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This paper addresses the stability of a class of nonlinear switching systems under arbitrary switching. It focuses on switching systems whose modes are made of a cascade of nonlinear scalar systems. It relaxes the stability conditions proposed by Angeli and Liberzon, by relying on the Strong iISS property which is known to be preserved under cascade interconnection. Its applicability is illustrated by the study of switched bilinear systems in triangular form.

Introduction

Providing conditions under which a switching system is globally asymptotically stable under arbitrary switching (UGAS) has been the object of intense research. It is well known that switching among nonlinear dynamics that share a common Lyapunov function is UGAS. For linear time-invariant (LTI) systems,

5

UGAS is guaranteed if the state matrices of the individual modes are Hurwitz and either i) commute with one another, ii) are symmetric, or iii) are normal: see [START_REF] Lin | Stability and Stabilizability of Switched Linear Systems: A Survey of Recent Results[END_REF][START_REF] Liberzon | Switching in Systems and Control, Systems and Control: Foundations and Applications[END_REF] and references therein for more details. See also [START_REF] Balde | A note on stability conditions for planar switched systems[END_REF] for a thorough study of the 2-dimensional case.

A powerful way to study stability of a high-order dynamical system is to see it as the interconnection of simpler dynamical systems. In general, this interconnection is bidirectional, in which case results such as the small-gain theorem have to be used in order to infer the stability of the overall system [START_REF] Dashkovskiy | Small gain theorems for large scale systems and construction of ISS Lyapunov functions[END_REF]. However, the complexity of the analysis is dramatically reduced when the subsystems are interconnected in a unidirectional way; in other words, when the overall system is in triangular form [START_REF] Panteley | Growth rate conditions for stability of cascaded time-varying systems[END_REF][START_REF] Arcak | A unifying integral ISS framework for stability of nonlinear cascades[END_REF][START_REF] Chaillet | Integral Input-to-State Stable systems in cascade[END_REF][START_REF] Ito | A Lyapunov approach to cascade interconnection of Integral Inputto-State Stable systems[END_REF]. It is well known that the switching among LTI systems with Hurwitz triangular matrices is UGAS. This feature has been extended in [START_REF] Angeli | A note on uniform global asymptotic stability of nonlinear switched systems in triangular form[END_REF] to nonlinear switched systems. It was shown, in particular, that if the individual modes are all made of a cascade of scalar subsystems, then GAS is preserved under arbitrary switching provided that the subsystems are input-to-state stable (ISS, [START_REF] Sontag | Input to state stability: Basic concepts and results[END_REF]) with respect to the state of the driving subsystems. The proof of this result relies on the property that ISS is preserved under cascade interconnection [START_REF] Sontag | Changing supply functions in Input-to-State Stable systems[END_REF].

Recently, a less conservative property than ISS has been introduced, which still retains the feature of being preserved under cascade interconnection [START_REF] Chaillet | Strong iISS is preserved under cascade interconnection[END_REF]. This property is known as the Strong iISS, and constitutes an interesting compromise between the generality of integral-ISS (iISS, [START_REF] Sontag | Comments on integral variants of ISS[END_REF]) and the strength of ISS. Strong iISS was introduced in [START_REF] Chaillet | Combining iISS and ISS with respect to small inputs: the Strong iISS property[END_REF], together with Lyapunov tools to ensure it in practice.

The goal of this paper is therefore to relax the conditions of [START_REF] Angeli | A note on uniform global asymptotic stability of nonlinear switched systems in triangular form[END_REF] under which triangular switched systems are UGAS, by requiring that each stage of the triangular system is Strongly iISS rather than ISS. This relaxation extends the class of systems that can be addressed with this technique. It allows for instance to consider specific classes of switching systems whose individual modes are stabilized by saturated feedback [START_REF] Azouit | Robustness under saturated feedback: Strong iISS for a class of nonlinear systems[END_REF], and allows to cope with systems whose dynamics switches among bilinear systems.

The main challenge in relaxing the conditions of [START_REF] Angeli | A note on uniform global asymptotic stability of nonlinear switched systems in triangular form[END_REF] by exploiting the Strong iISS property stands in the fact that no characterization of Strong iISS involving a single Lyapunov function has yet been established (see [START_REF] Chaillet | Combining iISS and ISS with respect to small inputs: the Strong iISS property[END_REF] for a counterexample on a natural conjecture to that regards). Consequently, we need to rely either on solution based reasoning, or on the existing Lyapunov characterizations for ISS [START_REF] Sontag | On characterizations of the Input-to-State Stability property[END_REF] and iISS [START_REF] Angeli | A characterization of integral input to state stability[END_REF].

The paper is organized as follows: after recalling some necessary definitions, we describe the class of nonlinear switched systems considered here and provide our main result (Section 2), we then apply this result to switched bilinear systems (Section 3). All proofs are provided in Section 4. U m denotes the set of all measurable, locally essentially bounded functions u :

Notation

R ≥0 → R m . Given u ∈ U m , u := ess sup t≥0 |u(t)|.

Problem statement and main result

Preliminary definitions

The present paper studies the stability of a particular class of switched nonlinear systems. Generally speaking, a switched nonlinear system is defined as

ẋ = f σ (x)
where σ ∈ P and, for each p ∈ P , f p : R n → R n denotes a locally Lipschitz function. This system is said to be uniformly globally asymptotically stable (UGAS) if there exists a KL function β such that, for all x 0 ∈ R n and all σ ∈ P, its solution satisfies |x(t; x 0 , σ)| ≤ β(|x 0 |, t) for all t ≥ 0.

Similarly to [START_REF] Angeli | A note on uniform global asymptotic stability of nonlinear switched systems in triangular form[END_REF], this paper exploits specific input-to-state properties of the individual subsystems to derive stability of the overall switched system. This requires us to consider switched systems with inputs:

ẋ = f σ (x, u) (1) 
where u ∈ U m represents the exogenous input. This system is said to be uniformly input-to-state stable with respect to small inputs (ISS wrt small inputs)

if there exist a positive constant R, called input threshold, β ∈ KL, and γ ∈ K ∞ such that, for all x 0 ∈ R n , all σ ∈ P, and all u ∈ U m , its solution satisfies

u ≤ R ⇒ |x(t; x 0 , σ, u)| ≤ β(|x 0 |, t) + γ( u ), ∀t ≥ 0.
If the right-hand side of the above implication holds for all u ∈ U m , we recover the notion of input-to-state stability (ISS) introduced in [START_REF] Sontag | Smooth stabilization implies coprime factorization[END_REF] and widely studied in the literature: see [START_REF] Sontag | Input to state stability: Basic concepts and results[END_REF] for a survey. ISS wrt small inputs thus requires ISS as long as the input amplitude does not overpass the input threshold R. It should not be confused with the notion of local ISS (LISS), used for instance in [START_REF] Sontag | New characterizations of Input-to-State Stability[END_REF],

for which the above estimate is required to hold only for small initial conditions and small input amplitudes: on the contrary, ISS wrt small inputs constrains the input magnitude but not the initial state. Note that ISS wrt to small inputs implies UGAS of the switched system in the absence of exogenous inputs (u = 0). It also guarantees a bounded response to any input whose amplitude is below the input threshold R. Nonetheless, it provides no information on the behavior of the system when the applied input has an amplitude greater than R: solutions may diverge or even escape in finite time. To prevent this, the Strong iISS property introduced in [START_REF] Chaillet | Combining iISS and ISS with respect to small inputs: the Strong iISS property[END_REF] combines it with integral input-to-state stability (iISS, [START_REF] Sontag | Comments on integral variants of ISS[END_REF]). More precisely, we say that (1) is Strongly iISS if it is both ISS wrt to small inputs and iISS, the latter meaning that there exist β ∈ KL and η 1 , η 2 ∈ K ∞ such that, for all x 0 ∈ R n , all u ∈ U m , and all σ ∈ P,

|x(t; x 0 , σ, u)| ≤ β(|x 0 |, t) + η 1 t 0 η 2 (|u(s)|)ds , ∀t ≥ 0.
By combining iISS and ISS wrt small inputs, the Strong iISS property thus ensures existence of solutions at all times, bounded state in response to any input signal whose amplitude is below the input threshold R, and a vanishing state in response to any vanishing input: see [START_REF] Chaillet | Combining iISS and ISS with respect to small inputs: the Strong iISS property[END_REF] for further details.

We stress that the extension of these properties to non-switched systems can be straightforwardly deduced by the above definitions by considering that σ can only take a single value (namely, P = {1}).

Problem statement

While Strong iISS a much weaker robustness property than ISS, they share a crucial common feature: they are both preserved under cascade interconnection [START_REF] Chaillet | Combining iISS and ISS with respect to small inputs: the Strong iISS property[END_REF][START_REF] Sontag | Changing supply functions in Input-to-State Stable systems[END_REF]. This feature was extensively exploited in [START_REF] Angeli | A note on uniform global asymptotic stability of nonlinear switched systems in triangular form[END_REF] to analyze the stability of switched nonlinear systems in triangular form. The objective of this paper is to generalize this result, by replacing the ISS requirement by the more general Strong iISS property.

Let us start by formally introducing the class of systems considered here.

Given n ∈ N ≥1 we address the following switched dynamics :

              ẋ1 . . . ẋi . . . ẋn-1 ẋn               =               f 1 σ (x 1 , x 2→n ) . . . f i σ (x i , x i+1→n ) . . . f n-1 σ (x n-1 , x n ) f n σ (x n )               , ( 2 
)
where σ ∈ P, x i ∈ R, and

x i→j := (x i , x i+1 , ..., x j ) T ∈ R j-i+1 for all 1 ≤ i ≤ j ≤ n.
We stress that the dynamics of each state variable x j is only influenced by its own value and those of the driving states x j+1→n ; for each given value of the signal σ, the right-hand side of ( 2) is thus given by a cascade of scalar subsystems: we refer to such systems as nonlinear triangular switched systems.

We make the following two assumptions, on the individual subsystems.

Assumption 1. For each p ∈ P , the origin of the driving system ẋn = f n p (x n ) is globally asymptotically stable (GAS).

Assumption 2.

For each i ∈ {1, ..., n -1} and each p ∈ P the system ẋi =

f i p (x i , x i+1→n
) is Strongly iISS with respect to the input x i+1→n .

Note that the above assumptions concern only non-switched dynamics.

Main result

We are now ready to state our main result.

Theorem 1. Under Assumptions 1 and 2, the switched system ( 2) is uniformly globally asymptotically stable (UGAS).

This result is similar to [9, Theorem 1] as it provides a condition under which specific switched nonlinear systems in triangular form are UGAS. The main difference stands in the main assumption made on each stage of the cascade:

here, they are required to be Strongly iISS with respect to the driving state, while in [START_REF] Angeli | A note on uniform global asymptotic stability of nonlinear switched systems in triangular form[END_REF] they are assumed ISS. This relaxation is noteworthy as Strong iISS is much less conservative than ISS, by requiring a bounded solutions only to inputs that are below a specific threshold. For this reason, it allows us to deal with systems stabilized by saturated feedback [START_REF] Azouit | Robustness under saturated feedback: Strong iISS for a class of nonlinear systems[END_REF] or bilinear systems [START_REF] Chaillet | Combining iISS and ISS with respect to small inputs: the Strong iISS property[END_REF]. We illustrate the latter in Section 3.

Proof of Theorem 1. The proof is decomposed into the following five lemmas. The first one establishes the UGAS of the switched driving subsystem.

Its proof is provided in Section 4.1.

Lemma 1.

Under Assumption 1, the driving switched system ẋn = f n σ (x n ), with σ ∈ P, is UGAS.

The second lemma, proved in Section 4.2, ensures the existence of the solutions of the overall switched system for all forward time. Lemma 2. Under Assumptions 1 and 2, for all initial state x 0 ∈ R n and all switching signal σ ∈ P, the solution x(t; x 0 , σ) of ( 2) exists at all t ∈ R ≥0 .

The third lemma, proved in Section 4.3, states that the switching between scalar systems that are ISS wrt small inputs is itself ISS wrt small inputs. Lemma 3. Assume that, for each p ∈ P , the scalar system defined by ż =

g p (z, u), z ∈ R, u ∈ R m ,
is ISS wrt small inputs. Then, given any signal σ ∈ P, the switched system ż = g σ (z, u) is also ISS wrt small inputs.

The fourth lemma establishes the convergence of the solutions of the switched system to the origin. Its proof is provided in Section 4.4.

Lemma 4.

Under Assumptions 1 and 2, given any initial state x 0 ∈ R n , the solution of the switched system (2) satisfies lim t→+∞ x(t; x 0 , σ) = 0 uniformly in the switching signal σ ∈ P.

The last lemma states that the origin of the the switched system is stable. See Section 4.5 for its proof. Lemma 5. Under Assumptions 1 and 2, the origin of the switched system [START_REF] Liberzon | Switching in Systems and Control, Systems and Control: Foundations and Applications[END_REF] is uniformly stable.

The proof of Theorem 1 readily follows from Lemmas 4 and 5 by recalling that UGAS is the combination of uniform stability and convergence of all solutions to zero uniformly in the switching signal σ ∈ P.

Switched triangular bilinear systems

We now apply Theorem 1 to a specific class of switched triangular systems.

It was shown in [START_REF] Chaillet | Combining iISS and ISS with respect to small inputs: the Strong iISS property[END_REF] that bilinear systems are Strongly iISS if and only if their internal dynamics is Hurwitz. We exploit this property to address the stability of switched triangular bilinear systems of the form:

              ẋ1 . . . ẋi . . . ẋn-1 ẋn               =               -a 1 σ x 1 + n j=2 b 1,j σ x 1 x j . . . -a i σ x i + n j=i+1 b i,j σ x i x j . . . -a n-1 σ x n-1 + b n-1,n σ x n-1 x n -a n σ x n               , (3) 
where, for each p ∈ P , each i ∈ {1, . . . , n} and each j ∈ {i + 1, . . . , n}, a i p and b i,j p denote real constants. For this particular class of switched system, we have the following result.

Proposition 1. The switched triangular system with bilinear dynamics ( 3) is UGAS for σ ∈ P if and only if a i p > 0 for all i ∈ {1, . . . , n} and all p ∈ P .

It is worth stressing that the UGAS of (3) depends only on the coefficients a i p , and that the value of the parameters b i,j p does not affect this stability property. Note also that, despite its triangular structure, the stability of (3) cannot be addressed by [START_REF] Angeli | A note on uniform global asymptotic stability of nonlinear switched systems in triangular form[END_REF] as each individual subsystem ẋi = -a i p x i + n j=i+1 b i,j p x i x j , p ∈ P is not ISS as soon as a parameter b i,j p is non-zero. Nonetheless, the results presented in [START_REF] Ito | A Lyapunov approach to cascade interconnection of Integral Inputto-State Stable systems[END_REF], that exploits class K dissipation rates, could also have been used for this system.

Proof of Proposition 1. The sufficiency part of the statement results

from Theorem 1 by observing that (3) can be put in the form (2) by letting, for

each p ∈ P , f i p (x i , x i+1→n ) = -a i p x i + n j=i+1 b i,j p x i
x j for all i = {2, . . . , n}, and

f n p (x n ) = -a n p x n .
Assumption 1 is straightforwardly satisfied as a n p > 0 for each p ∈ P . Moreover, Assumption 2 can easily be checked by invoking [14, Corollary 2] since a i p > 0 for all i ∈ {2, . . . , n} and all p ∈ P . To establish the necessity part, assume on the contrary that a i p ≥ 0 for some i ∈ {1, . . . , n} and some p ∈ P , and consider the initial state defined as x 0 j = 0 for all j ∈ {1, . . . , n} \ {i} and x 0 i = 1 together with the switching signal σ ∈ P defined as σ(t) = p for all t ≥ 0. Then the solution of (3) satisfies |x(t)| = |x i (t)| = e a i p t . Since a i p ≥ 0, the state does not converge to the origin, which contradicts the UGAS property.

Proofs

Proof of Lemma 1

For each p ∈ P , the system ẋn = f n p (x n ) being scalar, its GAS can be established through the same Lyapunov function W (x) = x 2 n /2. In other words, the switched system ẋn = f n σ (x n ) is the switching among dynamics who share a common Lyapunov function. UGAS then follows from [2, Theorem 2.1].

Proof of Lemma 2

Given any p ∈ P , the solution of the driving subsystem ẋn = f n p (x n ) exists at all positive time by Assumption 1. In view of the regularity assumptions on f n p , this solution is also continuous over time. It follows that the system ẋn-1 = f n-1 p (x n-1 , x n ) is a Strong iISS system with a measurable and locally bounded input. Since Strong iISS implies iISS, it follows that the solution x n-1 exists at all positive time too. Repeating this reasoning at each stage we conclude that, for each fixed p ∈ P , the solution of the overall cascade exists at all positive time, regardless of the initial state. Consequently, the system (2) results of a switching between forward complete dynamics. Since, by assumption, only a finite number of switchings may occur over any compact time interval, we conclude that the solution of (2) exists at all positive time.

Proof of Lemma 3

The proof of Lemma 3 relies on the following two steps. Claim 1: There exists > 0 and θ ∈ PD such that the function defined by

W (z) = z 2 /2 satisfies, for all p ∈ P , all z ∈ R and all d ≤ 1, ∂W ∂z (z)g p (z, sat m (ψ p (z)d)) ≤ -θ(|z|). (4) 
where ψ p : R → R ≥0 is a continuous function satisfying ψ p (z) ≥ ϕ p (|z|) for some function ϕ p ∈ K.

Claim 2: There exist δ ∈ K and θ ∈ PD such that, for each p ∈ P and each

z ∈ R, |u| ≤ δ(|z|) ⇒ ∂W ∂z (z)g p (z, u) ≤ -θ(|z|). (5) 
Claim 2 shows that the ISS wrt small inputs of each individual system ż = g p (z, u), p ∈ P , can be established through the same Lyapunov function W (z) = z 2 /2. In other words, as long as the input amplitude u is below an input threshold R, all individual systems are ISS with a common Lyapunov function.

When the input amplitude is not constrained, this fact is known to ensure ISS for arbitrary switching [START_REF] Vu | Input-to-State Stability of switched systems and switching adaptive control[END_REF][START_REF] Mancilla-Aguilar | On converse Lyapunov theorems for ISS and iISS switched nonlinear systems[END_REF]. Similarly, we conclude that the switched system ż = g σ (z, u) is ISS wrt small inputs, which concludes the proof of Lemma 3. So we now proceed to proving Claims 1 and 2.

Proof of Claim 1: Consider any p ∈ P . Since ż = g p (z, u) is ISS wrt small inputs, there exist p > 0 such that the system ż = g p (z, sat m p (u)) is ISS. Letting := min p∈P p , it follows that ż = g p (z, sat m (u)) is ISS for each p ∈ P . In view of [START_REF] Sontag | On characterizations of the Input-to-State Stability property[END_REF]Lemma 2.12], it follows that ż = g p (z, sat m (u)) is weakly robustly stable, meaning that there exists a smooth function ψ p : R → R ≥0 , satisfying ψ p (z) ≥ ϕ p (|z|) for all z ∈ R with ϕ p ∈ K ∞ , such that the system ż = g p (z, sat m (ψ p (x)d)) is UGAS1 for all measurable function d ∈ U m satisfying d ≤ 1. This UGAS can be proven using the particular Lyapunov function We claim that this function θp is positive definite and lower bounded by a continuous positive definite function. First, notice that θp (0) = 0 as the origin is an equilibrium point of the system ż = g p (z, 0). Moreover, assume that θp (s * ) < 0 for some s * > 0. Then, by continuity of g p , there exists ε > 0 such that zg p (z, sat m (ψ p (z)d)) > 0 for all z ∈ [(1 -ε)s * ; (1 + ε)s * ] and all |d| ≤ 1, meaning in particular that zg p (z, 0) > 0, which contradicts the fact that ż = g p (z, u) is 0-GAS (as ensured by the assumption of ISS wrt small inputs). Hence, θp (z) ≥ 0 for all z ∈ R. Furthermore, assume that θp (s * ) = 0 for some s * > 0. Then, there exists z * ∈ R and some |d * | ≤ 1 such that g(z * , sat m (ψ p (z * )d * )) = 0 thus implying the existence of an equilibrium outside the origin, which in turns contradicts the UGAS of this system. In a nutshell, θp is a positive definite function. Now, let θ p be any PD function satisfying 

W (z) = z 2 /
d i =    0 if z = 0 ui ψp(z) if z = 0. Recall that max i∈{1,...,
|u| ≤ δ(|z|) ⇒ ∂W ∂z (z)g p (z, u) ≤ -θ(|z|),
which ends the proof of Claim 2.

Proof of Lemma 4

Consider any σ ∈ P and any x 0 ∈ R n and let x(•) := x(•; x 0 , σ) denote the solution of the switched system (2). First notice that, in view of Lemma 1, it holds that lim t→+∞ |x n (t)| = 0 uniformly in the switching signal σ ∈ P.

Moreover, by Lemma 2, x n-1 (t) exists at all t ∈ R ≥0 , and Lemma 3 ensures the system ẋn-1 = f n-1 σ (x n-1 , x n ) is ISS wrt small inputs x n : these combined properties ensure the converging-input converging-state property, uniformly in σ ∈ P. It follows that lim t→+∞ |x n-1 (t)| = 0 uniformly in σ ∈ P. Repeating this reasoning at each stage, we obtain that lim t→+∞ |x i (t)| = 0, uniformly in σ ∈ P, for all i = {1, 2, ..., n}, which ends the proof of Lemma 4.

Proof of Lemma 5

Given any x 0 ∈ R n and any σ ∈ P, let x(•) denote the solution x(•; x 0 , σ) of the switched system [START_REF] Liberzon | Switching in Systems and Control, Systems and Control: Foundations and Applications[END_REF]. By Lemma 1, there exists β n ∈ KL such that, for any switching signal σ ∈ P and any initial state x 0 ∈ R n , the last component of the solution of the switched system (2) satisfies

|x n (t)| ≤ β n (|x 0 n |, t) ≤ β n (|x 0 |, 0), ∀t ∈ R ≥0 . ( 6 
)
Let R n-1 denote the input threshold of the switched system ẋn-1 = f n-1 σ (x n-1 , x n ), whose ISS wrt small inputs was shown by Lemma 3, and pick x 0 small enough that β n ( x 0 , 0) < R n-1 . Then |x n (t)| < R n-1 at all times and consequently, from Lemma 3, there exist β n-1 ∈ KL and γ n-1 ∈ K ∞ such that where the last inequality comes from [START_REF] Arcak | A unifying integral ISS framework for stability of nonlinear cascades[END_REF]. Thus, we can pick x 0 small enough that |x n-1 (t)| < R n-2 for all t ∈ R ≥0 , where R n-2 denotes the input threshold of ẋn-2 = f n-2 p (x n-1 , x n-1→n ) (whose existence is ensured by Lemma 3). We stress that this choice can be made independently of the switching signal σ ∈ P, as β n-1 , β n and γ n-1 are independent of σ. Repeating this reasoning at each stage, we conclude that there exists ∆ > 0 and κ ∈ K such that, for all σ ∈ P, |x(t)| ≤ κ(|x 0 |) for all t ∈ R ≥0 and all |x 0 | < ∆, which is nothing else than the uniform stability of the origin of (2).

.

  Given ρ ∈ N ≥1 , P denotes the set of all piecewise constant signals σ : R ≥0 → P := {1, . . . , ρ} that admit a finite number of discontinuities over any finite time interval. PD denotes the set of all continuous functions α : R ≥0 → R ≥0 satisfying α(0) = 0 and α(s) > 0 for all s > 0. A class K function is an increasing PD function. The class K ∞ denotes the set of all unbounded K functions. A continuous function β : R ≥0 × R ≥0 -→ R ≥0 is said to be of class KL if β(•, t) ∈ K for any t ∈ R ≥0 and β(s, •) is non-increasing and tends to zero as its argument tends to infinity. Given x ∈ R n , |x| stands for its Euclidean norm: |x| := x 2 1 + . . . + x 2 n . Given > 0, sat (s) := sign(s) min { , |s|} for all s ∈ R. Given m ∈ N ≥1 , sat m (d) := (sat (d 1 ), . . . , sat (d m )) T for all d ∈ R m .

2 .

 2 To see this, consider the function θp : R ≥0 → R defined as θp (s) := -min {zg p (z, sat m (ψ p (z)d)) : |z| = s, |d| ≤ 1} .

  θ p (s) ≤ θp (s) and let θ be the function defined as θ(s) := min p∈P θ p (s) for all s ∈ R ≥0 . Then θ ∈ PD and satisfies the statement of Claim 1. Proof of Claim 2 : Given p ∈ P and any u ∈ R m , consider the perturbation defined as d = (d 1 , ..., d m ) T with

|x n- 1

 1 (t)| ≤ β n-1 (|x 0 n-1 |, t) + γ n-1 ( x n ) ≤ β n-1 (|x 0 |, 0) + γ n-1 • β n (|x 0 |, 0).

  m} |u i | ≤ |u|. Hence, under the assumption that |u| ≤ min {ϕ

p (z)/ √ m ; /2} , it holds that |u i | ≤ min {ψ p (z)/ √ m ; /2} for each i ∈ {1, ..., m}. It follows that |d i | ≤ 1/ √ m, which ensures that |d| ≤ 1. Moreover, since |ψ p (z)d i | ≤ |u i | ≤ /2, it holds that sat (ψ p (x)d i ) = ψ p (x)d i = u i for each i ∈ {1, . . . , m}. In other worlds, it holds that u = sat m (ψ p (x)d). To sum up we have shown that, if |u| ≤ min {ϕ p (|z|)/ √ m ; /2}, then there exists |d| ≤ 1 such that u = sat m (ψ p (z)d). Consequently, defining δ(s) := min p∈P min {ϕ p (s)/ √ m ; /2} , it is clear that δ ∈ K and it holds that :

Here, no switching is considered and UGAS is to be understood in the sense of[START_REF] Sontag | On characterizations of the Input-to-State Stability property[END_REF], meaning uniformly with respect to the input d.
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