are the distributed variables, u = (u 1 , . . . , u m ) the lumped variables, and D * denotes a space of (ultra -) distributions.

2) Assumptions: We shall make two assumptions:

• The intervals Ω 1 , . . . , Ω l are given by an open neighbor-

hood of Ωi = [x i,0 , x i,1 ], i = x i,1 -x i,0 = q i q i ∈ Q, ∈ R (1b) 
Without loss of generality, assume x i,0 = 0. • The characteristic polynomials of the matrices A 1 , . . . , A l can be written

P i (λ) := det(λI -A i ) = pi ν=0 a i,ν λ ν , (1c) 
a i,ν = ν+µ≤pi a i,ν,µ ∂ µ t (1d)
with a i,j,k ∈ R, a i,pi,0 = 1. Moreover, their principal parts µ+ν=pi a i,µ,ν ∂ µ t λ ν are hyperbolic w.r.t. the time t, i.e. the roots of µ+ν=pi a i,µ,ν λ j are real. Remark 1. -Note that the above assumptions apply to most spatially one-dimensional boundary controlled evolution equations including Euler-Bernoulli or Timoshenko beam equations, more general parabolic diffusion-reaction-convection equations, damped and undamped wave-equations, etc. The only notable exception is the case where the maximal order derivative is a mixed one, such as, e.g. models of structural damping (α∂ t + 1)(∂ 2

x -∂ 2 t )w = 0 3) Boundary conditions: The models are completed by the following boundary conditions

l i=1 L i w i (0) + R i w i ( i ) + Du = 0 (1e) with D ∈ (R[∂ t ]) q×m and L i , R i ∈ (R[∂ t ]) q×pi .

B. Solution of the Cauchy Problem

Some properties of the solution of the Cauchy problem (1a) with initial conditions given by x = ξ, i.e.

∂ x w = Aw + Bu, w(ξ) = w ξ (2) with A ∈ (R[∂ t ]) p×p , B ∈ (R[∂ t ]
) p×q as assumed in the previous section for A i , B i , will be used. The notation of the previous section is used in what follows, dropping the index i ∈ {1, . . . , l}. Consider the initial value problem

P (∂ x )v(x) = 0, (∂ j x v)(0) = v j ∈ E * (R), j = 0, . . . , p-1 (3) 
associated with the characteristic equation

P (λ) := det(λI -A) = p j=0 a j λ j , a j = j+µ≤p a j,µ ∂ µ .
According to [24, Thrm. 12.5.6] or [49, Thrm 2.5.2,Prop. 2.5.6] the initial value problem (3) has a unique solution which may be written as

v(x) = p-1 j=0 C j (x)v j ,
where juxtaposition of symbols means convolution and C 0 , . . . , C p-1 are smooth functions mapping Ω to the space of compactly supported Beurling ultradistributions E * (R) := E (p/(p-1)) (R) of Gevrey order p/(p -1). The functions C 0 , . . . , C p-1 satisfy (k, j ∈ {0, . . . , p -1})

∂ k x C j (0) = 1, k = j 0, k = j (4) 
and

∂ x C j = C j-1 -a j C p-1 , j = 1, . . . , p -1, (5) 
∂ x C 0 = -a 0 C p-1 . (6) 
With this preparatory steps, the unique solution x → Φ(x, ξ) of the initial value problem (2) can be expressed as

w(x) = Φ(x, ξ)w ξ + Ψ(x, ξ)u. (7) 
Therein, Φ(x, ξ) ∈ E * (R) p×p is the fundamental matrix of the initial value problem w(x) = Φ(x, ξ)w(x), w(ξ) = w ξ and Ψ(x, ξ) ∈ E * (R) p×m corresponds to the particular solution of (2) with vanishing data w ξ = 0. Explicit expressions for Φ and Ψ can be given using the ultradistribution-valued functions C 0 , . . . , C p-1

Φ(x, ξ) = p-1 j=0 A j C j (x -ξ), Ψ(x, ξ) = x ξ Φ(x, ζ)dζB. (8)
Substituting the general solutions of the initial value problems into the boundary conditions, one obtains the following linear system of equations:

w(x) = W ξ (x)c ξ , P ξ c ξ = 0. (9) 
Here, ξ

= (ξ 1 , . . . , ξ n ), c T ξ = (w T 1 (ξ 1 ) • • • w T l (ξ l ), u T ), W ξ =    Φ 1 (x, ξ 1 ) 0 0 Ψ 1 (x, ξ 1 ) 0 . . . 0 . . . 0 • • • Φ l (x, ξ l ) Ψ l (x, ξ l )    , P ξ = P ξ,1 • • • P ξ,l+1 with P ξ,i = L i Φ i (0, ξ i ) + R i Φ i ( i , ξ i ), i = 1, . . . , l P ξ,l+1 = D + l i=1 L i Ψ i (0, ξ i ) + R i Ψ i ( i , ξ i ).
A possible choice for the coefficient ring is the ring

R I R [s, S, S I ].
Here, for any X ⊆ R, R I X = [S X , S I X ], with S = {C, S}, S X = {C(z ), S(z )|z ∈ X}, S I = {C I , S I }, S I X = {C I (z ), S I (z )|z ∈ X}, defined as in (1b), and

S I (x) = x 0 S(ζ)dζ, C I (x) = x 0 C(ζ)dζ.
Inspired by the results given in [START_REF] Mounier | An algebraic interpretation of the spectral controllability of a linear delay system[END_REF], [START_REF] Loiseau | A result that could bear fruit for the control of delay-differential systems[END_REF], [START_REF] Üerssen | A behavioral approach to delay-differential systems[END_REF], and in view of the simplification of the analysis of the module properties, instead of the ring R I R , we shall use a slightly larger ring,

given by R R = C(s)[S R ] ∩ E * .
Definition 3: The convolutional system Σ associated with the boundary value problem (1) is the module generated by the elements of c ξ over R = R R [S, S I ] with presentation matrix P ξ . By Σ R (resp. Σ Q ) we denote the same system but viewed as a module over R R (resp. R Q ).

IV. SYSTEM CONTROLLABILITIES A. General controllabilities

In this section we emphasize several controllability notions which are defined directly without referring to a solution space. Let us start with some purely algebraic definitions: Definition 4 (see, e.g. , [20, Def. 2.4.]): Let A be an R algebra. An R-system Λ is said to be A-torsion free controllable (resp. A-projective controllable, A-free controllable) if the A-module A ⊗ R Λ is torsion free (resp. projective, free). An R-torsion free (resp. R-projective, R-free) controllable Rsystem is simply called torsion free (resp. projective, free) controllable.

Elementary homological algebra (see, e.g., [START_REF] Rotman | An Introduction to Homological Algebra[END_REF]) yields Proposition 1: A-free (resp. A-projective) controllability implies A-projective (resp. A-torsion free) controllability.

Proposition 2: R-free controllability implies A-free controllability for any R-algebra A. More generally, given any Rsystem Σ that is a direct sum of a torsion module tΣ and a free module Λ, the extended system A ⊗ R Σ is a direct sum of the torsion module A ⊗ R tΣ and the free module A ⊗ R Λ.

The importance of the notions of torsion free and free controllability is intuitively clear: While the first one refers to the absence of a nontrivial subsystem which is governed by an autonomous system of equations, the latter refers to the possibility to freely express all system variables in terms of a basis of the system module. For this reason, and, secondarily, in reminiscence to the theory of nonlinear finite dimensional systems, we have the following:

Definition 5: Take an A-free controllable R-system Λ with a finite output y. This output is said to be A-flat, or A-basic, if y is a basis of A ⊗ R Λ. If A ∼ = R then y is simply called flat, or basic.

V. CONTROL WITH CONSTRAINTS A. Gevrey functions

For an A-free controllable R-system Λ , the basis y is introduced in order to express all system variables through infinite order differential operators:

w(x, t) = ∞ i=0 a i (x)y (i) (t) (10a) u(t) = ∞ i=0 b i y (i) (t) (10b) 
This representation make sense only if the series (10a) and (10b) can be made convergent. When an appropriate basis y is chosen, these series lead in particular to an open loop control.

Definition 6 (Gevrey Class): [see, e.g., [START_REF] Komatsu | Structure theorems and a characterization[END_REF], [START_REF] Ramis | Séries divergentes et théories asymptotiques[END_REF], [START_REF] Rodino | Linear Partial Differential Operators in Gevrey Spaces[END_REF]] A smooth function φ : R → R is of Gevrey order α if on any compact subset

K ⊂ R ∃m K , γ K ∈ R + , ∀k ∈ N, sup t∈K |φ (k) (t)| ≤ m K γ k K (k!) α .
The functions of Gevrey order α < 1 are entire, while analytic for α = 1 and non-analytic if α > 1.

The Taylor expansion of a smooth function is not convergent, unless the function is analytic. The Gevrey order α estimates this divergence. Gevrey functions of order α > 1 have divergent Taylor expansion; the larger α , the more divergent the Taylor expansion. Important properties of analytic functions generalize to Gevrey functions of order α > 1: the scaling, addition, multiplication and derivation of Gevrey functions of order α ≤ 1 is of order α. But contrary to analytic functions, functions of order α > 1 may be constant on an open set without being constant everywhere.

B. Identity approximation

We shall make use of identity approximation whose definition we recall: Definition 7: An identity approximation is a family

φ ε in L 1 (R) indexed by ε > 0 such that: 1) φ ε 1 is bounded, independently of ε > 0. 2) ∀ε > 0, R φ ε = 1.
3) ∀η > 0, lim

ε→0 |t|<η |φ ε | = 0.
The following regularisation result explains the previous terminology Proposition 3: Consider an identity approximation (φ ε ). For any function f in L p (1 p < ∞) the sequence (φ ε * f ) converges towards f in L p . Thus, the sequence (φ ε ) can be seen to converge to the Dirac distribution. The following lemma is a useful construction of an identity approximation.

Lemma 1: Let φ : R → C be a function in D(R) with non zero integral, then the sequence (φ ε ) with

φ ε (t) = φ (t/ε) ε R φ(τ )dτ
is an identity approximation. 1) Gevrey identity approximation: Consider the following function

g(τ ) = exp(-(1 -τ 2 ) -σ ), if τ ∈ [-1, 1]
0, otherwise which is Gevrey of order 1 + 1/σ and with compact support

[-1, 1].
The previous construction leads to an identity approximation which is Gevrey of order 1 + 1/σ (see [START_REF] Lynch | Flatness-based boundary control of a class of quasilinear parabolic distributed parameter systems[END_REF], [START_REF] Rudolph | Motion planning and open loop control design for linear distributed parameter systems with lumped controls[END_REF]:

g ε (t) = g (t/ε) ε R g(τ )dτ

C. Basis as a B-spline Gevrey approximation

We shall consider the following functions for the basis y:

y = g ε * S ( 11 
)
where S is a polynomial B-spline curve of order m (see [START_REF] De Boor | A pratical quide to spline[END_REF]) and g ε is the previously defined Gevrey identity approximation.

Since y is a convolution with the Gevrey function g ε it is Gevrey of the same order as g ε . Since g ε is an identity approximation:

lim ε→0 g ε * S = S
Hence, to design a reference trajectory y r for y, one has the same flexibility as in the B-spline curve design.

The variables w(x, t) and u(t) are thus expressed as

w(x, t) = ∞ i=0 a i (x)g (i) ε (t) * S(t) A ε (x, t) * S(t) (12) u(t) = ∞ i=0 b i g (i) ε (t) * S(t) B ε (t) * S(t) (13) 
in virtue of the identity ḟ * g = f * ġ.

D. Constraints fulfillment

By Young's inequality, one obtains

u 1 = B ε * S 1 B ε 1 S 1 (14) 
Since g ε is Gevrey of order 1 + 1/σ, one has the following estimates for its derivatives:

g (i) ε ∞ m I γ i K (i!) 1+ 1 σ
Considering the preceding inequality for i = 0, one gets this possible choice m I :

m I = g ε 1 = g ε (0) = 1 eεI g where I g = R g(τ )dτ .
Then, for i = 1, one obtains a possible γ

K γ K = g ε ∞ ġε ∞ = - (1 -t * 2 ) σ+1 2σt * g(t * )eεI g Note that t * ∈ [-ε, 0] and ∀i ∈ I, ġ(t * ) > ġ(t i ).
Then, the L 1 norm for B ε can be estimated as

B ε 1 = ∞ i=0 b i g (i) ε (t) 1 ∞ i=0 b i g (i) ε (t) 1 = ∞ i=0 |b i | g (i) ε (t) 1 ∞ i=0 2ε |b i | g (i) ε (t) ∞ ∞ i=0 2ε |b i | m I γ i K (i!) 1+ 1 σ (15) 
Then, S 1 is estimated since an approximating B-spline curve is always contained in the convex hull defined by its control points. Thus, one has to choose the highest control point of S such that

u 1 = B ε * S 1 B ε 1 S 1 (16) 
is bounded by the constraint on the control. Remark 2. -In practice, the infinite series (13) will be truncated (for implementation reasons) to a sufficiently high order. Since the bound we will consider in ( 15) is of uniform type (i.e. we take norms inside the sum), the inequality (14) will still be fulfilled.

VI. APPLICATION TO AN EULER-BERNOULLI BEAM

A. The model

The model of an Euler-Bernoulli beam is described below (see [START_REF] Aoustin | Theory and practice in the motion planning control of a flexible robot arm using Mikusiǹski operators[END_REF]).

∂ 2 w ∂t 2 = - ∂ 4 w ∂ 4 x (17a) w(0, t) = 0, ∂w(0, t) ∂x = Lu(t) (17b) ∂ 2 w(1, t) ∂x 2 = -λ ∂ 3 w ∂x 2 ∂t (1, t), (17c) 
∂ 3 w(1, t) ∂x 3 = µ ∂ 2 w ∂t 2 (1, t) (17d) with λ = J ρSL 3 , µ = M ρSL

B. Open loop control

It has been shown in [START_REF] Aoustin | Theory and practice in the motion planning control of a flexible robot arm using Mikusiǹski operators[END_REF] that the system corresponding to eqs. ( 17) is free over a suitable ring.

The state and input parametrizations can be determined as: If y(t) is of class Gevrey, with α < 2, the following series, which corresponds to cosh( √ 2s)y is absolutely convergent

n≥0 2 n (2n)! y (n) (t)
For all specialisation of the basis y to a function of the class Gevrey, α < -λ(4n + 3)(4n + 4) (1 + i -x) 4n+2 y(t) where (resp. ) denotes the real (resp. imaginary) part. In other words, the two relations above define a family of trajectories for the hybrid system [START_REF] Fliess | Flatness and defect of non-linear systems: introductory theory and applications[END_REF].

Then, the constraint depicted in ( 16) can be satisfied when replacing the b i 's by the ones found in the expression above.

VII. CONCLUSION

We have outlined a framework for tackling boundary controlled flat PDE systems open loop trajectory tracking with contraints. We have made use of Gevrey identity approximation convolved with a polynomial B-spline for the basis. This retains the flexibility of approximating polynomial B-splines while maintaining the Gevrey character. Constraints fulfillment is ensured through young's inequality and Gevrey estimates. An application to the Euler-Bernoulli beam is outlined.
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