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Abstract—An analysis of the operating conditions of a power
transformer with the introduction of photovoltaic (PV) panels
and Electric Vehicles (EV) in an eco-district is conducted. The
study focuses on: (a) determining the optimal transformer sizing
when there is neither PV nor EV; and (b) characterizing the
overloading periods of the transformer induced by the penetra-
tion of PV sources and EVs in the district. We compare two EV
integration strategies: they are either considered as unmanaged
loads, or controlled by an Energy Management System (EMS)
with Vehicle-to-Grid (V2G) capabilities. Transformer operating
curves and rated power are deduced from technical standards
supplied by Schneider Electric. The results show that EVs and
PV introduction has a substantial impact on overloading periods.
However, the latters are seriously mitigated both in terms of
energy flows and peak power with the implementation of the
EMS.

Index Terms—Energy Management System; Micro-grid; Power
Transformer; Smart Charging; Vehicle-To-Grid

I. INTRODUCTION

In order to cope with the objectives of reduction in both air
pollution and CO2 emissions, the penetration of Renewable
Energy Sources (RES) (such as photovoltaic (PV) panels, wind
turbines, etc.) in power systems has substantially increased
during the last few years. Similarly, plug-in Electric Vehicles
(EV) moved by electric motors and powered by electrochem-
ical batteries represent a promising solution with respect to
these goals. With the upcoming decrease in battery costs, and
the deployment of charging stations, EV sales are expected to
increase within the next few years.

However, the increasing penetration of these two new units
brings up concerns regarding their impacts on the electrical
grid security. On one hand, RES are asynchronous and in-
termittent by nature, and distributed at the distribution level.
They could trigger local congestion, frequency- and voltage-
related problems, as well as system wide balancing issues [1]–
[3]. On the other hand, if not managed properly, the massive

This research is a part of the Energy Positive IT 2.0 project and benefit
from the support of the Conseil General de lEssonne.

Paul CODANI is preparing a PhD with the Armand Peugeot Chair dedicated
to hybrid technologies and economy of electro mobility, and is funded by PSA
Peugeot Citroen.

Distribution
Grid

Transformer

Psub

EV fleet A
Residential households

Commercial Buildings

PV panels

EV fleet B

EV fleet C

Eco-district

Prod

Cons

Cons + Stor

Fig. 1. System Overview

introduction of plug-in vehicles could jeopardize grid security
[4]–[6].

In this paper, we are concerned with the overloading periods
of the transformer of an eco-district induced by the introduc-
tion of PV panels and EVs. Initially, such a district, pictured
in Fig. 1, only has residential and commercial facilities. It
is connected to the distribution grid through an oil-immersed
power transformer.

First, we propose an approach to determine the optimal
rated power (in kVA) of the transformer when there is neither
PV nor EV penetration. Then, we assess the impacts of the
introduction of PV units and EVs on the operating conditions
of the transformer. At this point, EVs are considered as dumb
loads, i.e. they abide by a charge-as-plugged strategy. Finally,
we conduct the same analysis considering that EVs have
bidirectional capabilities, i.e. they can inject power back to
the grid, and that their charging patterns are controlled by an
Energy Management System (EMS), whose aim is to mitigate
the transformer overloading periods.

As underlined in [7], very little research has been con-
ducted on the coupling of microgrid energy management with
Vehicle-to-grid (V2G) strategies. The main contributions of
this paper are:
• an approach for an optimal sizing of the rated power

of a distribution transformer, based on its load profile
over a whole year and on technical guidelines from a
transformer manufacturer;



• a method to analyze the operating mode of the power
transformer during the overloading periods;

• an optimal Energy Management System for the micro-
grid of the eco-district connected to the distribution grid.
It includes residential and commercial consumption units;
and three-different types of EV fleets;

• a V2G system taking into account different types of EV
fleets with their users behaviors and a smart charging
strategy for each EV fleet.

The paper is organized as follows. Section II provides a
description of the system understudy and all its components.
In section III, the transformer is characterized including
the optimal sizing and the definitions of the overloading
assessment criteria and the EMS is described. Section IV
features the simulation use cases and the associated results.
Finally, section V is the conclusion.

II. ECO-DISTRICT ENERGY SYSTEMS DESCRIPTION

A. Residential consumption modeling

The residential consumption model is based on the study of
Ian and Murray [8], in which a stochastic model is proposed
to simulate the habitants behaviors. More specifically, the
duration of electricity use in households is highly dependent
on the timing of the occupants activities. Thus, the use of
electric appliances, lighting, heating and domestic hot water
within a residential household are also taken into in the model.

B. Commercial building modeling

A load model is built to simulate the electric consumption
of the commercial building, taking into account the difference
between working days and weekend; and typical load shape.

From commercial building data, it is observed that most
buildings have a base load during the night time. In the
early morning, the buildings electric demand increases for
cooling/warming depending on the outdoor air temperature.
This will trigger a short-lived load spike called morning
start-up. Later, as people come to work in the building, the
electricity consumption increases with the arrival of occupants.
Its value varies daily, seasonally and yearly. After working
time, the power consumption reduces quite significantly, due
to the fact that electric appliances are successively turned off.

C. Electric Vehicle fleet modeling

All EVs are assumed to be full-electric vehicles. They have
a 22kWh battery with a state of charge (SOC) in the range
[20%, 90%]. These values are based on the optimal operation
range of the battery. The EV fleet is shared into three different
sub-fleets:
• EV fleet A: people living in the eco-district. These EV

are typically plugged-in during the night, and leave in the
morning to go to work and come back at late afternoon;

• EV fleet B: people working in the eco-district. These EVs
typically arrive in the morning in the eco-district, and
leave in the late afternoon. They charge at work during
the day;

• EV fleet C: a company fleet, for instance belonging to the
mail services. These EVs are typically used from early
morning to noon for the first-round deliveries, and from
the early afternoon to the middle of the afternoon for the
second-round deliveries.

Several driver behaviors are considered. First, the drivers of
fleet B are divided into two categories: (a) the fleet of drivers
having an ordinary behavior, that is charging at home during
the night and participating in the EMS during the day; and
(b) the fleet of drivers who aim at charging the most as they
can at work, thus charging only the required energy for their
morning trip during the night at home, and not participating
in the EMS during the day.

Then, range anxiety is taken into account for all the drivers:
when they inform their EV controller with their future driving
needs (see section III-C2), we assume that they overestimate
their future trip distances and that they always provide the EV
controller with their yearly maximum distance traveled.

Based on [9], the Electric Vehicle Supply Equipment
(EVSE) powers are distributed according to table I. Home
charging is mainly done at low power, while working charging
stations are more equally distributed (although fast charging
is still marginal). Finally, the company fleet has 22kW EVSEs
only.

TABLE I
EVSE REPARTITIONS

EVSE power plug Fleet A Fleet B Fleet C
Slow (a) - 3kW 93% 35% 0%
Slow (b) - 7kW 7% 34% 0%
Intermediate charging - 22kW 0% 29% 100%
Fast charging - 43kW 0% 2% 0%

The EV fleets model is dynamic and stochastic. EV fleets
average distance trip (D), departure time (Td), daily number
trips (N) and seasonal energy consumption (E) are obtained
from PSA internal data and from the CROME project results
and from French government agencies [10], [11] as described
in table II. Then, trips distances and departure times are
distributed according to Gaussian distributions with mean (µ)
and standard deviations (σ) values provided in table II.

TABLE II
EV FLEET TRIP CHARACTERISTICS

Parameters
Fleet A Fleet B Fleet C

µ σ µ σ µ σ

D (km) 22 4.5 22 4.5
50a 10a

30b 10b

Td (h)
8a 2a 8a 2a 7a 0.5a

18b 2b 18b 2b 14b 0.5b

N 2 2 2

E (kWh/km) Winter: cw = 0.18 // Summer: cs = 0.13

aA.M. values, bP.M. values



D. PV production data

The photovoltaic generation data has been measured in the
area of Paris over one full year.

III. TRANSFORMER AND EMS CHARACTERIZATIONS

In this section, all active and apparent powers are respec-
tively provided in kW and kVA.

A. Optimal transformer sizing

In this part, the approach used to size the transformer is
presented. It is based on the technical guidelines provided by
a transformer manufacturer [12]. To optimize the rated power
(in kVA) of the transformer, it is necessary to analyze its
load profile at this step, induced only by the residential and
commercial loads within a whole year. The net instantaneous
power, Psub(t), at the substation during the jth day is calculated
according to (1):

P j
sub(t) = P j

resi(t) + P j
com(t) (1)

where Pj
resi(t) and Pj

com(t) are respectively the consumption
of residential households and commercial buildings.

Then, the yearly maximum substation power, Psub max,
is deduced from the daily maximum substation power as
described by (2):

Psub max = max
j

(
max
t∈j

(P j
sub(t))

)
with 1 ≤ j ≤ 365 (2)

From this value, the optimal rated power is determined
according to the algorithm below:

1: Build the overloading limitation curve: P lim
sub (t) = f(td)

2: α← 0 {Initialization of α}
3: sized← false
4: while sized do
5: Psize ← α× Psub max

6: for all i such that 0 ≤ i ≤ n do
7: P i

sub ave ←
∑(∫ tk

tj
(|P i

sub(t)|−Psize)dt
)
/
∑

(tk −
tj), with |P i

sub(t)|> Psize during [tk, tj ]
8: tid ←

∑
(tk − tj)

9: end for
10: if ∃i ∈ [1, n] (P i

sub ave+Psize)∗100/Psize > P lim
sub (tid)

then
11: α← α+ 0.005
12: else
13: sized← true
14: αopt ← α
15: end if
16: end while
17: P opt

size ← αopt × Psub max

18: return P opt
size

The optimal apparent power of the transformer is deter-
mined based on a power factor of 0.928 in order to avoid
penalties when supplying energy to the consumers [12]:

Sopt =
P opt
size

0.928
(3)

To take into account the growth of the demand, a 25%
security factor is added to get the rating power Srated. Then,
we choose the commercial transformer with the closest power.
Finally, the active rated power Prated is calculated with a low
power factor (0.8) to be conservative.

Srated = 1.25× Sopt (4)

B. Transformer Operating Conditions Analysis

In this scenario, we introduce PV panels on the roof of the
commercial facilities, and EVs which charge according to a
”charge-as-plugged” strategy. In other words, the EV fleet is
not controlled by any external operator, and drivers plug-in as
soon as possible (reflecting a normal and intuitive behavior).

Based on the hypothesis detailed in section II-C, the
consumption of all EVs, PEV (t), is calculated. Its value is
computed on a minute-basis. It differs significantly from one
day to the others and from one season to the other. Then, the
instantaneous net power is described by (5):

(5)Psub(t) = PPV (t)− (Presi(t) + Pcom(t) + PEV (t))

To characterize the overloading periods, the average daily
substation power and the cumulative durations of the over-
loading periods are also calculated according to the equations
provided in the algorithm. Moreover, the energy Eex is deter-
mined by (6) when the substation power is overloaded:

(6)Eex =

n∑
i=1

(∫ tk

tj

(|P i
sub(t)|−Prated)dt

)
,

with |P i
sub(t)|> Prated

with [tj , tk] the overloading time interval during ith the day.

C. Energy Management System

1) District Energy Management System: At each time in-
terval, the power flow, Pflow (t), between the micro-grid and
the distribution grid (excluding the available EVs for the EMS)
is calculated as following:

Pflow(t) = PPV (t)− (Presi(t) +Pcom(t) +PEV nonEMS(t))

(7)

where PEV nonEMS(t) denotes the consumption of EVs that
are not available for the EMS most of the time, because they
need to charge at full power for transportation needs. Then,
based on the power flexibility that the EVs can provide (see
(10)), the EMS calculates the power PEV EMS(t) that has to be
supplied by the available EV fleets. It depends on the current
balance between supply and demand in the district as shown
in Fig. 2. The mathematical formulation is described by (8):

PEV EMS(t)

=


max(Pcharg(t),−Pflow(t)− Prated), cases A or B
max(Pcharg(t), |Pflow(t)|−Prated), case C
max(Pdisch(t), |Pflow(t)|−Prated), case D

(8)
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Fig. 2. Energy Management System strategy in the district

where Pcharg (t) and Pdisch (t) denote respectively the
charging and discharging power flexibilities that can be pro-
vided by the EVs.

The objective of this EV power management is to maximize
EVs charging power during the off-peak periods (cases A, B
and C in Fig. 2) either from the PV (case A, B) or from the
distribution grid (case C); and to minimize the discharging
energy from available EVs when the demand has reached the
peak load or when the generation is too low to supply to the
total demand (case D in Fig. 2). Finally, the net power flow
at the substation level is given by (9):

Psub(t) = Pflow(t) + PEV EMS(t) (9)

2) EV fleet smart charging regime: Once the required
power from the available EVs PEV EMS(t) has been de-
termined by the EMS, it must be dispatched among those
vehicles. If EV charging is ordered, we choose to first charge
the EVs that have the biggest difference (in absolute value)
between their current SOC and their required energy for next
trip (SOCi

req(td)). On the contrary, we consecutively discharge
the EVs that have the highest SOC.

To respect the future driving needs, each EV is able to
decide for each moment whether to participate in the EMS
or to charge quickly for transportation. Therefore, individual
EVs provide the EMS with their available charging powers
over the next timeframe as described by (10):

P i
charg(t) = −min(P i

EV SE ,
SOCi

max − SOCi(t)

∆t
)

P i
disch(t) = min(P i

EV SE ,
SOCi(t)− SOCi

req(t+ ∆t)

∆t
)

(10)
Where Pi

charg(t) and Pi
disch(t) are respectively the available

charging and discharging powers of ith EV for the next
time interval, Pi

EV SE is the EVSE power; SOCi(t), SOCi
max

SOCi
req(t) denote respectively the current, the maximum and

the required state of charge for the ith EV.
It is noticeable that we assume EVs to have a good

estimation of their future trip distances and departure times.

This could be achieved in practice by either implementing
a machine learning algorithm, the EV controller being able
to estimate future driving needs depending on the previous
ones, or by having the EV user directly informing the EV
controller with its future driving needs (through, for instance,
a smartphone application).

IV. RESULTS AND DISCUSSION

A. Simulation use cases

We consider that 800 people are living in the eco-district,
and that 1000 persons are working there. Then, it is assumed
that 20% of the living people and 10% of the working people
own an electric vehicle (fleets A and B). Additionally, the
surface area of the PV panels is supposed to be 3000 m2 and
there are 10 electric vehicles in the company fleet (the fleet
C).

B. Optimal Transformer sizing

According to the steps detailed in III-A, we compute the
rated active power, Prated = 252kW , in the case without PV
panels nor EV.

Considering this rated power, we compare the overloading
periods with the requirements from [12]. Results are provided
in Fig. 3. The sizing method is efficient, and no overloading
period excesses the recommended limits.
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Fig. 3. Operating conditions of the transformer (no EV & no PV)

C. Transformer operating conditions with the introduction of
PV and EVs

Then, according to the methodology explained previously,
we successively add the PV panels and the EVs in the eco-
district, first without any smart charging strategy, then with
the EMS described in section III-C.

Fig. 4 shows the monotonically decreasing maximal daily
substation power (in absolute value) without EV and with EV
(with and without EMS). It is noticeable that the EMS allows
a 25% reduction of the substation peak power in comparison
with the unmanaged charging scenario.

Finally, we compare the transformer overloading occur-
rences under the two scenarios (with and without EMS).
Results are provided in Fig. 5.



TABLE III
RESULTS: SCENARIO COMPARISON

Items Pmax global

(kW)
Eex

(MWh)
Duration
(h)

Psub ave

(kW)

Non EMS 488 21.2 613 35
EMS 376 2.0 186 11
Improvement
ratio (%)

23 90 70 71
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different scenarios
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Fig. 5. Operating conditions of the transformer during overloading occur-
rences, with respect to the limitations provided in [12]

Because of the introduction of PV panels and unmanaged

EVs in the eco-district, there are more than 30 occurrences
where transformer overloading capability is exceeded (Fig.
5a). Conversely, with the implementation of the EMS, all over-
loading periods are within the acceptable limits(Fig. 5b). The
results are corroborated with those provided in table III, which
compares the two strategies in terms of absolute maximal daily
substation power (Pmax global), exceeded exchanged energy
(Eex, (6)), cumulative overloading durations and average sub-
station power (Psub ave) during the overloading periods.

V. CONCLUSION

In this paper, the rated power of a distribution transformer
is computed to be compliant with the thermal limits. Then
the operating conditions with the introduction of renewable
sources and electric vehicles are also studied.

The flexibility provided by the EVs is used to reduce the
risks of large overloading in the transformer. The proposed
EMS allows to increase the margin regarding the thermal
limits. This margin can be used to accept more EVs with-
out risks of critical overloading or to postpone transformer
reinforcement. An additional study will allow to define the
optimal relationship between the PV surface and the number
of EV to reach the transformer thermal limits.
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