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ABSTRACT 

 

 

For safety analysis of Nuclear Power Plants (NPPs), Best Estimate (BE) Thermal Hydraulic (TH) 

codes are used to predict system response in normal and accidental conditions. The assessment of 

the uncertainties of TH codes is a critical issue for system failure probability quantification. In this 

paper, we consider passive safety systems of advanced NPPs and present a novel approach of 

Sensitivity Analysis (SA). The approach is based on Finite Mixture Models (FMMs) to approximate 

the probability density function (i.e., the uncertainty) of the output of the passive safety system TH 

code with a limited number of simulations. We propose a novel Sensitivity Analysis (SA) method for 

keeping the computational cost low: an Expectation Maximization (EM) algorithm is used to 

calculate the saliency of the TH code input variables for identifying those that most affect the 

system functional failure. The novel approach is compared with a standard variance decomposition 

method on a case study considering a Passive Containment Cooling System (PCCS) of an Advanced 

Pressurized reactor AP1000. 

 

mailto:francesco.dimaio@polimi.it
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1 INTRODUCTION 

 

Passive systems seem to offer several advantages in terms of safety and reliability [Nayak et al. 

2009] [Zio et al. 2010]. For this reason, they are considered in the design of innovative and 

advanced nuclear reactor concepts. 

To quantify the reliability of passive safety systems the concept of functional failure has been 

introduced [Cummins et al. 2003] [Pagani et al. 2005] [Burgazzi et al 2007] [Zio et al. 2009]: when 

counter-forces (e.g., friction) have magnitude comparable to the driving ones (e.g., gravity, natural 

circulation), the passive systems may fail performing the intended functions even if i) safety 

margins are met, ii) no hardware failures occur [Burgazzi 2004] [Marques et al. 2005] [Burgazzi 

2007b] [Zio et al. 2009]. 

Thermal Hydraulics (TH) codes are used to predict the physical behavior of the system in nominal 

and accidental conditions. Conservative TH codes have traditionally been employed to verify that 

safety limits could be respected with large safety margins [Zio et al. 2010]. Best Estimate (BE) 

codes have been introduced more recently to provide more realistic results and avoid over-

conservatism [Zio et al. 2010] [10 CFR 50.46]; their use requires the identification and 

quantification of the uncertainties in the code outputs coming from simplifications, approximations, 

round-off-errors, numerical techniques and uncertainties in the input variable values [Pourgol-

Mohammad 2009]. The quantification of the uncertainties in the output can be demanding in terms 

of computational cost, because it requires a large number of simulations of the BE-code [de Crécy 

et al. 2008; Di Maio et al. 2014a]. 

To tackle this challenge, various approaches of Uncertainty Analysis (UA) have been developed, 

e.g., Code Scaling, Applicability, and Uncertainty (CSAU) [Boyack et al. 1990] [Wilson et al. 

1990] [Wulf et al. 1990], Automated Statistical Treatment of Uncertainty Method (ASTRUM), 

Integrated Methodology for Thermal-Hydraulics Uncertainty Analysis (IMTHUA) [Pourgol-

Mohammad 2009], which assume that the uncertainty in the input variables follows a statistical 

distribution: N input sets are sampled and fed to the BE code and the corresponding N output values 

are calculated, which reflect the variability of the input variables onto the output. A combination of 

Order Statistics (OS) [Guba et al. 2003] [Zio et al. 2008] and Artificial Neural Networks (ANN) has 

been proposed to speed up computation (substituting the TH code with a simpler and faster 

surrogate) [Secchi et al. 2008]. However, this latter approach does not allow to completely 

characterize the pdf of the output variable (but only some percentiles), precluding the possibility of: 

i) obtaining a precise estimate of the safety limit; ii) performing Sensitivity Analysis (SA) at no 

extra computational cost [Langewisch 2010] [Hong et al. 2011]. 
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Among the SA techniques, it is possible to identify three families: Local, Regional and Global 

[Saltelli et al. 2000]. The local approach to SA consists in evaluating the effect on the output of 

small variations around fixed values in the input parameters. Typically, local methods involve the 

calculation of partial derivatives of the output with respect to the inputs at local fixed points on 

which the analysis is focused. The local sensitivity indexes obtained, provide information that is 

valid only locally. Regional SA aims at calculating the sensitivity of the model to partial ranges of 

the inputs distributions [Pengfei 2014]. Global SA allows to measure the contribution of an input to 

the variability of the output over the entire range of both the input and the output. To do this, the 

approach focuses directly on the output and its uncertainty distribution, with no reference to any 

particular value of the input parameters (unlike local approaches). Global SA is most indicated 

when models are non-linear and non-monotone, as in these cases local and regional SA cannot 

provide general results. Compared to local and regional SA methods, global SA methods offer 

higher capabilities, but these are paid by high computational costs. Examples of global methods are 

Response Surface Methodology (RSM), Fourier Amplitude Sensitivity Test (FAST) and the 

variance decomposition method [Helton 1993] [McKay 1996] [Saltelli et al. 2000] [Cadini et al. 

2007] [Yu et al. 2010]. RSM consists in approximating the model by a simple and faster 

mathematical model from a database of computations [Devictor et al. 2005]; with FAST, the model 

can be expanded into a Fourier series and the Fourier coefficients and frequencies can be used to 

estimate mean and variance of the model, and the partial variance of individual input parameters of 

the model [Fang et al. 2003]; variance decomposition is a general and solid method for global SA 

and has the advantage of not introducing any hypothesis on the model, although it has high 

computational costs [Carlos et al. 2013]. 

In this paper, we focus on global SA methods based on the pdf of the output variable and propose a 

novel alternative to the existing methods. Among these, Polynomial Chaos Expansion (PCE) 

methods have been used to reconstruct the pdf of the output variable and for SA, with less runs than 

variance decomposition-based methods [Sudret 2008] [Eaton et al. 2010] [Gilli et al., 2012]. 

However, in many cases the output variable follows a multimodal distribution for which PCE is 

unsuitable because the order of the expansion necessary for accurately reconstructing the pdf 

becomes large and the computational cost too [Nouy, 2010]. We overcome the problem of 

multimodal distributions by resorting to Finite Mixture Models (FMMs) [McLachlan et al. 2000], 

which provide, by application of an Expectation Maximization algorithm (EM), a natural 

“clustering” of the TH code output (e.g., subdividing the data in groups of large safety margin, low 

safety margin, failure) based on the models composing the mixture. Such models can be used for 

Sensitivity Analysis, aiming at identifying the most relevant input variables affecting the output 
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uncertainty, as we shall see in the following. More specifically, in this paper,  Gaussian FMMs are 

used to reproduce the pdf of the TH code output and its natural clustering is originally exploited for 

SA (Figure 1). The advantages of this approach are i) the possibility to obtain the analytical pdf of 

the model output and ii) a computational cost for SA significantly lower than classical global 

methods. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Flowchart of the proposed framework for SA 

 

 

The paper is organized as follows. In Section 2, FMM are presented and the input saliency approach 

for global SA is presented. In Section 3, the TH code and the relative case study are illustrated. In 

Section 4, the experimental results are reported along with the comparison to variance 

decomposition-based SA results. Section 5 draws some conclusions. 
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2 FINITE MIXTURE MODELS FOR SENSITIVITY ANALYSIS 

 

Let y denote the output of a TH model m, viz: 

 

𝑦 = 𝑚(𝑥1, 𝑥2, … , 𝑥𝑙 , … , 𝑥𝐷)                      𝑙 = 1, … , 𝐷 (1) 

where 𝑥𝑙 is the l-th input variable. The random output variable y follows a finite mixture density 

𝑓(𝑦) with K models if: 

𝑓(𝑦) = ∑ 𝜋𝑘𝑓𝑘(𝑦|𝜃𝑘)

𝐾

𝑘=1

 (2) 

 

 

where 𝑓𝑘(𝑦|𝜃𝑘) are K different probability density functions, 𝜃𝑘 is the set of parameters of the k-th 

model of the mixture and 𝜋𝑘 are the mixing probabilities that satisfy: 

 

∑ 𝜋𝑘
𝑘

= 1                     𝑤𝑖𝑡ℎ  ∀ 𝑘, 𝜋𝑘 ≥ 0 (3) 

 

In particular, if 𝑓𝑘(𝑦|𝜃𝑘) is Gaussian, then: 

𝑓𝑘(𝑦|𝜃𝑘) =
1

√2𝜋𝜎𝑘

𝑒
−

(𝑦−𝜇𝑘)2

2𝜎𝑘
2

 (4) 

 

where 𝜃𝑘 = (𝜇𝑘, 𝜎𝑘) are the mean and the standard deviation of the k-th gaussian mixture model, 

respectively.  

For simplicity of illustration, and without loss of generality, let us consider a mixture of two 

Gaussians: 

 

𝑓(𝑦) = 𝜋1𝑓1(𝑦|𝜃1) + 𝜋2𝑓2(𝑦|𝜃2) (5) 

 

Expectation Maximization (EM) algorithm [Dempster et al. 1977] [McLachlan et al. 2000] can be 

used to fit 𝑓(𝑦) to N available data y = {𝑦1, … , 𝑦𝑁}, 𝑖 = 1, … , 𝑁 and identify its parameters 

𝜃 = (𝜃1, 𝜃2) and 𝜋 = (𝜋1, 𝜋2). To do that, we resort to two classification variables 𝑧1𝑖, 𝑧2𝑖 i.e., 

(𝑧1𝑖 + 𝑧2𝑖 = 1) that assign one among the two models to a data point 𝑦𝑖: 
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𝑧1𝑖 = {

1 𝑖𝑓 𝑦𝑖 𝑓𝑜𝑙𝑙𝑜𝑤𝑠  𝑓1(𝑦|𝜃1) 

0 𝑖𝑓 𝑦𝑖  𝑓𝑜𝑙𝑙𝑜𝑤𝑠  𝑓2(𝑦|𝜃2)
          𝑧2𝑖 = {

0 𝑖𝑓 𝑦𝑖 𝑓𝑜𝑙𝑙𝑜𝑤𝑠  𝑓1(𝑦|𝜃1) 

1 𝑖𝑓 𝑦𝑖 𝑓𝑜𝑙𝑙𝑜𝑤𝑠  𝑓2(𝑦|𝜃2)
 (6) 

 

with 𝜃 = (𝜃1, 𝜃2). 

 

For each i-th datum, the conditional probabilities in Eqs. (7) and (8) hold: 

 

𝑃(𝑦𝑖|𝑧1𝑖, 𝑧2𝑖 , 𝜃) = 𝑓1
𝑧1𝑖(𝑦𝑖)𝑓2

𝑧2𝑖(𝑦𝑖) 
(7) 

 

𝑃(𝑧1𝑖, 𝑧2𝑖|𝜃) = 𝜋1
𝑧1𝑖(1 − 𝜋1)𝑧2𝑖 (8) 

 

Substituting Eqs. (7) and (8) into Eq. (9): 

 

𝑃(𝑦𝑖, 𝑧1𝑖, 𝑧2𝑖|𝜃) = 𝑃(𝑦𝑖|𝑧1𝑖, 𝑧2𝑖, 𝜃)𝑃(𝑧1𝑖, 𝑧2𝑖|𝜃) (9) 

 

and taking its logarithm, 

 

log(𝑃(𝑦𝑖 , 𝑧1𝑖, 𝑧2𝑖|𝜃)) = 𝑧1𝑖 log(𝑓1(𝑦𝑖)) + 𝑧1𝑖 log(𝜋1) + 𝑧2𝑖 log(𝑓2(𝑦𝑖)) + 𝑧2𝑖 log(1 − 𝜋1) (10) 

 

The likelihood function for all the N data can be written as: 

 

𝐿(𝑦, 𝑧|𝜃) = log(𝑃(𝑦, 𝑧|𝜃)) = 

∑ 𝑧1𝑖 log(𝑓1(𝑦𝑖)) + 𝑧1𝑖 log(𝜋1) + 𝑧2𝑖 log(𝑓2(𝑦𝑖)) + 𝑧2𝑖 log(1 − 𝜋1)
𝑁

𝑖=1
 

(11) 

 

The maximum likelihood of 𝐿(𝑦, 𝑧|𝜃) cannot be found analytically; this is why we resort to an 

Expectation Maximization (EM) algorithm for the identification of the model parameters 𝜃(𝜃1, 𝜃2) 

and 𝜋(𝜋1, 𝜋2), with an initial random estimation of 𝑧, 𝑧(1): 

 

𝜇1
(1)

=
∑ 𝑧1𝑖

(1)
𝑦𝑖

𝑁
𝑖=1

∑ 𝑧1𝑖
(1)𝑁

𝑖=1

;                       𝜇2
(1)

=
∑ 𝑧2𝑖

(1)
𝑦𝑖

𝑁
𝑖=1

∑ 𝑧2𝑖
(1)𝑁

𝑖=1

 (12) 
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𝜎1
2(1)

=
∑ 𝑧1𝑖

(1)
(𝑦𝑖 − 𝜇1

(1)
)2𝑁

𝑖=1

∑ 𝑧1𝑖
(1)𝑁

𝑖=1

;                       𝜎2
2(1)

=
∑ 𝑧2𝑖

(1)
(𝑦𝑖 − 𝜇2

(1)
)2𝑁

𝑖=1

∑ 𝑧2𝑖
(1)𝑁

𝑖=1

 (13) 

 

𝜋1
(1)

=
∑ 𝑧1𝑖

(1)𝑁
𝑖=1

𝑛
;                      𝜋2

(1)
=

∑ 𝑧2𝑖
(1)𝑁

𝑖=1

𝑛
= 1 −  𝜋1

(1)
 (14) 

 

The expectation step follows by application of Bayes rule [McLachlan 2008]: 

 

𝑧1𝑖
(𝑗)

= 𝑃(𝑧1𝑖 = 1|𝜃(𝑗−1), 𝑦𝑖) =
𝜋1

(𝑗−1)
𝑓1(𝑦𝑖, 𝜃(𝑗−1))

𝜋1
(𝑗−1)

𝑓1(𝑦𝑖, 𝜃(𝑗−1)) + (1 − 𝜋2
(𝑗−1)

)𝑓2(𝑦𝑖, 𝜃(𝑗−1))
 (15) 

 

𝑧2𝑖
(𝑗)

= 𝑃(𝑧2𝑖 = 1|𝜃(𝑗−1), 𝑦𝑖) =
(1 − 𝜋2

(𝑗−1)
)𝑓2(𝑦𝑖, 𝜃(𝑗−1))

𝜋1
(𝑗−1)

𝑓1(𝑦𝑖, 𝜃(𝑗−1)) + (1 − 𝜋2
(𝑗−1)

)𝑓2(𝑦𝑖, 𝜃(𝑗−1))
 (16) 

 

The maximization step follows the expectation step: 𝜃𝑗 and 𝜋𝑗 are updated to find, for any j-th step, 

the optimum. This continues until the stopping criterion is reached (i.e. µ and 𝜎 do not change in 

two successive iterations) [Figueiredo et al. 2002]: 

 

𝜇1
(𝑗)

=
∑ 𝑧1𝑖

(𝑗)
𝑦𝑖

𝑁
𝑖=1

∑ 𝑧1𝑖
(𝑗)𝑁

𝑖=1

;                       𝜇2
(𝑗)

=
∑ 𝑧2𝑖

(𝑗)
𝑦𝑖

𝑁
𝑖=1

∑ 𝑧2𝑖
(𝑗)𝑁

𝑖=1

 (17) 

 

𝜎1
2(𝑗)

=
∑ 𝑧1𝑖

(𝑗)
(𝑦𝑖 − 𝜇1

(𝑗)
)2𝑁

𝑖=1

∑ 𝑧1𝑖
(𝑗)𝑁

𝑖=1

;                       𝜎2
2(𝑗)

=
∑ 𝑧2𝑖

(𝑗)
(𝑦𝑖 − 𝜇2

(𝑗)
)2𝑁

𝑖=1

∑ 𝑧2𝑖
(𝑗)𝑁

𝑖=1

   (18) 

 

𝜋1
(𝑗)

=
∑ 𝑧1𝑖

(𝑗)𝑁
𝑖=1

𝑛
;                      𝜋2

(𝑗)
=

∑ 𝑧2𝑖
(𝑗)𝑁

𝑖=1

𝑛
= 1 −  𝜋1

(𝑗)
 (19) 

 

Once the parameters 𝜃(𝜃1, 𝜃2) and 𝜋(𝜋1, 𝜋2) of the mixture models are known, the best 

approximation of the pdf of the output of the TH model is completely characterized with a small 

number N of TH code simulations. In addition, “natural” clusters corresponding to each Gaussian 

model 𝑓𝑘(𝑦|𝜃𝑘) of the mixture are defined: some may be representative of normal conditions, 

whereas others of accidental conditions, allowing for a direct calculation of the probability of 

exceeding a certain safety limit (i.e., of functional failure). In fact, the area beneath the model 
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representation of the cluster of accidental conditions can be directly quantified (being the area 

below a weighted Gaussian distribution as in Eq. (5)) and used as functional failure probability. 

 

For global sensitivity analysis, the FMM of Eq. (2) can be rewritten as a function of the D input 

variables of the TH model, if we assume input variables independence: 

 

𝑓(𝑦) = ∑ 𝜋𝑘𝑓𝑘(𝑦|𝜃𝑘)

𝐾

𝑘=1

= ∑ 𝜋𝑘𝑚 (∏ 𝑓(𝑥𝑙|𝜃𝑘𝑙)

𝐷

𝑙=1

)

𝐾

𝑘=1

 (20) 

 

where m is the TH model function and  𝑓(𝑥𝑙|𝜃𝑘𝑙) is the pdf of the l-th input in the k-th cluster. The 

l-th input does not affect the output if its distribution is independent from the cluster, i.e., it follows 

a common density among all the clusters, denoted by 𝑞(𝑥𝑙|𝜆𝑙) [Pudil et al. 1995] [Vaithyanathan et 

al. 1999]. In Eq. (20), 𝑓(𝑥𝑙|𝜃𝑘𝑙) can be decomposed in a distribution accounting for the contribution 

of the l-th input in the k-th cluster 𝑓(𝑥𝑙|𝜃𝑘𝑙) and in the common distribution 𝑞(𝑥𝑙|𝜆𝑙), with weights 

𝜌𝑙, obtaining: 

 

𝑓(𝑦|𝜃) = ∑ 𝜋𝑘𝑚 (∏ 𝜌𝑙𝑓(𝑥𝑙|𝜃𝑘𝑙) + (1 − 𝜌𝑙)𝑞(𝑥𝑙|𝜆𝑙)

𝐷

𝑙=1

)

𝐾

𝑘=1

 (21) 

 

We consider the saliency 𝜌𝑙 as the importance of the l-th input in affecting the output y. In fact, if 𝜌𝑙 

is large it means that the input variable distribution varies significantly from one cluster to another 

and, thus, the input is important in determining the variability of the output; otherwise, if 𝜌𝑙 is small 

the inputs follow the common distribution in any cluster and, thus, the input is not relevant in 

shaping the distribution of the output. For example, Figure 2 shows the FMM decomposition of 

𝑓(𝑦) in case of two input variables 𝑥1 and 𝑥2: 𝑥1 contributes in shaping the model output 𝑓(𝑦) with 

𝑓(𝑥1|𝜇11, 𝜎11) and 𝑓(𝑥1|𝜇21, 𝜎21), whereas 𝑥2 only follows its common distribution 𝑞(𝑥2|𝜆2). 
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Figure 2 Mixture model decomposition illustrative example 

 

The estimation of the input variable importance 𝜌𝑙 is a model parameter identification problem that 

does not admit any closed form analytical solution [Figueiredo et al. 2002]. The problem can again 

be tackled by the EM algorithm, fitting Eq. (21) to data. In this case, for a FMM with 𝐾 = 2, 

parameters 𝜃(𝜃1, 𝜃2) and 𝜋(𝜋1, 𝜋2) have already been identified with Eqs. (17), (18) and (19), 

whereas 𝜌(𝜌1, 𝜌2, … , 𝜌𝑙 , … , 𝜌𝐷) is initially estimated to 𝜌(1) and updated at each following j-th step 

as: 

 

𝜌𝑙
(𝑗)

=
∑ 𝑢𝑖𝑘𝑙

(𝑗)
𝑖,𝑘

𝑁
 (22) 

where 

𝑢𝑖𝑘𝑙
(𝑗)

=
𝑎𝑖𝑘𝑙

(𝑗)

(𝑎𝑖𝑘𝑙
(𝑗)

+ 𝑏𝑖𝑘𝑙
(𝑗)

)
𝑤𝑖𝑘

(𝑗)
 (23) 

 

measures how important the i-th datum is in the k-th model (cluster), when the l-th input is 

considered, 

 

𝑎𝑖𝑘𝑙
(𝑗)

= 𝑃( 𝑥𝑖𝑙|𝑧𝑘𝑖 = 1, 𝑓(𝑥𝑖𝑙|𝜃𝑘𝑙)) = 𝜌𝑙
(𝑗)

𝑓(𝑥𝑖𝑙|𝜃𝑘𝑙) ( 24) 

 

is the probability that the l-th input of the i-th code run belongs to the k-th cluster 

 

𝑏𝑖𝑘𝑙
(𝑗)

= 𝑃( 𝑥𝑖𝑙|𝑧𝑘𝑖 = 1, 𝑞(𝑥𝑖𝑙|𝜆𝑙)) = (1 − 𝜌𝑙
(𝑗)

)𝑞(𝑥𝑖𝑙|𝜆𝑙) ( 25) 

𝑓1(𝑦|𝜇1, 𝜎1) 
𝑞(𝑥2|𝜆2) 

𝑓(𝑥1|𝜇21, 𝜎21) 

𝑓(𝑥1|𝜇11, 𝜎11) 

𝜇1 

𝜇2 

𝑓2(𝑦|𝜇2, 𝜎2) 
𝑦 𝑥1 𝑥2 
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is the probability that the l-th input of the i-th code run does not belong to any cluster, and 

 

𝑤𝑖𝑘
(𝑗)

= 𝑃(𝑧𝑘𝑖 = 1|𝑦𝑖) =
𝜋𝑘 ∏ (𝑎𝑖𝑘𝑙

(𝑗)
+ 𝑏𝑖𝑘𝑙

(𝑗)
)𝑙

∑ 𝜋𝑘 ∏ (𝑎𝑖𝑘𝑙
(𝑗)

+ 𝑏𝑖𝑘𝑙
(𝑗)

)𝑙𝑘

 ( 26) 

 

is the probability that the output of the i-th code run belongs to the k-th cluster. 

It is worth noticing that the term ∑ 𝑢𝑖𝑘𝑙𝑖,𝑘  in Eq. (22) represents the contribution of the l-th input to 

the definition of all K models (clusters) when supported by N evidences, and thus 𝜌𝑙 can be 

considered as a sensitivity index for the l-th input. 

 

3 CASE STUDY 

 

The Westinghouse AP1000 is a 1117 MWe (3415 MWth) pressurized water reactor (PWR), with 

extensive implementation of passive safety systems for reduction of corrective actions in case of 

accident. The passive safety systems include the passive Residual Heat Removal System (RHRS) 

and the Passive Containment Cooling System (PCCS). The PCCS cools the containment following 

an accident, so that the pressure is effectively controlled within the safety limit of a manometric 

pressure of 0.4 MPa. During an accident, heat is removed from the containment vessel by the 

continuous, natural circulation of air, supplemented by evaporation of the water that drains by 

gravity from a tank located on top of the containment shield building by means of three redundant 

and diverse water drain valves. The steel containment vessel provides the heat transfer surface 

through which heat is removed from inside the containment and transferred to the atmosphere. In 

addition, even in case of failure of water drain, air-only cooling is supposed to be capable of 

maintaining the containment below the failure pressure [Schulz 2006]. Figure 3 shows the PCCS of 

the AP1000 [Westinghouse Electric Company]. 
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Figure 3 AP1000 Passive Containment Cooling System [Westinghouse Electric Company 

www.westinghousenuclear.com] 

 

For the quantification of the functional failure of the PCCS of the AP1000, a simplified and 

lumped-parameter TH model for heat transfer with non-condensed gas has been developed by [Yu 

et al. 2013; Yu et al. 2013b] and here used for quantifying the response capabilities of the system 

following a Loss Of Coolant Accident (LOCA), that is one among the design basis accidents for 

AP1000 reactor design. 

A TH code for simulating a LOCA follows the phenomena evolution typically in four phases 

[Rahim et al. 2011]: 1) blowdown, from the accident initiation (by a double-ended guillotine pipe 

break in a primary coolant line affecting the normal operation of the reactor at steady-state full 

power) to the time at which the primary circuit pressure reaches the containment pressure; 2) refill, 

from the end of the blowdown to the time when the Emergency Core Cooling System (ECCS) 

refills the vessel lower plenum; 3) reflood, which begins when water starts flooding the core and 

ends when this is completely quenched; 4) post-reflood, which starts after the core quenching and 

during which energy is released to the Reactor Coolant System (RCS). 

In the post-reflood phase, the steam produced in the RCS is cooled at the internal face of the steel 

containment vessel and, then, the heat is conducted by the vessel and transferred to the air in the air 

channels (see Figure 3). Cold air enters the channels through the three rows of air inlets and flows 

down to the bottom of the channels, where it is heated by the steel vessel up to the air diffuser to the 

environment. 
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The TH code is here used to analyze the effects of air temperature and reactor power on the PCCS 

function at steady state during the post-reflood phase. It is worth pointing out that this TH model 

has been solely used for the purpose of demonstration of the effectiveness of the proposed UA and 

SA methods in reducing the computational burden of the analysis. Therefore, the intent is not the 

demonstration and qualification of the TH model itself, but rather the presentation of a systematic 

approach for SA that is here verified with respect to this benchmark case study, elsewhere analyzed 

with other approaches [Di Maio et al. 2014 a; Di Maio et al. 2014c; Yu et al,, 2015]. The input 

variables used for calculating the PCCS capability of condensing the steam produced are listed in 

Table 1, together with their distributions chosen based on expert judgment and literature review 

[Burgazzi 2004], [Zio et al. 2008b], [Zio et al. 2010b]. Three distributions have been used: seasonal, 

normal and uniform. Seasonal relates to the external air temperature Tinlet and pressure Pair 

variability, as inferred by historical data collected by a representative Chinese Automatic Weather 

Station (CAWS) in different months. Normal distributions, e.g., for the LOCA steam temperature, 

Tsteam, are truncated distributions with mean µ and support equal to 4ơ where ơ is the standard 

deviation. For uniform distributions, e.g. for the steam mass flow rate G, the interval supports from 

“Lower value” to “Upper value” are reported. 

 

 

Table 1 List of the input variables of the TH code 

 
Input 

variable 
Description Unit 

Type of 

distribution 
Lower value Upper value 

  

1 G 
Steady state LOCA mass 
flow rate 

kg/s uniform 6 11 
  

2 Tinlet External air temperature °C seasonal 2 39 
  

3 Pair Inlet air pressure MPa seasonal 0.0984 0.1011 
  

         

 
Input 

variable 
Description Unit 

Type of 

distribution 

Mean value, 

µ 

Standard 

Deviation, ơ 

(% of µ) 

µ-4ơ µ+4ơ 

4 Tsteam LOCA steam temperature °C normal 250 5 200 300 

5 Psteam LOCA steam pressure MPa normal 0.1 5 0.1 0.12 

6 ρprimary 
Nominal condition water 

density in primary circuit 
kg/m3 normal 666.7 2 613.36 720.04 

7 Pprimary 
Nominal condition 

pressure of primary circuit 
MPa normal 15.5 2 14.26 16.74 

8 V Containment volume m3 normal 58333 1 55999.7 60666.3 

9 t 
Containment wall 

thickness 
m normal 0.04455 0.5 0.0437 0.0454 
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10 D Containment diameter m normal 39.62 0.5 38.83 40.41 

11 H Containment height m normal 34.12 0.5 33.44 34.80 

12 W Width of air baffle inlet m normal 0.92 0.5 0.90 0.94 

13 H1 
Height of air baffle 

downcomer 
m normal 38.11 0.5 37.35 38.87 

14 H2 Height of air baffle riser m normal 59.89 0.5 58.69 61.09 

15 D3 Diameter of air outlet m normal 9.75 0.5 9.56 9.95 

16 H3 Height of air outlet m normal 6 0.5 5.88 6.12 

17 D4 Uphead diameter  m normal 39.62 0.5 38.83 40.41 

18 H4 Height of uphead m normal 11.47 0.5 11.24 11.70 

19 d Diffusive coefficient m2/s normal 2.55E-05 20 5.10E-06 4.59E-05 

20 λ 
Containment thermal 
conductivity 

W/(m K) normal 54 5 43.20 64.80 

 

 

 
Input 

variable 
Description Unit 

Type of 

distribution 
Lower value Upper value 

  

21 K Air channel rugosity - uniform 0.00285 0.00315 
  

22 f1 Corner friction factor - seasonal 0.475 0.525 
  

23 f2 Inlet friction factor - seasonal 0.9025 0.9975 
  

24 f3 Riser friction factor - seasonal 0.1425 0.1575 
  

25 f4 Outlet friction factor - seasonal 0.1425 0.1575 
  

26 f5 Downcomer friction factor - seasonal 0.1425 0.1575 
  

 

 

 

 

 

4 RESULTS 

 

4.1 Uncertainty propagation 

 

Figure 4 shows the histogram of the output variable of steady state containment pressure, Pcontainment, 

obtained with 15600 TH simulations of different LOCA scenarios characterized by different values 

sampled for the D=26 input variables from the distributions of Table 1. This histogram is 
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representative of the true distribution 𝑓(𝑃𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑚𝑒𝑛𝑡) and is taken as reference for the 

reconstruction by FMM. The calculation time is 4313 s on an Intel Core2Duo P7550. 

 

Figure 4 Histogram of the model output variable (N=15600 code runs) 

 

The multinomial distribution 𝑓(𝑃𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑚𝑒𝑛𝑡) is reconstructed using the EM algorithm of Section 2, 

with three Gaussian distributions 𝑓𝑘(𝜃𝑘), 𝑘 = 1,2,3, on the basis of the data obtained by different 

sets of LOCA simulations, differing in the number of runs. Figure 5, Figure 6 and Figure 7 show 

results for N=15600, 910 and 156 runs of the TH code, respectively (with simulation times 4313 s, 

258 s, 47 s including FMM calculation times on an Intel Core2Duo P7550, respectively). It is worth 

mentioning that the number N should be systematically chosen to guarantee satisfying a designated 

probability with a given confidence level. Actually, in this work N has been chosen to compare the 

proposed approach with the variance decomposition method that is shown to be satisfactory only 

with N=15600. The parameters of the mixture models found for different sample sizes N are 

reported in Table 2. As it is possible to see, the same three clusters are clearly identified in all the 

three cases (N=15600, N=910 and N=156) with similar mean values µ, standard deviations σ and 

weights probabilities π. The first two Gaussians (𝜇1 = 0.1 and 𝜇2 = 0.15) are almost exclusively 

(except for the tails) below the safety limit of 0.4 MPa, while the third Gaussian (𝜇3 = 0.55) is 

almost entirely exceeding the safety limit. The FMM accurately reconstructs the pdf of Pcontainment 

throughout its interval support of variability, although for large N it differs somewhat from the 

histogram of Figure 4 where the tails of 𝑓1(𝑦), 𝑓2(𝑦), 𝑓3(𝑦) overlap, i.e., around 0.11 MPa. 

However, since Figure 7 confirms the accuracy of the FMM for small N and the analytical pdf 

𝑓(𝑃𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑚𝑒𝑛𝑡) calculated with the mixture model allows us retrieving the correct clusters, we can 

define K=3 as the optimal number of mixture models to be used for FMM reconstruction. 
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Table 2 Parameters of the gaussian finite mixture models distributions computed with the EM algorithm for 

different numbers of code runs 

 

Sample size Probabilities (𝝅𝟏, 𝝅𝟐, 𝝅𝟑) Means (𝝁𝟏, 𝝁𝟐, 𝝁𝟑) Standard deviations (𝝈𝟏, 𝝈𝟐, 𝝈𝟑) 

15600 (0.81, 0.08, 0.11) (0.1004, 0.1541, 0.5500) (0.0023, 0.0236, 0.0000) 

910 (0.81, 0.08, 0.10) (0.1004, 0.1504, 0.5500) (0.0020, 0.0226, 0.0000) 

156 (0.78, 0.08, 0.13) (0.1001, 0.1496, 0.5500) (0.0085, 0.0235, 0.0000) 

 

 
Figure 5 Histogram of the model output values and mixture model reconstruction with N=15600 code runs 

 

 
Figure 6 Histogram of the model output values and mixture model reconstruction with N=910 code runs 
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Figure 7 Histogram of the model output values and mixture model reconstruction with N=156 code runs 

 

4.2 Sensitivity Analysis 

 

In Figure 8, the SA results obtained in [Di Maio et al. 2014b] by a variance decomposition method 

applied to the TH model of the PCCS of the AP1000 and performed with N=15600 TH code runs 

(simulation time 4326 s on an Intel Core2Duo P7550) of LOCA scenarios are reported. The 

sensitivity indexes η2 of G and Tinlet are clearly predominant and those of the other inputs variables 

are negligible; thus, G and Tinlet are by far the most important inputs for the PCCS functional failure. 

This result aligns with engineering expectations: in fact, not only G and Tinlet are directly linked to 

the energy entering (G) and leaving (Tinlet) the PCCS, but they have also, by far, the largest 

uncertainties as reported in Table 1. The other inputs have low uncertainties and their effects on the 

output are modest even when sampled at maximum or minimum values of their ranges. 

 

P
R

E
S

S
U

R
E

 

L
IM

IT
 



 17 

 
Figure 8 η2 of the 26 inputs obtained from variance decomposition with N=15600 TH code runs [Di Maio et al. 

2014b] 

 

The differences among the η2 values of the other input variables, (excluding G and Tinlet), are non 

significant as they are affected by large fluctuations depending on the number N of simulations (the 

larger N, the smaller the fluctuations). In summary, the insights from these results are i) G and Tinlet 

are the most important inputs, ii) the other input variables are not significantly influencing the 

output, iii) relative input ranking is solid and reliable for G and Tinlet but not for the other inputs, iv) 

large number N of TH code runs is needed and v) the computation of the values of η2 is 

burdensome. 

In Figure 9, the results of the SA performed via the FMM method as explained in Section 2 are 

shown: again, G and Tinlet are identified as the two most important input variables whereas the 

saliency of the remaining input variables is negligible. The computation time is 4348 s on an Intel 

Core2Duo P7550. 
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Figure 9 Input saliency obtained with N=15600 TH code runs 

 

In Figure 10, the η2 values obtained by variance decomposition SA are reported when N = 910 TH 

code runs (simulation time 254 s) are used: the method is not capable of recognizing the importance 

of G and Tinlet. On the other hand, in Figure 11 input saliencies estimated by the FMM method are 

shown: the importance of G and Tinlet is still clearly identified and the other input variables are again 

reconfirmed as non-influent for the quantification of the final pressure Pcontainment at the end of the 

LOCA event. Furthermore, the values of the saliencies 𝜌𝐺  and 𝜌𝑇𝑖𝑛𝑙𝑒𝑡
 are very similar to the ones 

obtained with N=15600, showing the robustness of method to low numbers of simulation runs. 

 

 
Figure 10 η2 of the 26 inputs obtained from variance decomposition with N=910 TH code runs 
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Figure 11 Input saliency obtained with N=910 TH code runs 

 

Even with smaller numbers of TH code simulations, the analysis leads to similar conclusions: 

Figure 12, shows that the variance decomposition method is not capable of reproducing a reliable 

importance ranking when fed with N=156 code runs (simulation time 46 s); on the other hand, in 

Figure 13 the saliencies obtained with N=156 still unambiguously show the dominant importance of 

G and Tinlet. 

Finally, in Figure 14 the features saliencies obtained with only N=70 runs of the TH code are 

shown: it is still possible to identify G and Tinlet as the two most important inputs, with less than 1% 

of the number N of simulations needed for variance decomposition to provide reliable results. 

 

 
Figure 12 η2 of the 26 inputs obtained from variance decomposition with N=156 TH code runs 
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Figure 13 Input saliency obtained with N=156 TH code runs 

 

 

 

Figure 14 Input saliency obtained with N=70 TH code runs 

 

Figure 15 shows the FMM decomposition for Tinlet, the most important input variable which is seen 

to contribute significantly to shaping the output pdf, and W, a non contributing one. 
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Figure 15 Mixture model decomposition illustrative example 

 

As concluding remarks, we can observe in Table 3 that the FMM method for SA i) has a lower 

computational cost, providing better results with fewer TH code runs than the variance 

decomposition method, ii) provides credible results even with reduced number N of samples (and, 

thus, reduced computational cost), and iii) is an effective way to carry out SA and UA within a 

unified framework, whereby UA provides the input data for SA.  

 

Table 3 Correctness of the ranking produced by the FMM and the variance decomposition methods with 

different sample sizes N for the two most relevant inputs G and Tinlet 

 

 Ranking of the first two inputs (G and Tinlet) 

N=Sample size FMM Variance decomposition 

15600 ✓ ✓ 

910 ✓ ✗ 

156 ✓ ✗ 

 

 

 

5 CONCLUSIONS 

 

In this paper, we have presented an approach for SA for the functional reliability analysis of a 

passive safety system. The proposed approach has proven capable of reducing the computational 

cost with respect to variance decomposition-based methods. For SA, we have applied a Gaussian 

Finite Mixture Model (FMM) to retrieve the analytical pdf of the passive safety system TH code 

𝑓(𝑥2|𝜇3,2, 𝜎3,2) 

𝑓2(𝑦|𝜇2, 𝜎2) 

𝜇3 

𝑞(𝑥12|𝜆12) 

𝑓(𝑥2|𝜇2,2, 𝜎2,2) 

𝑓(𝑥2|𝜇1,2, 𝜎1,2) 

𝜇1 

𝜇2 

𝑓1(𝑦|𝜇1, 𝜎1) 

𝑦 𝑇𝑖𝑛𝑙𝑒𝑡 𝑊 
𝑓3(𝑦|𝜇3, 𝜎3) 



 22 

output with few simulations. An EM algorithm has been innovatively used for retrieving the 

importance of the input variables of the TH code, making direct use of the “natural” clustering 

provided by the mixture model. The results obtained on a case study have been compared with 

those of variance decomposition, with clear demonstration of the capability of the framework of 

providing satisfactory results with less TH code runs. 
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