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Abstract

This paper addresses the stability of a class of nonlinear switching systems under

arbitrary switching. It focuses on switching systems whose modes are made of a

cascade of nonlinear scalar systems. It relaxes the stability conditions proposed

by Angeli and Liberzon, by relying on the Strong iISS property which is known

to be preserved under cascade interconnection. Its applicability is illustrated by

the study of switched bilinear systems in triangular form.

Keywords: Nonlinear switching systems, Triangular systems, Stability

analysis, Bilinear systems

1. Introduction

Providing conditions under which a switching system is globally asymptot-

ically stable under arbitrary switching (UGAS) has been the object of intense

research. It is well known that switching among nonlinear dynamics that share

a common Lyapunov function is UGAS. For linear time-invariant (LTI) systems,5

UGAS is guaranteed if the state matrices of the individual modes are Hurwitz

and either i) commute with one another, ii) are symmetric, or iii) are normal:
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see [1, 2] and references therein for more details. See also [3] for a thorough

study of the 2-dimensional case.

A powerful way to study stability of a high-order dynamical system is to10

see it as the interconnection of simpler dynamical systems. In general, this

interconnection is bidirectional, in which case results such as the small-gain

theorem have to be used in order to infer the stability of the overall system

[4]. However, the complexity of the analysis is dramatically reduced when the

subsystems are interconnected in a unidirectional way; in other words, when15

the overall system is in triangular form [5, 6, 8, 7]. It is well known that the

switching among LTI systems with Hurwitz triangular matrices is UGAS. This

feature has been extended in [9] to nonlinear switched systems. It was shown,

in particular, that if the individual modes are all made of a cascade of scalar

subsystems, then GAS is preserved under arbitrary switching provided that the20

subsystems are input-to-state stable (ISS, [10]) with respect to the state of the

driving subsystems. The proof of this result relies on the property that ISS is

preserved under cascade interconnection [11].

Recently, a less conservative property than ISS has been introduced, which

still retains the feature of being preserved under cascade interconnection [12].25

This property is known as the Strong iISS, and constitutes an interesting com-

promise between the generality of integral-ISS (iISS, [13]) and the strength of

ISS. Strong iISS was introduced in [14], together with Lyapunov tools to ensure

it in practice.

The goal of this paper is therefore to relax the conditions of [9] under which30

triangular switched systems are UGAS, by requiring that each stage of the

triangular system is Strongly iISS rather than ISS. This relaxation extends the

class of systems that can be addressed with this technique. It allows for instance

to consider specific classes of switching systems whose individual modes are

stabilized by saturated feedback [15], and allows to cope with systems whose35

dynamics switches among bilinear systems.

The main challenge in relaxing the conditions of [9] by exploiting the Strong

iISS property stands in the fact that no characterization of Strong iISS involving
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a single Lyapunov function has yet been established (see [14] for a counter-

example on a natural conjecture to that regards). Consequently, we need to rely40

either on solution based reasoning, or on the existing Lyapunov characterizations

for ISS [16] and iISS [17].

The paper is organized as follows: after recalling some necessary definitions,

we describe the class of nonlinear switched systems considered here and pro-

vide our main result (Section 2), we then apply this result to switched bilinear45

systems (Section 3). All proofs are provided in Section 4.

Notation. Given ρ ∈ N≥1, P denotes the set of all piecewise constant

signals σ : R≥0 → P := {1, . . . , ρ} that admit a finite number of discontinuities

over any finite time interval. PD denotes the set of all continuous functions

α : R≥0 → R≥0 satisfying α(0) = 0 and α(s) > 0 for all s > 0. A class K function50

is an increasing PD function. The class K∞ denotes the set of all unbounded K

functions. A continuous function β : R≥0 × R≥0 −→ R≥0 is said to be of class

KL if β(·, t) ∈ K for any t ∈ R≥0 and β(s, ·) is non-increasing and tends to zero

as its argument tends to infinity. Given x ∈ Rn, |x| stands for its Euclidean

norm: |x| :=
√
x2

1 + . . .+ x2
n. Given ε > 0, satε(s) := sign(s) min {ε, |s|} for all55

s ∈ R. Given m ∈ N≥1, satmε (d) := (satε(d1), . . . , satε(dm))T for all d ∈ Rm.

Um denotes the set of all measurable, locally essentially bounded functions u :

R≥0 → Rm. Given u ∈ Um, ‖u‖ := ess supt≥0|u(t)|.

2. Problem statement and main result

2.1. Preliminary definitions60

The present paper studies the stability of a particular class of switched non-

linear systems. Generally speaking, a switched nonlinear system is defined as

ẋ = fσ(x)

where σ ∈ P and, for each p ∈ P , fp : Rn → Rn denotes a locally Lipschitz

function. This system is said to be uniformly globally asymptotically stable
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(UGAS) if there exists a KL function β such that, for all x0 ∈ Rn and all

σ ∈ P, its solution satisfies |x(t;x0, σ)| ≤ β(|x0|, t) for all t ≥ 0.

Similarly to [9], this paper exploits specific input-to-state properties of the

individual subsystems to derive stability of the overall switched system. This

requires us to consider switched systems with inputs:

ẋ = fσ(x, u) (1)

where u ∈ Um represents the exogenous input. This system is said to be uni-

formly input-to-state stable with respect to small inputs (ISS wrt small inputs)

if there exist a positive constant R, called input threshold, β ∈ KL, and γ ∈ K∞
such that, for all x0 ∈ Rn, all σ ∈ P, and all u ∈ Um, its solution satisfies

‖u‖ ≤ R ⇒ |x(t;x0, σ, u)| ≤ β(|x0|, t) + γ(‖u‖), ∀t ≥ 0.

If the right-hand side of the above implication holds for all u ∈ Um, we recover

the notion of input-to-state stability (ISS) introduced in [18] and widely studied

in the literature: see [10] for a survey. ISS wrt small inputs thus requires ISS as

long as the input amplitude does not overpass the input threshold R. It should

not be confused with the notion of local ISS (LISS), used for instance in [19],

for which the above estimate is required to hold only for small initial conditions

and small input amplitudes: on the contrary, ISS wrt small inputs constrains

the input magnitude but not the initial state. Note that ISS wrt to small

inputs implies UGAS of the switched system in the absence of exogenous inputs

(u = 0). It also guarantees a bounded response to any input whose amplitude

is below the input threshold R. Nonetheless, it provides no information on the

behavior of the system when the applied input has an amplitude greater than

R: solutions may diverge or even escape in finite time. To prevent this, the

Strong iISS property introduced in [14] combines it with integral input-to-state

stability (iISS, [13]). More precisely, we say that (1) is Strongly iISS if it is both

ISS wrt to small inputs and iISS, the latter meaning that there exist β ∈ KL

and η1, η2 ∈ K∞ such that, for all x0 ∈ Rn, all u ∈ Um, and all σ ∈ P,

|x(t;x0, σ, u)| ≤ β(|x0|, t) + η1

(∫ t

0
η2(|u(s)|)ds

)
, ∀t ≥ 0.
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By combining iISS and ISS wrt small inputs, the Strong iISS property thus65

ensures existence of solutions at all times, bounded state in response to any

input signal whose amplitude is below the input threshold R, and a vanishing

state in response to any vanishing input: see [14] for further details.

We stress that the extension of these properties to non-switched systems can

be straightforwardly deduced by the above definitions by considering that σ can70

only take a single value (namely, P = {1}).

2.2. Problem statement

While Strong iISS a much weaker robustness property than ISS, they share a

crucial common feature: they are both preserved under cascade interconnection

[14, 11]. This feature was extensively exploited in [9] to analyze the stability of75

switched nonlinear systems in triangular form. The objective of this paper is

to generalize this result, by replacing the ISS requirement by the more general

Strong iISS property.

Let us start by formally introducing the class of systems considered here.

Given n ∈ N≥1 we address the following switched dynamics :

ẋ1
...

ẋi
...

ẋn−1

ẋn


=



f1
σ(x1, x2→n)

...

f iσ(xi, xi+1→n)
...

fn−1
σ (xn−1, xn)

fnσ (xn)


, (2)

where σ ∈ P, xi ∈ R, and xi→j := (xi, xi+1, ..., xj)T ∈ Rj−i+1 for all 1 ≤ i ≤

j ≤ n. We stress that the dynamics of each state variable xj is only influenced80

by its own value and those of the driving states xj+1→n; for each given value

of the signal σ, the right-hand side of (2) is thus given by a cascade of scalar

subsystems: we refer to such systems as nonlinear triangular switched systems.

We make the following two assumptions, on the individual subsystems.
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Assumption 1. For each p ∈ P , the origin of the driving system ẋn = fnp (xn)85

is globally asymptotically stable (GAS).

Assumption 2. For each i ∈ {1, ..., n− 1} and each p ∈ P the system ẋi =

f ip(xi, xi+1→n) is Strongly iISS with respect to the input xi+1→n.

Note that the above assumptions concern only non-switched dynamics.

2.3. Main result90

We are now ready to state our main result.

Theorem 1. Under Assumptions 1 and 2, the switched system (2) is uniformly

globally asymptotically stable (UGAS).

This result is similar to [9, Theorem 1] as it provides a condition under which

specific switched nonlinear systems in triangular form are UGAS. The main95

difference stands in the main assumption made on each stage of the cascade:

here, they are required to be Strongly iISS with respect to the driving state,

while in [9] they are assumed ISS. This relaxation is noteworthy as Strong iISS

is much less conservative than ISS, by requiring a bounded solutions only to

inputs that are below a specific threshold. For this reason, it allows us to deal100

with systems stabilized by saturated feedback [15] or bilinear systems [14]. We

illustrate the latter in Section 3.

Proof of Theorem 1. The proof is decomposed into the following five

lemmas. The first one establishes the UGAS of the switched driving subsystem.

Its proof is provided in Section 4.1.105

Lemma 1. Under Assumption 1, the driving switched system ẋn = fnσ (xn),

with σ ∈ P, is UGAS.

The second lemma, proved in Section 4.2, ensures the existence of the solu-

tions of the overall switched system for all forward time.
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Lemma 2. Under Assumptions 1 and 2, for all initial state x0 ∈ Rn and all110

switching signal σ ∈ P, the solution x(t;x0, σ) of (2) exists at all t ∈ R≥0.

The third lemma, proved in Section 4.3, states that the switching between

scalar systems that are ISS wrt small inputs is itself ISS wrt small inputs.

Lemma 3. Assume that, for each p ∈ P , the scalar system defined by ż =

gp(z, u), z ∈ R, u ∈ Rm, is ISS wrt small inputs. Then, given any signal σ ∈ P,115

the switched system ż = gσ(z, u) is also ISS wrt small inputs.

The fourth lemma establishes the convergence of the solutions of the switched

system to the origin. Its proof is provided in Section 4.4.

Lemma 4. Under Assumptions 1 and 2, given any initial state x0 ∈ Rn, the

solution of the switched system (2) satisfies limt→+∞
∣∣x(t;x0, σ)

∣∣ = 0 uniformly120

in the switching signal σ ∈ P.

The last lemma states that the origin of the the switched system is stable.

See Section 4.5 for its proof.

Lemma 5. Under Assumptions 1 and 2, the origin of the switched system (2)

is uniformly stable.125

The proof of Theorem 1 readily follows from Lemmas 4 and 5 by recall-

ing that UGAS is the combination of uniform stability and convergence of all

solutions to zero uniformly in the switching signal σ ∈ P.

3. Switched triangular bilinear systems

We now apply Theorem 1 to a specific class of switched triangular systems.

It was shown in [14] that bilinear systems are Strongly iISS if and only if their

internal dynamics is Hurwitz. We exploit this property to address the stability
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of switched triangular bilinear systems of the form:

ẋ1
...

ẋi
...

ẋn−1

ẋn


=



−a1
σx1 +

∑n
j=2 b

1,j
σ x1xj

...

−aiσxi +
∑n
j=i+1 b

i,j
σ xixj

...

−an−1
σ xn−1 + bn−1,n

σ xn−1xn

−anσxn


, (3)

where, for each p ∈ P , each i ∈ {1, . . . , n} and each j ∈ {i + 1, . . . , n}, aip and130

bi,jp denote real constants. For this particular class of switched system, we have

the following result.

Proposition 1. The switched triangular system with bilinear dynamics (3) is

UGAS for σ ∈ P if and only if aip > 0 for all i ∈ {1, . . . , n} and all p ∈ P .

It is worth stressing that the UGAS of (3) depends only on the coefficients aip,135

and that the value of the parameters bi,jp does not affect this stability property.

Note also that, despite its triangular structure, the stability of (3) cannot

be addressed by [9] as each individual subsystem ẋi = −aipxi+
∑n
j=i+1 b

i,j
p xixj ,

p ∈ P is not ISS as soon as a parameter bi,jp is non-zero. Nonetheless, the

results presented in [7], that exploits class K dissipation rates, could also have140

been used for this system.

Proof of Proposition 1. The sufficiency part of the statement results

from Theorem 1 by observing that (3) can be put in the form (2) by letting, for

each p ∈ P , f ip(xi, xi+1→n) = −aipxi+
∑n
j=i+1 b

i,j
p xixj for all i = {2, . . . , n}, and

fnp (xn) = −anpxn. Assumption 1 is straightforwardly satisfied as anp > 0 for each145

p ∈ P . Moreover, Assumption 2 can easily be checked by invoking [14, Corollary

2] since aip > 0 for all i ∈ {2, . . . , n} and all p ∈ P . To establish the necessity

part, assume on the contrary that aip ≥ 0 for some i ∈ {1, . . . , n} and some

p ∈ P , and consider the initial state defined as x0
j = 0 for all j ∈ {1, . . . , n}\{i}

and x0
i = 1 together with the switching signal σ ∈ P defined as σ(t) = p for all150
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t ≥ 0. Then the solution of (3) satisfies |x(t)| = |xi(t)| = ea
i
pt. Since aip ≥ 0, the

state does not converge to the origin, which contradicts the UGAS property.

4. Proofs

4.1. Proof of Lemma 1

For each p ∈ P , the system ẋn = fnp (xn) being scalar, its GAS can be155

established through the same Lyapunov functionW (x) = x2
n/2. In other words,

the switched system ẋn = fnσ (xn) is the switching among dynamics who share

a common Lyapunov function. UGAS then follows from [2, Theorem 2.1].

4.2. Proof of Lemma 2

Given any p ∈ P , the solution of the driving subsystem ẋn = fnp (xn) exists160

at all positive time by Assumption 1. In view of the regularity assumptions

on fnp , this solution is also continuous over time. It follows that the system

ẋn−1 = fn−1
p (xn−1, xn) is a Strong iISS system with a measurable and locally

bounded input. Since Strong iISS implies iISS, it follows that the solution

xn−1 exists at all positive time too. Repeating this reasoning at each stage165

we conclude that, for each fixed p ∈ P , the solution of the overall cascade

exists at all positive time, regardless of the initial state. Consequently, the

system (2) results of a switching between forward complete dynamics. Since,

by assumption, only a finite number of switchings may occur over any compact

time interval, we conclude that the solution of (2) exists at all positive time.170

4.3. Proof of Lemma 3

The proof of Lemma 3 relies on the following two steps.

Claim 1: There exists ε > 0 and θ ∈ PD such that the function defined by

W (z) = z2/2 satisfies, for all p ∈ P , all z ∈ R and all ‖d‖ ≤ 1,

∂W

∂z
(z)gp(z, satmε (ψp(z)d)) ≤ −θ(|z|). (4)

where ψp : R → R≥0 is a continuous function satisfying ψp(z) ≥ ϕp(|z|) for

some function ϕp ∈ K.
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Claim 2: There exist δ ∈ K and θ ∈ PD such that, for each p ∈ P and each

z ∈ R,

|u| ≤ δ(|z|) ⇒ ∂W

∂z
(z)gp(z, u) ≤ −θ(|z|). (5)

Claim 2 shows that the ISS wrt small inputs of each individual system ż =175

gp(z, u), p ∈ P , can be established through the same Lyapunov functionW (z) =

z2/2. In other words, as long as the input amplitude ‖u‖ is below an input

threshold R, all individual systems are ISS with a common Lyapunov function.

When the input amplitude is not constrained, this fact is known to ensure ISS

for arbitrary switching [20, 21]. Similarly, we conclude that the switched system180

ż = gσ(z, u) is ISS wrt small inputs, which concludes the proof of Lemma 3. So

we now proceed to proving Claims 1 and 2.

Proof of Claim 1: Consider any p ∈ P . Since ż = gp(z, u) is ISS wrt small

inputs, there exist εp > 0 such that the system ż = gp(z, satmεp
(u)) is ISS.

Letting ε := minp∈P εp, it follows that ż = gp(z, satmε (u)) is ISS for each p ∈

P . In view of [16, Lemma 2.12], it follows that ż = gp(z, satmε (u)) is weakly

robustly stable, meaning that there exists a smooth function ψp : R → R≥0,

satisfying ψp(z) ≥ ϕp(|z|) for all z ∈ R with ϕp ∈ K∞, such that the system

ż = gp(z, satmε (ψp(x)d)) is UGAS1 for all measurable function d ∈ Um satisfying

‖d‖ ≤ 1. This UGAS can be proven using the particular Lyapunov function

W (z) = z2/2. To see this, consider the function θ̃p : R≥0 → R defined as

θ̃p(s) := −min {zgp(z, satmε (ψp(z)d)) : |z| = s, |d| ≤ 1} .

We claim that this function θ̃p is positive definite and lower bounded by a

continuous positive definite function. First, notice that θ̃p(0) = 0 as the origin

is an equilibrium point of the system ż = gp(z, 0). Moreover, assume that185

θ̃p(s∗) < 0 for some s∗ > 0. Then, by continuity of gp, there exists ε > 0

such that zgp(z, satmε (ψp(z)d)) > 0 for all z ∈ [(1 − ε)s∗; (1 + ε)s∗] and all

|d| ≤ 1, meaning in particular that zgp(z, 0) > 0, which contradicts the fact

1Here, no switching is considered and UGAS is to be understood in the sense of [16],

meaning uniformly with respect to the input d.
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that ż = gp(z, u) is 0-GAS (as ensured by the assumption of ISS wrt small

inputs). Hence, θ̃p(z) ≥ 0 for all z ∈ R. Furthermore, assume that θ̃p(s∗) = 0190

for some s∗ > 0. Then, there exists z∗ ∈ R and some |d∗| ≤ 1 such that

g(z∗, satmε (ψp(z∗)d∗)) = 0 thus implying the existence of an equilibrium outside

the origin, which in turns contradicts the UGAS of this system. In a nutshell,

θ̃p is a positive definite function. Now, let θp be any PD function satisfying

θp(s) ≤ θ̃p(s) and let θ be the function defined as θ(s) := minp∈P θp(s) for all195

s ∈ R≥0. Then θ ∈ PD and satisfies the statement of Claim 1.

Proof of Claim 2 : Given p ∈ P and any u ∈ Rm, consider the perturbation

defined as d = (d1, ..., dm)T with

di =

 0 if z = 0
ui

ψp(z) if z 6= 0.

Recall that maxi∈{1,...,m} |ui| ≤ |u|. Hence, under the assumption that |u| ≤

min {ϕp(z)/
√
m ; ε/2} , it holds that |ui| ≤ min {ψp(z)/

√
m ; ε/2} for each i ∈

{1, ...,m}. It follows that |di| ≤ 1/
√
m, which ensures that |d| ≤ 1. More-

over, since |ψp(z)di| ≤ |ui| ≤ ε/2, it holds that satε(ψp(x)di) = ψp(x)di = ui

for each i ∈ {1, . . . ,m}. In other worlds, it holds that u = satmε (ψp(x)d).

To sum up we have shown that, if |u| ≤ min {ϕp(|z|)/
√
m ; ε/2}, then there

exists |d| ≤ 1 such that u = satmε (ψp(z)d). Consequently, defining δ(s) :=

minp∈P
{

min {ϕp(s)/
√
m ; ε/2}

}
, it is clear that δ ∈ K and it holds that :

|u| ≤ δ(|z|) ⇒ ∂W

∂z
(z)gp(z, u) ≤ −θ(|z|),

which ends the proof of Claim 2.

4.4. Proof of Lemma 4

Consider any σ ∈ P and any x0 ∈ Rn and let x(·) := x(·;x0, σ) denote

the solution of the switched system (2). First notice that, in view of Lemma200

1, it holds that limt→+∞ |xn(t)| = 0 uniformly in the switching signal σ ∈ P.

Moreover, by Lemma 2, xn−1(t) exists at all t ∈ R≥0, and Lemma 3 ensures

the system ẋn−1 = fn−1
σ (xn−1, xn) is ISS wrt small inputs xn: these combined
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properties ensure the converging-input converging-state property, uniformly in

σ ∈ P. It follows that limt→+∞ |xn−1(t)| = 0 uniformly in σ ∈ P. Repeating205

this reasoning at each stage, we obtain that limt→+∞ |xi(t)| = 0, uniformly in

σ ∈ P, for all i = {1, 2, ..., n}, which ends the proof of Lemma 4.

4.5. Proof of Lemma 5

Given any x0 ∈ Rn and any σ ∈ P, let x(·) denote the solution x(·;x0, σ) of

the switched system (2). By Lemma 1, there exists βn ∈ KL such that, for any

switching signal σ ∈ P and any initial state x0 ∈ Rn, the last component of the

solution of the switched system (2) satisfies

|xn(t)| ≤ βn(|x0
n|, t) ≤ βn(|x0|, 0), ∀t ∈ R≥0. (6)

LetRn−1 denote the input threshold of the switched system ẋn−1 = fn−1
σ (xn−1, xn),

whose ISS wrt small inputs was shown by Lemma 3, and pick
∣∣x0
∣∣ small enough210

that βn(
∣∣x0
∣∣ , 0) < Rn−1. Then |xn(t)| < Rn−1 at all times and consequently,

from Lemma 3, there exist βn−1 ∈ KL and γn−1 ∈ K∞ such that

|xn−1(t)| ≤ βn−1(|x0
n−1|, t) + γn−1(‖xn‖)

≤ βn−1(|x0|, 0) + γn−1 ◦ βn(|x0|, 0).

where the last inequality comes from (6). Thus, we can pick
∣∣x0
∣∣ small enough

that |xn−1(t)| < Rn−2 for all t ∈ R≥0, where Rn−2 denotes the input threshold

of ẋn−2 = fn−2
p (xn−1, xn−1→n) (whose existence is ensured by Lemma 3). We215

stress that this choice can be made independently of the switching signal σ ∈ P,

as βn−1, βn and γn−1 are independent of σ. Repeating this reasoning at each

stage, we conclude that there exists ∆ > 0 and κ ∈ K such that, for all σ ∈ P,

|x(t)| ≤ κ(|x0|) for all t ∈ R≥0 and all |x0| < ∆, which is nothing else than the

uniform stability of the origin of (2).220
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