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In this note, we propose a linear state-feedback that ensures Strong iISS to any neutrally stable system affected by actuator saturation. This robustness property was recently proposed as a compromise between the strength of input-tostate stability (ISS) and the generality of integral input-to-state stability (iISS). It ensures not only that the system is globally asymptotically stable in the absence of disturbances, but also that trajectories are bounded in response to any perturbation whose amplitude is below a certain threshold. It also guarantees that the state converges to the origin in response to any vanishing disturbance. Here Strong iISS is proven with respect to any additive disturbance acting outside the saturation, without any matching requirement.

Introduction

It is well known that a necessary and sufficient condition for the stabilizability of a linear time-invariant (LTI) plant by saturated feedback is that its internal dynamics has no pole with positive real part [START_REF] Sussmann | A general result on the stabilization of linear systems using bounded controls[END_REF]. Several works in the literature have proposed bounded stabilizing feedback for particular classes of systems whose internal dynamics exhibits no exponential instability. For neutrally stable systems (meaning LTI systems whose internal dynamics exhibits no unbounded solutions), it is also known that stabilization can be achieved using a saturated linear static feedback. Nonetheless, some classes of systems, although having no poles with positive real parts, cannot be stabilized by saturated linear static statefeedback; this class includes chains of three or more integrators [START_REF] Fuller | In-the-large stability of relay and saturating control systems with linear controllers[END_REF][START_REF] Sussmann | On the stabilizability of multiple integrators by means of bounded feedback controls[END_REF]. Several control strategies, by state or output feedback, have been proposed to stabilize such systems, including nested saturations [START_REF] Teel | Global stabilization and restricted tracking for multiple integrators with bounded controls[END_REF] and linear combinations of saturated linear functions [START_REF] Sussmann | A general result on the stabilization of linear systems using bounded controls[END_REF]. For LTI systems having no eigenvalues with positive real parts, it has been shown in [START_REF] Sontag | Nonlinear output feedback design for linear systems with saturating controls[END_REF] that global stabilization by bounded output feedback can be achieved if and only if the system is both detectable and stabilizable.

Beyond stabilization, it is often desirable to ensure some robustness properties in order to cope, for instance, with parameter uncertainty, measurement noise or exogenous disturbances. L p -stabilization with respect to disturbances acting inside the saturation was achieved in [START_REF] Saberi | On simultaneous global external and global internal stabilization of critically unstable linear systems with saturating actuators[END_REF] based on the lowand-high gain control law introduced in [START_REF] Megretski | l2 bibo output feedback stabilization with saturated control[END_REF]. This robust satbilization has been extended to disturbances acting outside the saturation in [START_REF] Wang | Control of a chain of integrators subject to actuator saturation and disturbances[END_REF] for chains of integrators under matching conditions. Also, explicit estimates of L p input/output gains have been obtained for neutrally stable systems based on a saturated linear static feedback in [START_REF] Liu | On finite-gain stabilizability of linear systems subject to input saturation[END_REF].

Another natural candidate for the evaluation of robustness to exogenous inputs is the framework of input-to-state stability (ISS, [START_REF] Sontag | Smooth stabilization implies coprime factorization[END_REF][START_REF] Sontag | Input to state stability: Basic concepts and results[END_REF]) and its weaker variant integral ISS (iISS, [START_REF] Sontag | Comments on integral variants of ISS[END_REF]). In [START_REF] Angeli | Robust stabilization via saturated feedback[END_REF], a saturated linear state-feedback was pro-This work is supported by a public grant overseen by the French National Research Agency (ANR) as part of the "Investissement dAvenir" program, through the "iCODE Institute project" funded by the IDEX Paris-Saclay, ANR-11-IDEX-0003-02. posed to ensure ISS with respect to sufficiently small disturbances despite parameter uncertainty for systems of dimension smaller than or equal to three, as well as feedforward systems. ISS of neutrally stable systems with respect to disturbances acting outside the saturation have been proposed in [START_REF] Arcak | Input-to-state stability for a class of Lurie systems[END_REF] under matching conditions. Other approaches guarantee ISS and iISS with bounded control to nonlinear systems based on Arstein's "universal constructions" [START_REF] Azouit | Robustness under saturated feedback: Strong iISS for a class of nonlinear systems[END_REF][START_REF] Liberzon | ISS and integral-ISS disturbance attenuation with bounded controls[END_REF].

Among other robustness features, ISS ensures a bounded response to any bounded disturbance. Intuitively, one may expect that bounded controls fail in general at guaranteeing the solutions' boundedness if the disturbance acts outside the saturation with a too large amplitude (unless matching conditions are met between the saturated actuator and the disturbance: see e.g. [START_REF] Arcak | Input-to-state stability for a class of Lurie systems[END_REF][START_REF] Wang | Control of a chain of integrators subject to actuator saturation and disturbances[END_REF]). At first sight, for these systems, nothing more than ISS with respect to small inputs can be established, thus providing no information on the system's behavior for larger inputs. In this note, we provide sufficient conditions under which a more interesting property, namely Strong iISS, can be achieved by saturated feedback. This property, introduced in [START_REF] Chaillet | Combining iISS and ISS with respect to small inputs: the Strong iISS property[END_REF], not only guarantees ISS with respect to small inputs but also iISS. In particular, it ensures global asymptotic stability in the absence of disturbances, a bounded response to any disturbance whose amplitude is below a given threshold, but also the existence of solutions at all times even for disturbances above that threshold. It also guarantees that the state converges to zero in response to any vanishing disturbance, and it is known to be preserved under cascade interconnection. More details on this property can be found in [START_REF] Chaillet | Combining iISS and ISS with respect to small inputs: the Strong iISS property[END_REF][START_REF] Chaillet | Strong iISS is preserved under cascade interconnection[END_REF].

In this paper, we show that any LTI system with neutrally stable internal dynamics can be made Strongly iISS by a simple saturated linear state feedback. Strong iISS is established with respect to disturbances acting outside the saturation, and no matching condition between the actuation and the disturbances is assumed. We provide an explicit estimate of the maximum disturbance amplitude that can be tolerated without compromising solutions' boundedness. This estimate is confronted to numerical observations in the example of an harmonic oscillator robust stabilization.

Notation and problem statement 2.1 Notation

A function α : R ≥0 → R ≥0 is of class PD if it is con- tinuous and positive definite. It is of class K if, in addi- tion, it is increasing. It is of class K ∞ if it is of class K and lim s→∞ α(s) = ∞. β : R ≥0 × R ≥0 → R ≥0 belongs to class KL if,
given any fixed t ≥ 0, β(•, t) ∈ K and, given any fixed s ≥ 0, β(s, •) is continuous, nonincreasing and tends to zero as its argument tends to infinity. Given x ∈ R n , |x| denotes its Euclidean norm. Given a positive integer p, U p denotes the set of all measurable locally essentially bounded functions d : R ≥0 → R p . For a given

d ∈ U p , d := ess sup t≥0 |d(t)|. Given a constant R > 0, we let U p <R denote the set {d ∈ U p : d < R}. 2.

Considered class of systems

We recall that a neutrally stable matrix is any matrix A such that the solutions of ẋ = Ax are bounded. This is equivalent to requiring that there exists a symmetric positive definite matrix P such that A T P + P A is a negative semidefinite matrix. This paper focuses on the class of neutrally stable systems affected by actuator saturation and additive exogenous disturbances:

ẋ = Ax -Bσ(u) + d, (1) 
where x ∈ R n is the state, u ∈ R m is the control input, and d ∈ R n is the disturbance. No matching condition on the disturbance d is assumed: it can affect all directions of R n , not only those defined by the B matrix. The function σ : R m → R m is assumed to belong to the class S m , as defined below.

Definition 1 (S and S m functions, [START_REF] Liu | On finite-gain stabilizability of linear systems subject to input saturation[END_REF]) S denotes the set of all locally Lipschitz bounded function S : R → R satisfying: S(0) = 0, S(s)s > 0 for all s = 0, lim inf s→0 S(s)/s > 0, and

lim inf |s|→∞ |S(s)| > 0. A vector function σ : R m → R m is said to be in the class S m if it reads σ(u) = (S 1 (u 1 ), . . . , S m (u m )) T , for all u ∈ R m ,
where S i ∈ S for each i ∈ {1, . . . , m}.

We stress that the class S includes, but is not limited to, "usual" saturation functions such as sigmoids, arctan, tanh or sat : s → sign(s) min{ |s|, 1} with > 0. For more details about the functions included in this class, the reader is invited to refer to [START_REF] Liu | On finite-gain stabilizability of linear systems subject to input saturation[END_REF].

We state the following useful property of S m -functions, which is a straightforward m-dimensional extension of [START_REF] Liu | On finite-gain stabilizability of linear systems subject to input saturation[END_REF]Remark 2].

Fact 1 If σ ∈ S m , then there exist constants a, b, K > 0 and a measurable diagonal-matrix valued function τ : R m → R m×m such that, for all u ∈ R m ,

aI ≤ τ (u) ≤ bI, |σ(u) -τ (u)u| ≤ Kuσ(u). (2)

The Strong iISS property

As already stressed, the purpose of this paper is to robustly stabilize the system (1) by linear state feedback. We rely on the formalism of ISS, introduced by Sontag in [START_REF] Sontag | Smooth stabilization implies coprime factorization[END_REF]. We recall that a system is ISS if there exists β ∈ KL and γ ∈ K ∞ such that its solutions satisfy |x(t)| ≤ β(|x 0 | , t) + γ( d ) at all times. In particular, ISS ensures boundedness of solutions for any bounded disturbance, and a vanishing state in response to any vanishing perturbation; see [START_REF] Sontag | Input to state stability: Basic concepts and results[END_REF] for a survey.

Without matching requirements between the disturbance and the actuation, it is hopeless to try to make (1) ISS. Indeed, due to the bounded nature of σ, we can always pick a sufficiently large disturbance d that makes solutions diverge.

An alternative robustness property could be the integral input-to-state stability (iISS, [START_REF] Sontag | Comments on integral variants of ISS[END_REF]). Instead of considering the impact of the amplitude of the disturbance d, iISS evaluates the effect of the input energy on the solutions behavior. More precisely, a system is iISS if there exist

β ∈ KL and µ 1 , µ 2 , µ ∈ K ∞ such that its solutions sat- isfy |x(t)| ≤ β(|x 0 | , t) + µ 1 t 0 µ 2 (|d(s)|)ds at all times.
Like ISS, iISS ensures global asymptotic stability (GAS) of the disturbance-free system. However, it is a much weaker robustness property than ISS, as some iISS systems can be destabilized by arbitrarily small, and even vanishing, disturbances. In the present context, it seems that better robustness properties can be achieved. We believe that a better candidate to evaluate the robustness of (1) to exogenous disturbances is the Strong iISS, recently introduced in [START_REF] Chaillet | Combining iISS and ISS with respect to small inputs: the Strong iISS property[END_REF].

Definition 2 (Strong iISS, [START_REF] Chaillet | Combining iISS and ISS with respect to small inputs: the Strong iISS property[END_REF]) The system ẋ = f (x, d) is said to be Strongly iISS if it is both ISS wrt small inputs and iISS. In other words, there exist R > 0, β ∈ KL and µ 1 , µ 2 , µ ∈ K ∞ such that, for all d ∈ U p , all x 0 ∈ R n and all t ≥ 0, its solution satisfies the two properties:

|x(t)| ≤ β(|x 0 | , t) + µ 1 t 0 µ 2 (|d(s)|)ds (3) 
d < R ⇒ |x(t)| ≤ β(|x 0 | , t) + µ( d ) . (4) 
The constant R is then called an input threshold.

It can easily be seen from this definition that Strong iISS ensures GAS in the absence of disturbances, just like iISS and ISS. Moreover, the state remains bounded if the disturbance amplitude is below the input threshold R. It was also shown in [START_REF] Chaillet | Combining iISS and ISS with respect to small inputs: the Strong iISS property[END_REF] that, if the disturbance d tends to zero, then the solution of a Strongly iISS system will also eventually tend to zero. Finally, like ISS, Strong iISS is well behaved under cascade interconnection [START_REF] Chaillet | Strong iISS is preserved under cascade interconnection[END_REF].

From neutral stability to skew-symmetry

Reasoning as in [9, Section 3.2] the question of robustly stabilizing (1) when A is neutrally stable boils down to the case when A is skew-symmetric. This comes from the fact that any neutrally stable matrix is similar to diag(A H , A S ) where A H is a Hurwitz matrix and A S is skew-symmetric. This observation lets us consider that A is skew-symmetric without loss of generality. This will be assumed in the remainder of the paper.

3 Main result

Strong iISS by saturated linear feedback

Beyond L p -stability results for disturbances entering the function σ, it was shown in [START_REF] Liu | On finite-gain stabilizability of linear systems subject to input saturation[END_REF] that the linear state feedback u = B T x globally asymptotically stabilizes the saturated system (1) in the absence of exogenous disturbances. Theorem 2 in [START_REF] Liu | On finite-gain stabilizability of linear systems subject to input saturation[END_REF] also shows that solutions are bounded if the disturbance d is of sufficiently low amplitude. The following result unifies and goes further these observations, by establishing that the same feedback law ensures Strong iISS to the system (1).

Theorem 1 Let σ ∈ S m and assume that A ∈ R n×n is skew-symmetric and that the pair (A, B) is controllable. Then the linear static state feedback u = B T x makes the saturated system (1) Strongly iISS.

The proof of this result, provided in Section 5.1, relies on the following technical result.

Lemma 1 Let A ∈ R n×n be a skew-symmetric matrix and B ∈ R n×m be such that the pair (A, B) is controllable. Let D : R ≥0 → R m×m be any bounded measurable matrixvalued function satisfying D(t) + D(t) T ≥ εI for almost all t ∈ R ≥0 , where ε denotes a positive constant. Then, there exists a symmetric positive definite matrix P ∈ R n×n such that, for almost all t ∈ R ≥0 , (A -BD(t)B T ) T P + P (A -BD(t)B T ) ≤ -I.

Moreover, this matrix P can be picked as P = P 0 + χI, where P 0 ∈ R n×n denotes any symmetric positive definite matrix satisfying

(A -εBB T ) T P 0 + P 0 (A -εBB T ) ≤ -2I, (5) 
as ensured by the controllability of (A, B), and χ denotes any constant satisfying

χ ≥ 1 ε sup t≥0 |P 0 B(εI -D(t))| . (6) 
The proof of Lemma 1 can be found along the lines of [9, Lemma 3.2 and Corollary 1] and is therefore omitted.

Estimate of the input threshold

The proof of Theorem 1 is constructive: once a matrix P such as the one generated by Lemma 1 is known, we can estimate the resulting input threshold for (1), meaning the maximum disturbance amplitude that does not compromise solutions' boundedness. These findings are summarized by the following result.

Corollary 1 Let σ ∈ S m and let A ∈ R n×n be a skewsymmetric matrix such that the pair (A, B) is controllable. Let a, b and K be any positive constants such that (2) holds for all u ∈ R m , where τ : R m → R m×m is a measurable diagonal-matrix valued function. Let P 0 ∈ R n×n be any symmetric positive definite matrix such that

(A -2aBB T ) T P 0 + P 0 (A -2aBB T ) ≤ -2I. ( 7 
)
Finally, let χ be the positive constant defined as

χ = |2a -b| 2a |P 0 B| , (8) 
and let P := P 0 + χI. Then (1) in closed loop with the control law u = B T x is Strongly iISS with input threshold

R = 1 2K |P B| + |P | (4K |P B| /3) 1/3 . ( 9 
)
Note that the existence of such constants a, b, K and such a function τ is ensured by Fact 1. The existence of a matrix P 0 satisfying ( 7) is guaranteed by the controllability of the pair (A, B). The proof of this result follows straightforwardly from that of Theorem 1. We provide its main steps in Section 5.2 for the sake of completeness.

For some particular saturations, the function τ of Fact 1 can be picked as a constant matrix. This includes for instance saturation functions of the form σ(s) = (S(s), . . . , S(s)) T where S(s) = sat (s) := sign(s) min{ |s| ; 1}, ∀s ∈ R, [START_REF] Megretski | l2 bibo output feedback stabilization with saturated control[END_REF] where > 0 denotes its linear slope. For such functions, the expression of the input threshold estimate is slightly simpler. We summarize this in the following corollary.

Corollary 2 Let S ∈ S m and let A ∈ R n×n be a skewsymmetric matrix such that the pair (A, B) is controllable. Assume that there exist τ , K > 0 such that

|σ(u) -τ u| ≤ Kuσ(u), ∀u ∈ R m . ( 11 
)
Let P 0 ∈ R n×n be any symmetric positive definite matrix such that

(A -2τ BB T ) T P 0 + P 0 (A -2τ BB T ) ≤ -2I, (12) 
as ensured by the controllability of the pair (A, B). Finally, let P := P 0 + 1 2 |P 0 B| I. Then the system (1) in closed loop with the control law u = B T x is Strongly iISS with the input threshold given in [START_REF] Liu | On finite-gain stabilizability of linear systems subject to input saturation[END_REF].

Example: the harmonic oscillator

We finally illustrate the above results with the following planar system:

ẋ1 ẋ2 = 0 1 -1 0 x 1 x 2 - 0 1 sat (u) + d, (13) 
where > 0 and sat was introduced in (10). This system is in the form of (1) with

A = 0 1 -1 0 , B = 0 1 , σ(s) = sat (s).
Note that the perturbation is not matching, as it affects the dynamics of x 1 although no control is available in that direction. The pair (A, B) being controllable, we conclude with Theorem 1 that the state feedback u = B T x = x 2 makes the system (13) Strong iISS.

In addition, we can estimate its input threshold by invoking Corollary 2. To that end, notice that |sat (s) -s| ≤ s sat (s) for all s ∈ R, meaning that ( 11) is satisfied with τ = K = . Furthermore, the Lyapunov equation ( 12) is satisfied with the following symmetric positive definite matrix:

P 0 = 1 2 2 + 1/ 1 1 1/ .
Noticing that |P 0 B| = 1 2 √ 1 + 2 , the input threshold of (13) in closed loop with u = B T x = x 2 can be computed as a function of the slope of the saturation according to the estimate [START_REF] Liu | On finite-gain stabilizability of linear systems subject to input saturation[END_REF]. We obtain the curve reported in Figure 1. This plot shows that the estimate of R provided by Corollary 2 is not optimally accurate for this specific example, as it tends to zero for large values of the slope (meaning when sat tends to the sign function). Simulations suggest that the actual input threshold rather tends to 1. Although providing an explicit estimate of the input threshold, the tools employed in this paper fail at giving a tighter bound. The authors believe that a better choice of the feedback law than merely u = B T x would allow a better estimate of the guaranteed input threshold, but this goes beyond the scope of the paper.

Proofs

Proof of Theorem 1

In order to establish Theorem 1, we make use of the Lyapunov function proposed in [START_REF] Liu | On finite-gain stabilizability of linear systems subject to input saturation[END_REF]. More precisely, letting

V (x) := c 3 |x| 3 + x T P x, ∀x ∈ R n ,
where P ∈ R n×n is a convenient symmetric positive definite matrix and c > 0 denotes some well chosen constant, we claim that the proper C 1 Lyapunov function candidate

Ṽ (x) := 1 3 (1 + V (x)) 1/3 -1 (14) 
satisfies, along the solutions of (1) in closed loop with u

= B T x, V (x) ≤ -W (x) + γ(|d|), (15) 
where γ denotes a class K ∞ function and W is a continuous positive definite function satisfying lim inf x→∞ W (x) > 0.

According to [START_REF] Chaillet | Combining iISS and ISS with respect to small inputs: the Strong iISS property[END_REF]Theorem 1], this establishes Strong iISS, as claimed in the statement.

To that aim, we start by decomposing the function V as V (x) = cV 1 (x) + V 2 (x), where V 1 (x) := |x| 3 /3 and V 2 (x) := x T P x. We will study the time derivative of V 1 and V 2 along the solutions of (1) separately. We start by the function V 1 : recalling that x T Ax = 0 for all x ∈ R n (as A is skew-symmetric), direct computations show that

V1 = |x| x T ẋ = -|x| x T Bσ(B T x) + |x| x T d. (16) 
In order to study the derivative of V 2 , consider any initial state x 0 ∈ R n and any input signal d ∈ U n . Let τ be the function generated by Fact 1 and let

Ã(t) := A -Bτ (B T x(t))B T , ∀t ≥ 0,
where x(•) denotes the solution of (1) starting from x 0 . Note that the saturation function σ being locally Lipschitz and bounded, the existence of the solutions of ( 1) is ensured at all forward time, which makes the above matrix Ã(t) well defined at all times t ≥ 0. With this notation, the system (1) in closed loop with u = B T x can be rewritten as

ẋ = Ã(t)x + B τ (B T x)B T x -σ(B T x) + d. (17)
Now, in view of Fact 1 and recalling that τ (u) is a diagonal matrix for each u ∈ R m , it holds that

τ (B T x(t)) + τ (B T x(t)) T ≥ 2aI, ∀t ≥ 0,
for some constant a > 0 independent of x 0 . It follows that all the conditions of Lemma 1 are fulfilled with D(t) = τ (B T x(t)) and ε = 2a. Consequently, there exists a symmetric positive definite matrix P = P T such that Ã(t) T P + P Ã(t) ≤ -I, ∀t ≥ 0.

The derivative of the function V 2 (x) = x T P x with this particular matrix P along the solutions of ( 17) reads

V2 = x T Ã(t) T P + P Ã(t) x + 2x T P B τ (B T x)B T x -σ(B T x) + 2x T P d ≤ -|x| 2 + 2 |x| |P B| τ (B T x)B T x -σ(B T x) + 2x T P d. Recalling that, in view of Fact 1, τ (B T x)B T x -σ(B T x) ≤ Kx T Bσ(B T x), it follows that V2 ≤ -|x| 2 + 2K |x| |P B| x T Bσ(B T x) + 2x T P d. (18) 
Combining ( 16) and ( 18) and picking c = 2K |P B|, we obtain that the derivative of V (x) = cV 1 (x) + V 2 (x) along the solutions of (1) satisfies

V ≤ -|x| 2 + c |x| 2 |d| + 2 |P | |x| |d| .
Thus the function Ṽ , defined in [START_REF] Sontag | Input to state stability: Basic concepts and results[END_REF], satisfies

V = V (x) [1 + V (x)] 2/3 ≤ - |x| 2 [1 + V (x)] 2/3 + c |x| 2 [1 + V (x)] 2/3 |d| + 2 |P | |x| [1 + V (x)] 2/3 |d| . ( 19 
)
We now analyze the two nonnegative term of this upper bound separately. First, it holds that

|x| 2 [1 + V (x)] 2/3 = |x| 2 1 + x T P x + c 3 |x| 3 2/3 ≤ |x| 2 1 + c 3 |x| 3 2/3 ≤ |x| 3 1 + c 3 |x| 3 2/3 ≤ 3 c 2/3 . (20) 
In the same way, we have that 

|x| [1 + V (x)] 2/3 = |x| 1 + x T P x + c 3 |x| 3 2/3 ≤ |x| 1 + c 3 |x| 3 

Proof of Corollary 1

Since aI ≤ τ (u) ≤ bI, the constant χ introduced in (8) satisfies [START_REF] Fuller | In-the-large stability of relay and saturating control systems with linear controllers[END_REF]. By Lemma 1, the proof of Theorem 1 can be repeated with P = P 0 +χI. The rest of the proof is identical.

Conclusion

Focusing on the specific class of LTI systems whose internal dynamics is neutrally stable, we have shown that a simple linear static state-feedback ensures Strong iISS to both matching and non-matching additive disturbances acting outside the saturation. This result was illustrated on an academic example, that underlined the limits of the input threshold estimate and suggests that further work is needed to choose the feedback gains in order to obtain a tighter input threshold estimate. Finally, further research can be envisioned to check the robustness properties of saturated stabilization of chains of integrators; a first step in that direction will be presented in [START_REF] Laporte | Global stabilization of multiple integrators by a bounded feedback with constraints on its successive derivatives[END_REF].
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