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Abstract: In this note, we propose a linear state-feedback that ensures Strong iISS to any neutrally stable system affected
by actuator saturation. This robustness property was recently proposed as a compromise between the strength of input-to-
state stability (ISS) and the generality of integral input-to-state stability (iISS). It ensures not only that the system is globally
asymptotically stable in the absence of disturbances, but also that trajectories are bounded in response to any perturbation whose
amplitude is below a certain threshold. It also guarantees that the state converges to the origin in response to any vanishing
disturbance. Here Strong iISS is proven with respect to any additive disturbance acting outside the saturation, without any
matching requirement.
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1 Introduction

It is well known that a necessary and sufficient condition
for the stabilizability of a linear time-invariant (LTI) plant by
saturated feedback is that its internal dynamics has no pole
with positive real part [17]. Several works in the literature
have proposed bounded stabilizing feedback for particular
classes of systems whose internal dynamics exhibits no ex-
ponential instability. For neutrally stable systems (meaning
LTI systems whose internal dynamics exhibits no unbounded
solutions), it is also known that stabilization can be achieved
using a saturated linear static feedback. Nonetheless, some
classes of systems, although having no poles with positive
real parts, cannot be stabilized by saturated linear static state-
feedback; this class includes chains of three or more integra-
tors [6, 18]. Several control strategies, by state or output
feedback, have been proposed to stabilize such systems, in-
cluding nested saturations [19] and linear combinations of
saturated linear functions [16]. For LTI systems having no
eigenvalues with positive real parts, it has been shown in [15]
that global stabilization by bounded output feedback can be
achieved if and only if the system is both detectable and sta-
bilizable.

Beyond stabilization, it is often desirable to ensure some
robustness properties in order to cope, for instance, with pa-
rameter uncertainty, measurement noise or exogenous distur-
bances. Lp-stabilization with respect to disturbances acting
inside the saturation was achieved in [11] based on the low-
and-high gain control law introduced in [10]. This robust sat-
bilization has been extended to disturbances acting outside
the saturation in [20] for chains of integrators under match-
ing conditions. Also, explicit estimates of Lp input/output
gains have been obtained for neutrally stable systems based
on a saturated linear static feedback in [9].

Another natural candidate for the evaluation of robust-
ness to exogenous inputs is the framework of input-to-state
stability (ISS, [12, 14]) and its weaker variant integral ISS
(iISS, [13]). In [1], a saturated linear state-feedback was pro-
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posed to ensure ISS with respect to sufficiently small distur-
bances despite parameter uncertainty for systems of dimen-
sion smaller than or equal to three, as well as feedforward
systems. ISS of neutrally stable systems with respect to dis-
turbances acting outside the saturation have been proposed
in [2] under matching conditions. Other approaches guaran-
tee ISS and iISS with bounded control to nonlinear systems
based on Arstein’s “universal constructions” [3, 8].

Among other robustness features, ISS ensures a bounded
response to any bounded disturbance. Intuitively, one may
expect that bounded controls fail in general at guaranteeing
the solutions’ boundedness if the disturbance acts outside the
saturation with a too large amplitude (unless matching con-
ditions are met between the saturated actuator and the dis-
turbance: see e.g. [2, 20]). At first sight, for these systems,
nothing more than ISS with respect to small inputs can be
established, thus providing no information on the system’s
behavior for larger inputs. In this note, we provide sufficient
conditions under which a more interesting property, namely
Strong iISS, can be achieved by saturated feedback. This
property, introduced in [4], not only guarantees ISS with re-
spect to small inputs but also iISS. In particular, it ensures
global asymptotic stability in the absence of disturbances, a
bounded response to any disturbance whose amplitude is be-
low a given threshold, but also the existence of solutions at
all times even for disturbances above that threshold. It also
guarantees that the state converges to zero in response to any
vanishing disturbance, and it is known to be preserved under
cascade interconnection. More details on this property can
be found in [4, 5].

In this paper, we show that any LTI system with neutrally
stable internal dynamics can be made Strongly iISS by a
simple saturated linear state feedback. Strong iISS is estab-
lished with respect to disturbances acting outside the satura-
tion, and no matching condition between the actuation and
the disturbances is assumed. We provide an explicit estimate
of the maximum disturbance amplitude that can be tolerated
without compromising solutions’ boundedness. This esti-
mate is confronted to numerical observations in the example
of an harmonic oscillator robust stabilization.



2 Notation and problem statement

2.1 Notation
A function α : R≥0 → R≥0 is of class PD if it is con-

tinuous and positive definite. It is of class K if, in addi-
tion, it is increasing. It is of class K∞ if it is of class K
and lims→∞ α(s) = ∞. β : R≥0 × R≥0 → R≥0 belongs
to class KL if, given any fixed t ≥ 0, β(·, t) ∈ K and,
given any fixed s ≥ 0, β(s, ·) is continuous, nonincreasing
and tends to zero as its argument tends to infinity. Given
x ∈ Rn, |x| denotes its Euclidean norm. Given a positive
integer p, Up denotes the set of all measurable locally es-
sentially bounded functions d : R≥0 → Rp. For a given
d ∈ Up, ‖d‖ := ess supt≥0 |d(t)|. Given a constant R > 0,
we let Up

<R denote the set {d ∈ Up : ‖d‖ < R}.

2.2 Considered class of systems
We recall that a neutrally stable matrix is any matrix A

such that the solutions of ẋ = Ax are bounded. This is
equivalent to requiring that there exists a symmetric positive
definite matrix P such that ATP + PA is a negative semi-
definite matrix. This paper focuses on the class of neutrally
stable systems affected by actuator saturation and additive
exogenous disturbances:

ẋ = Ax−Bσ(u) + d, (1)

where x ∈ Rn is the state, u ∈ Rm is the control input,
and d ∈ Rn is the disturbance. No matching condition on
the disturbance d is assumed: it can affect all directions of
Rn, not only those defined by the B matrix. The function
σ : Rm → Rm is assumed to belong to the class Sm, as
defined below.

Definition 1 (S and Sm functions, [9]) S denotes the set
of all locally Lipschitz bounded function S : R → R
satisfying: S(0) = 0, S(s)s > 0 for all s 6= 0,
lim infs→0 S(s)/s > 0, and lim inf |s|→∞ |S(s)| > 0. A
vector function σ : Rm → Rm is said to be in the class Sm
if it reads σ(u) = (S1(u1), . . . , Sm(um))T , for all u ∈ Rm,
where Si ∈ S for each i ∈ {1, . . . ,m}.

We stress that the class S includes, but is not limited to,
“usual” saturation functions such as sigmoids, arctan, tanh
or sat` : s 7→ sign(s) min{`|s|, 1} with ` > 0. For more
details about the functions included in this class, the reader
is invited to refer to [9].

We state the following useful property of Sm-functions,
which is a straightforward m-dimensional extension of [9,
Remark 2].

Fact 1 If σ ∈ Sm, then there exist constants a, b,K > 0 and
a measurable diagonal-matrix valued function τ : Rm →
Rm×m such that, for all u ∈ Rm,

aI ≤ τ(u) ≤ bI, |σ(u)− τ(u)u| ≤ Kuσ(u). (2)

2.3 The Strong iISS property
As already stressed, the purpose of this paper is to robustly

stabilize the system (1) by linear state feedback. We rely on
the formalism of ISS, introduced by Sontag in [12]. We re-
call that a system is ISS if there exists β ∈ KL and γ ∈ K∞

such that its solutions satisfy |x(t)| ≤ β(|x0| , t) + γ(‖d‖)
at all times. In particular, ISS ensures boundedness of solu-
tions for any bounded disturbance, and a vanishing state in
response to any vanishing perturbation; see [14] for a survey.

Without matching requirements between the disturbance
and the actuation, it is hopeless to try to make (1) ISS. In-
deed, due to the bounded nature of σ, we can always pick a
sufficiently large disturbance d that makes solutions diverge.

An alternative robustness property could be the integral
input-to-state stability (iISS, [13]). Instead of consider-
ing the impact of the amplitude of the disturbance d, iISS
evaluates the effect of the input energy on the solutions
behavior. More precisely, a system is iISS if there exist
β ∈ KL and µ1, µ2, µ ∈ K∞ such that its solutions sat-
isfy |x(t)| ≤ β(|x0| , t) + µ1

(∫ t

0
µ2(|d(s)|)ds

)
at all times.

Like ISS, iISS ensures global asymptotic stability (GAS) of
the disturbance-free system. However, it is a much weaker
robustness property than ISS, as some iISS systems can be
destabilized by arbitrarily small, and even vanishing, distur-
bances. In the present context, it seems that better robustness
properties can be achieved. We believe that a better candi-
date to evaluate the robustness of (1) to exogenous distur-
bances is the Strong iISS, recently introduced in [4].

Definition 2 (Strong iISS, [4]) The system ẋ = f(x, d) is
said to be Strongly iISS if it is both ISS wrt small inputs
and iISS. In other words, there exist R > 0, β ∈ KL and
µ1, µ2, µ ∈ K∞ such that, for all d ∈ Up, all x0 ∈ Rn and
all t ≥ 0, its solution satisfies the two properties:

|x(t)| ≤ β(|x0| , t) + µ1

(∫ t

0

µ2(|d(s)|)ds
)

(3)

‖d‖ < R ⇒ |x(t)| ≤ β(|x0| , t) + µ(‖d‖) . (4)

The constant R is then called an input threshold.

It can easily be seen from this definition that Strong iISS
ensures GAS in the absence of disturbances, just like iISS
and ISS. Moreover, the state remains bounded if the distur-
bance amplitude is below the input threshold R. It was also
shown in [4] that, if the disturbance d tends to zero, then the
solution of a Strongly iISS system will also eventually tend
to zero. Finally, like ISS, Strong iISS is well behaved under
cascade interconnection [5].

2.4 From neutral stability to skew-symmetry
Reasoning as in [9, Section 3.2] the question of robustly

stabilizing (1) when A is neutrally stable boils down to the
case when A is skew-symmetric. This comes from the fact
that any neutrally stable matrix is similar to diag(AH , AS)
where AH is a Hurwitz matrix and AS is skew-symmetric.
This observation lets us consider that A is skew-symmetric
without loss of generality. This will be assumed in the re-
mainder of the paper.

3 Main result

3.1 Strong iISS by saturated linear feedback
Beyond Lp-stability results for disturbances entering the

function σ, it was shown in [9] that the linear state feedback
u = BTx globally asymptotically stabilizes the saturated



system (1) in the absence of exogenous disturbances. The-
orem 2 in [9] also shows that solutions are bounded if the
disturbance d is of sufficiently low amplitude. The following
result unifies and goes further these observations, by estab-
lishing that the same feedback law ensures Strong iISS to the
system (1).

Theorem 1 Let σ ∈ Sm and assume that A ∈ Rn×n is
skew-symmetric and that the pair (A,B) is controllable.
Then the linear static state feedback u = BTx makes the
saturated system (1) Strongly iISS.

The proof of this result, provided in Section 5.1, relies on
the following technical result.

Lemma 1 Let A ∈ Rn×n be a skew-symmetric matrix and
B ∈ Rn×m be such that the pair (A,B) is controllable. Let
D : R≥0 → Rm×m be any bounded measurable matrix-
valued function satisfying D(t) +D(t)T ≥ εI for almost all
t ∈ R≥0, where ε denotes a positive constant. Then, there
exists a symmetric positive definite matrix P ∈ Rn×n such
that, for almost all t ∈ R≥0,

(A−BD(t)BT )TP + P (A−BD(t)BT ) ≤ −I.

Moreover, this matrix P can be picked as P = P0 + χI ,
where P0 ∈ Rn×n denotes any symmetric positive definite
matrix satisfying

(A− εBBT )TP0 + P0(A− εBBT ) ≤ −2I, (5)

as ensured by the controllability of (A,B), and χ denotes
any constant satisfying

χ ≥ 1

ε
sup
t≥0
|P0B(εI −D(t))| . (6)

The proof of Lemma 1 can be found along the lines of [9,
Lemma 3.2 and Corollary 1] and is therefore omitted.

3.2 Estimate of the input threshold
The proof of Theorem 1 is constructive: once a matrix P

such as the one generated by Lemma 1 is known, we can
estimate the resulting input threshold for (1), meaning the
maximum disturbance amplitude that does not compromise
solutions’ boundedness. These findings are summarized by
the following result.

Corollary 1 Let σ ∈ Sm and let A ∈ Rn×n be a skew-
symmetric matrix such that the pair (A,B) is controllable.
Let a, b and K be any positive constants such that (2) holds
for all u ∈ Rm, where τ : Rm → Rm×m is a measurable
diagonal-matrix valued function. Let P0 ∈ Rn×n be any
symmetric positive definite matrix such that

(A− 2aBBT )TP0 + P0(A− 2aBBT ) ≤ −2I. (7)

Finally, let χ be the positive constant defined as

χ =
|2a− b|

2a
|P0B| , (8)

and let P := P0 + χI . Then (1) in closed loop with the
control law u = BTx is Strongly iISS with input threshold

R =
1

2K |PB|+ |P | (4K |PB| /3)1/3
. (9)

Note that the existence of such constants a, b,K and such
a function τ is ensured by Fact 1. The existence of a ma-
trix P0 satisfying (7) is guaranteed by the controllability of
the pair (A,B). The proof of this result follows straightfor-
wardly from that of Theorem 1. We provide its main steps in
Section 5.2 for the sake of completeness.

For some particular saturations, the function τ of Fact 1
can be picked as a constant matrix. This includes for instance
saturation functions of the form σ(s) = (S(s), . . . , S(s))T

where

S(s) = sat`(s) := sign(s) min{` |s| ; 1}, ∀s ∈ R, (10)

where ` > 0 denotes its linear slope. For such functions, the
expression of the input threshold estimate is slightly simpler.
We summarize this in the following corollary.

Corollary 2 Let S ∈ Sm and let A ∈ Rn×n be a skew-
symmetric matrix such that the pair (A,B) is controllable.
Assume that there exist τ̄ , K > 0 such that

|σ(u)− τ̄u| ≤ Kuσ(u), ∀u ∈ Rm. (11)

Let P0 ∈ Rn×n be any symmetric positive definite matrix
such that

(A− 2τ̄BBT )TP0 + P0(A− 2τ̄BBT ) ≤ −2I, (12)

as ensured by the controllability of the pair (A,B). Finally,
let P := P0 + 1

2 |P0B| I . Then the system (1) in closed loop
with the control law u = BTx is Strongly iISS with the input
threshold given in (9).

4 Example: the harmonic oscillator

We finally illustrate the above results with the following
planar system:(

ẋ1
ẋ2

)
=

(
0 1
−1 0

)(
x1
x2

)
−
(

0
1

)
sat`(u) + d,

(13)
where ` > 0 and sat` was introduced in (10). This system is
in the form of (1) with

A =

(
0 1
−1 0

)
, B =

(
0
1

)
, σ(s) = sat`(s).

Note that the perturbation is not matching, as it affects the
dynamics of x1 although no control is available in that direc-
tion. The pair (A,B) being controllable, we conclude with
Theorem 1 that the state feedback u = BTx = x2 makes the
system (13) Strong iISS.

In addition, we can estimate its input threshold by invok-
ing Corollary 2. To that end, notice that |sat`(s)− `s| ≤
` s sat`(s) for all s ∈ R, meaning that (11) is satisfied with
τ̄ = K = `. Furthermore, the Lyapunov equation (12) is
satisfied with the following symmetric positive definite ma-
trix:

P0 =
1

2

(
2`+ 1/` 1

1 1/`

)
.

Noticing that |P0B| = 1
2

√
1 + `2, the input threshold of (13)

in closed loop with u = BTx = x2 can be computed as
a function of the slope ` of the saturation according to the
estimate (9). We obtain the curve reported in Figure 1.



Fig. 1: Input threshold estimate of the planar system (13) as
a function of the slope ` of the saturation.

This plot shows that the estimate of R provided by Corol-
lary 2 is not optimally accurate for this specific example, as
it tends to zero for large values of the slope ` (meaning when
sat` tends to the sign function). Simulations suggest that
the actual input threshold rather tends to 1. Although pro-
viding an explicit estimate of the input threshold, the tools
employed in this paper fail at giving a tighter bound. The
authors believe that a better choice of the feedback law than
merely u = BTx would allow a better estimate of the guar-
anteed input threshold, but this goes beyond the scope of the
paper.

5 Proofs

5.1 Proof of Theorem 1
In order to establish Theorem 1, we make use of the Lya-

punov function proposed in [9]. More precisely, letting

V (x) :=
c

3
|x|3 + xTPx, ∀x ∈ Rn,

where P ∈ Rn×n is a convenient symmetric positive definite
matrix and c > 0 denotes some well chosen constant, we
claim that the proper C1 Lyapunov function candidate

Ṽ (x) :=
1

3

[
(1 + V (x))1/3 − 1

]
(14)

satisfies, along the solutions of (1) in closed loop with u =
BTx,

˙̃V (x) ≤ −W (x) + γ(|d|), (15)

where γ denotes a class K∞ function and W is a continuous
positive definite function satisfying lim infx→∞W (x) > 0.
According to [4, Theorem 1], this establishes Strong iISS, as
claimed in the statement.

To that aim, we start by decomposing the function V as
V (x) = cV1(x) + V2(x), where V1(x) := |x|3 /3 and
V2(x) := xTPx. We will study the time derivative of V1
and V2 along the solutions of (1) separately. We start by the
function V1: recalling that xTAx = 0 for all x ∈ Rn (as A
is skew-symmetric), direct computations show that

V̇1 = |x|xT ẋ
= − |x|xTBσ(BTx) + |x|xT d. (16)

In order to study the derivative of V2, consider any initial
state x0 ∈ Rn and any input signal d ∈ Un. Let τ be the
function generated by Fact 1 and let

Ã(t) := A−Bτ(BTx(t))BT , ∀t ≥ 0,

where x(·) denotes the solution of (1) starting from x0. Note
that the saturation function σ being locally Lipschitz and

bounded, the existence of the solutions of (1) is ensured at
all forward time, which makes the above matrix Ã(t) well
defined at all times t ≥ 0. With this notation, the system (1)
in closed loop with u = BTx can be rewritten as

ẋ = Ã(t)x+B
[
τ(BTx)BTx− σ(BTx)

]
+ d. (17)

Now, in view of Fact 1 and recalling that τ(u) is a diagonal
matrix for each u ∈ Rm, it holds that

τ(BTx(t)) + τ(BTx(t))T ≥ 2aI, ∀t ≥ 0,

for some constant a > 0 independent of x0. It follows that
all the conditions of Lemma 1 are fulfilled with D(t) =
τ(BTx(t)) and ε = 2a. Consequently, there exists a sym-
metric positive definite matrix P = PT such that

Ã(t)TP + PÃ(t) ≤ −I, ∀t ≥ 0.

The derivative of the function V2(x) = xTPx with this par-
ticular matrix P along the solutions of (17) reads

V̇2 = xT
(
Ã(t)TP + PÃ(t)

)
x

+ 2xTPB
[
τ(BTx)BTx− σ(BTx)

]
+ 2xTPd

≤− |x|2 + 2 |x| |PB|
∣∣τ(BTx)BTx− σ(BTx)

∣∣+ 2xTPd.

Recalling that, in view of Fact 1,∣∣τ(BTx)BTx− σ(BTx)
∣∣ ≤ KxTBσ(BTx), it follows

that

V̇2 ≤ − |x|2 + 2K |x| |PB|xTBσ(BTx) + 2xTPd. (18)

Combining (16) and (18) and picking c = 2K |PB|, we ob-
tain that the derivative of V (x) = cV1(x) + V2(x) along the
solutions of (1) satisfies

V̇ ≤ − |x|2 + c |x|2 |d|+ 2 |P | |x| |d| .

Thus the function Ṽ , defined in (14), satisfies

˙̃V =
V̇ (x)

[1 + V (x)]
2/3

≤− |x|2

[1 + V (x)]
2/3

+ c
|x|2

[1 + V (x)]
2/3
|d|

+ 2 |P | |x|
[1 + V (x)]

2/3
|d| . (19)

We now analyze the two nonnegative term of this upper
bound separately. First, it holds that

|x|2

[1 + V (x)]
2/3

=
|x|2[

1 + xTPx+ c
3 |x|

3
]2/3

≤ |x|2[
1 + c

3 |x|
3
]2/3

≤

(
|x|3

1 + c
3 |x|

3

)2/3

≤
(

3

c

)2/3

. (20)



In the same way, we have that

|x|
[1 + V (x)]

2/3
=

|x|[
1 + xTPx+ c

3 |x|
3
]2/3

≤ |x|[
1 + c

3 |x|
3
]2/3

≤

(
|x|3/2

1 + c
3 |x|

3

)2/3

≤
(

3

4c

)1/3

, (21)

where the last inequality follows form the fact that the func-
tion s 7→ s/(1 + cs2/3) reaches its maximum

√
3/4c at

s =
√

3/c. Plugging (20)-(21) into (19) leads, as claimed,
to

˙̃V (x) ≤ −W (x) + γ(|d|),
where γ denotes the following K∞ function:

γ(s) :=

[
(9c)1/3 + |P |

(
6

c

)1/3
]
s, ∀s ≥ 0.

and W : Rn → R≥0 is the function defined as

W (x) :=
|x|2[

1 + xTPx+ c
3 |x|

3
]2/3 , ∀x ∈ Rn,

where we recall that c = 2K |PB|. Notice that W is contin-
uous and positive definite and satisfies

lim inf
|x|→∞

W (x) = lim inf
|x|→∞

|x|2

(c/3)2/3 |x|2
=

(
3

c

)2/3

.

Thus, we can apply [4, Theorem 1] to conclude that (1) is
Strongly iISS with input threshold

γ−1
(

(3/c)2/3
)

=
1

c+ |P | (2c/3)1/3

=
1

2K |PB|+ |P | (4K |PB| /3)1/3
.

5.2 Proof of Corollary 1
Since aI ≤ τ(u) ≤ bI , the constant χ introduced in (8)

satisfies (6). By Lemma 1, the proof of Theorem 1 can be
repeated with P = P0+χI . The rest of the proof is identical.

6 Conclusion

Focusing on the specific class of LTI systems whose in-
ternal dynamics is neutrally stable, we have shown that a
simple linear static state-feedback ensures Strong iISS to
both matching and non-matching additive disturbances act-
ing outside the saturation. This result was illustrated on an
academic example, that underlined the limits of the input
threshold estimate and suggests that further work is needed
to choose the feedback gains in order to obtain a tighter in-
put threshold estimate. Finally, further research can be envi-
sioned to check the robustness properties of saturated stabi-
lization of chains of integrators; a first step in that direction
will be presented in [7].
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