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Abstract—The energy modeling of an eco-district, composed of
residential and commercial facilities, is proposed. First, an opti-
mal strategy aiming at sizing the rated power of the substation
transformer is introduced. Then, considering the introduction
of photovoltaic (PV) panels and electric vehicles (EV) in the
district, the new operating conditions of the transformer are
detailed. In order to reduce (a) the peak power of the transformer
and (b) the cumulative durations of the transformer overloading
periods, an Energy Management System (EMS) is implemented.
The latter uses the district EVs, which have Vehicle-to-grid (V2G)
capabilities, as flexibility providing units. An economics layer is
added in order to compute the electricity costs considering the
French pricing. This approach is used to deduce the optimal
contracted power with the local system operator. Results show
a reduction of 70% in overloading durations, 71% in average
overloading power, and 17% in electricity costs with the EMS.

Index Terms—Energy Management System; Micro-grid; Smart
Charging; Vehicle-To-Grid;

I. INTRODUCTION

Urbanization, population growth and climate change put
increasing pressure on electricity consumption and CO2 emis-
sion reductions. These challenges have fostered the develop-
ment of Renewable Energy Sources (RES) (such as photo-
voltaic (PV) panels, wind turbines, etc.) in power systems.
Their penetration rate has substantially increased during the
last few years. In France, even though a slight decrease in
growth rate was observed in 2013, the development of RES
sources is expected to continue [1]. Similarly, plug-in Electric
Vehicles (EV) appear as promising solutions to deal with the
aforementioned issues. EV sales went up by 60% in Europe in
2014, and by around 20% in France for privately-owned EVs
[2]. The expected trends in battery cost reduction and charging
station deployment should strengthen the EV sales in the near
future.

However, the increasing penetration of these two new units
brings up concerns regarding their impacts on the electrical
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grid security. On one hand, RES are asynchronous and in-
termittent by nature, and distributed at the distribution level.
They could trigger local congestion, frequency and voltage-
related problems, as well as system wide balancing issues [3]–
[5]. On the other hand, if not managed properly, the massive
introduction of plug-in vehicles could jeopardize grid security
[6]–[8].

In this paper, the authors focus on the electric and eco-
nomics impacts induced by the introduction of PV and EVs
in an eco-district, pictured in Fig. 1. As underlined in [9], very
little research has been conducted on the coupling of microgrid
energy management with Vehicle-to-grid (V2G) strategies.

This paper builds on [10]. In this previous work, the authors
proposed an approach to determine the optimal rated power
(in kVA) of the transformer when there was neither PV nor
EV penetration. Then, considering the introduction of PV
and EVs, the operating conditions of the transformer were
characterized with and without the implementation of an
Energy Management System using EVs as flexibility providing
units.

In this paper, we go a step further and propose the following
novel contributions:
• an economics analysis of the electricity costs of the eco-

district, considering the French price scale fixing;
• a method to optimally choose the contracted power of the

transformer with respect to the associated costs;



• a sensitivity analysis on the EV penetration rate in the
district.

The authors would like to draw the reader’s attention on the
fact that we will distinguish two characteristic powers for the
substation transformer:
• the rated power Prated, which is a physical feature of the

transformer. This power is used in the energy analysis of
the transformer operating conditions.

• the contracted power Pc, which has no physical meaning;
it is the power that has been contracted between the eco-
district energy operator and the system operator (SO).
This power is used for the economics considerations, as
peak power values are evaluated by the SO with respect
to this value.

The paper is organized as follows. The system description is
recalled in section II. The transformer sizing method, and the
EMS description are then provided in section III. In section IV,
the electricity French pricing scales for ecodistrict-type units
are explained. Finally, section V and VI provide respectively
the results and the conclusion.

II. ECO-DISTRICT ENERGY SYSTEMS DESCRIPTION

A. Residential consumption modeling

The residential consumption model is based on the study of
Ian and Murray [11], in which a stochastic model is proposed
to simulate the habitants behaviors. More specifically, the
duration of electricity use in households is highly dependent
on the timing of the occupants activities. Thus, the use of
electric appliances, lighting, heating and domestic hot water
within a residential household are also taken into in the model.

B. Commercial building modeling

A load model is built to simulate the electric consumption
of the commercial building, taking into account the difference
between working days and weekend; and typical load shape.

From commercial building data, it is observed that most
buildings have a base load during the night time. In the
early morning, the buildings electric demand increases for
cooling/warming depending on the outdoor air temperature.
This will trigger a short-lived load spike called morning
start-up. Later, as people come to work in the building, the
electricity consumption increases with the arrival of occupants.
Its value varies daily, seasonally and yearly. After working
time, the power consumption reduces quite significantly, due
to the fact that electric appliances are successively turned off.

C. Electric Vehicle fleet modeling

All EVs are assumed to be full-electric vehicles. They have
a 22kWh battery with a state of charge (SOC) in the range
[20%, 90%]. These values are based on the optimal operation
range of the battery. The EV fleet is shared into three different
sub-fleets:
• EV fleet A: people living in the eco-district. These EV

are typically plugged-in during the night, and leave in the
morning to go to work and come back at late afternoon;

• EV fleet B: people working in the eco-district. These EVs
typically arrive in the morning in the eco-district, and
leave in the late afternoon. They charge at work during
the day;

• EV fleet C: a company fleet, for instance belonging to the
mail services. These EVs are typically used from early
morning to noon for the first-round deliveries, and from
the early afternoon to the middle of the afternoon for the
second-round deliveries.

Several driver behaviors are considered. First, the drivers of
fleet B are divided into two categories: (a) the fleet of drivers
having an ordinary behavior, that is charging at home during
the night and participating in the EMS during the day; and
(b) the fleet of drivers who aim at charging the most as they
can at work, thus charging only the required energy for their
morning trip during the night at home, and not participating
in the EMS during the day.

Then, range anxiety is taken into account for all the drivers:
when they inform their EV controller with their future driving
needs (see section III-B2), we assume that they overestimate
their future trip distances and that they always provide the EV
controller with their yearly maximum distance traveled.

Based on [12], the Electric Vehicle Supply Equipment
(EVSE) powers are distributed according to table I. Home
charging is mainly done at low power, while working charging
stations are more equally distributed (although fast charging
is still marginal). Finally, the company fleet has 22kW EVSEs
only.

TABLE I
EVSE REPARTITIONS

EVSE power plug Fleet A Fleet B Fleet C
Slow (a) - 3kW 93% 35% 0%
Slow (b) - 7kW 7% 34% 0%
Intermediate charging - 22kW 0% 29% 100%
Fast charging - 43kW 0% 2% 0%

The EV fleets model is dynamic and stochastic. EV fleets
average distance trip (D), departure time (Td), daily number
trips (N) and seasonal energy consumption (E) are obtained
from PSA internal data and from the CROME project results
and from French government agencies [13], [14] as described
in TABLE II. Then, trips distances and departure times are
distributed according to Gaussian distributions with mean (µ)
and standard deviations (σ) values provided in TABLE II.

D. PV production data

The photovoltaic generation data has been measured in the
area of Paris over one full year.

III. TRANSFORMER SIZING AND EMS
CHARACTERIZATION

A. Transformer sizing

Only the residential and commercial consumptions are
considered when sizing the rated power of the transformer,



TABLE II
EV FLEET TRIP CHARACTERISTICS

Parameters
Fleet A Fleet B Fleet C

µ σ µ σ µ σ

D (km) 22 4.5 22 4.5
50

10
30

Td (h)
8

2
8

2
7

0.5
18 18 14

N 2

E (kWh/km) Winter: cw = 0.18 // Summer: cs = 0.13

Prated. With respect to thermal limitations provided by a
transformer manufacturer [15], we design an algorithm which
will determine the optimal rated power of the transformer,
while still allowing some overloading occurrences. The final
choice for the transformer depends on the typical rated power
proposed by the manufacturers. In the present case Srated =
315 kVA is chosen, with a 0.8 power factor, then Prated =
252kW. The transformer operating conditions after the sizing
are presented in Fig. 2. More details on the sizing algorithm
can be found in [10].
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Fig. 2. Operating conditions of the transformer (no EV & no PV)

B. EMS description

1) District Energy Management System: At each time in-
terval, the power flow, Pflow (t), between the micro-grid and
the distribution grid (excluding the available EVs for the EMS)
is calculated as following:

Pflow(t) = PPV (t)−
(
Presi(t)+Pcom(t)+PEV nonEMS(t)

)
(1)

where PEV nonEMS(t) denotes the consumption of EVs that
are not available for the EMS most of the time, because they
need to charge at full power for transportation needs. Then,
based on the power flexibility that the EVs can provide (see
(4)), the EMS calculates the power PEV EMS(t) that has to be
supplied by the available EV fleets. It depends on the current
balance between supply and demand in the district as shown
in Fig. 3. The mathematical formulation is described by (2):

Pflow

Prated

- Prated

A B C D

t

Over 
production

Over 
consumption

Charging strategy

Discharging strategy

Fig. 3. Energy Management System strategy in the district

PEV EMS(t)

=


max(Pcharg(t),−Pflow(t)− Prated), cases A or B
max(Pcharg(t), |Pflow(t)|−Prated), case C
min(Pdisch(t), |Pflow(t)|−Prated), case D

(2)

where Pcharg (t) and Pdisch (t) denote respectively the
charging and discharging power flexibilities that can be pro-
vided by the EVs.

The objective of this EV power management is to maximize
EVs charging power during the off-peak periods (cases A, B
and C in Fig. 3) either from the PV (case A, B) or from the
distribution grid (case C); and to minimize the discharging
energy from available EVs when the demand has reached the
peak load or when the generation is too low to supply to the
total demand (case D in Fig. 3). Finally, the net power flow
at the substation level is given by (3):

Psub(t) = Pflow(t) + PEV EMS(t) (3)

2) EV fleet smart charging regime: Once the required
power from the available EVs PEV EMS(t) has been de-
termined by the EMS, it must be dispatched among those
vehicles. If EV charging is ordered, we choose to first charge
the EVs that have the biggest difference (in absolute value)
between their current SOC and their required energy for next
trip (SOCi

req(td)). On the contrary, we consecutively discharge
the EVs that have the highest SOC.

To respect the future driving needs, each EV is able to
decide for each moment whether to participate in the EMS
or to charge quickly for transportation. Therefore, individual
EVs provide the EMS with their available charging powers
over the next timeframe as described by (4):

P i
charg(t) = −min

(
P i
EV SE ,

SOCi
max − SOCi(t)

∆t

)
P i
disch(t) = min

(
P i
EV SE ,

SOCi(t)− SOCi
req(t+ ∆t)

∆t

)
(4)



Where Pi
charg(t) and Pi

disch(t) are respectively the available
charging and discharging powers of ith EV for the next
time interval, Pi

EV SE is the EVSE power; SOCi(t), SOCi
max

SOCi
req(t) denote respectively the current, the maximum and

the required state of charge for the ith EV.
It is noticeable that we assume EVs to have a good

estimation of their future trip distances and departure times.
This could be achieved in practice by either implementing
a machine learning algorithm, the EV controller being able
to estimate future driving needs depending on the previous
ones, or by having the EV user directly informing the EV
controller with its future driving needs (through, for instance,
a smartphone application).

IV. ECONOMICS CONSIDERATIONS

We consider the French electricity price scale fixing to
compute the electricity costs in the eco-district. All the details
on the French pricing are provided in [16]. Considering the
value of the transformer rated power (Prated = 252kW , see
section III-A), the district is connected at the medium voltage
level (so-called HTA level in France). The cost structure is
twofold:

• an energy component CE which is related to the electric-
ity consumption/production (kWh)

• a capacity component CP which is related to the con-
tracted power CP (kW)

These different costs are all dependent on the season and
time during which the energy exchanges occur. We subscribe
to a pricing structure with five different temporal classes; they
are described in TABLE III. We also provide the power and
energy coefficients that will be used in the power and energy
components calculation.

TABLE III
TEMPORAL CLASSES CONSIDERED FOR ELECTRICITY PRICING [16]

Class number Corresponding
period of time

Power coeff
ki

Energy coeff
di (ce/kWh)

1 critical peak 100% 2.98
2 on-peak winter 92% 2.56
3 off-peak winter 55% 1.53
4 on-peak summer 40% 1.30
5 off-peak summer 12% 0.87

For each temporal class i, a contracted power Pci has to
be chosen, while still abiding by the constraint expressed in
equation (5):

∀i ∈ {1; 4}, Pci ≤ Pci+1
(5)

It is noticeable that we do not take into account the metering
and customer management costs, which are other components
included in the cost structure but would not be impacted by
the energy management strategy.

A. Capacity component calculation

The capacity component CP is itself divided into two sub-
components: the yearly capacity subscription cost Csub, and
the monthly overloading costs Cover. Both components are
computed according to equation (6):

Csub = a2 ×

k1 × Pc1 +

5∑
i=2

ki × (Pci − Pci−1
)


Cover = 0.15× ki × a2 ×

√∑
∆P 2

(6)

with the constant a2 = 9.24 (e/kW/year), Pc1→5
and k1→5

respectively the contracted powers and power coefficients for
the various temporal classes, and ∆P the difference between
the substation power and the contracted one (only when the
substation power exceeds the contracted one).

The results presented in section V-B showing the optimal
contracted power result from an optimization algorithm, which
minimizes the total capacity costs CP while abiding by con-
straint (5).

B. Energy component calculation

The energy cost component CE is computed according to
equation (7):

CE =

5∑
i=1

di × Ei (7)

with d1→5 the energy coefficients (see TABLE III) and
Ei the net energy exchanged during temporal class i. It is
noticeable that we assume grid parity in the energy cost
calculation, i.e. energy is sold at the same price as it is bought.

C. Capacity costs optimization

We formulate an optimization problem, which objective
function is the total capacity costs CP :

min
Pc1→5

CP (8)

The problem is subject to the constraint expressed in equa-
tion (5). The power and energy flows between the district and
the grid are given as parameters; they are computed for the
baseline scenario, once with the EMS implemented and once
without.

V. RESULTS AND DISCUSSIONS

A. Baseline simulation scenario

The baseline scenario is the following. We consider that
800 people are living in the eco-district, and that 1000 persons
are working there. Then, it is assumed that 20% of the living
people and 10% of the working people own an electric vehicle
(fleets A and B). Additionally, the surface area of the PV
panels is supposed to be 3000 m2 and there are 10 electric
vehicles in the company fleet (the fleet C). The total number
of EVs per fleet is provided in TABLE VII.



B. Economics results

The results from the optimization problem described in
section IV-C are shown in TABLE IV.

TABLE IV
OPTIMAL CONTRACTED POWERS

Pci (kW) Pc1 Pc2 Pc3 Pc4 Pc5

Non EMS 406 406 406 406 406
EMS 288 288 310 310 310

Without any EMS, the transformer peak powers occur
during the critical peak tariff periods. As a consequence, and
because of constraint (5), all the contracted power values are
set by the critical peak contracted power (Pc1 ). On the other
hand, thanks to the EMS, it is possible to have lower high-
tariff contracted powers than low-tariff contracted powers.
Moreover, the absolute values of the contracted powers are
significantly reduced. These results have an impact on the
electricity costs as shown in TABLE V.

TABLE V
ENERGY COSTS FOR BOTH SCENARIOS

Scenario Capacity
costs CP

Energy costs
CE

Total Electricity
costs

Non EMS (ke) 4.01 15.5 19.51
EMS (ke) 3.04 13.5 16.14
Gains (%) 24 13 17

As the contracted power values are much lower with the
EMS, the capacity costs are reduced by 24%. Overall, the
savings in electricity payment are reduced by 17%.

C. Transformer overloading

1) Baseline scenario: We analyze the transformer operating
conditions under the baseline scenario, with and without the
EMS. Fig. 4 shows the monotonically decreasing maximal
daily substation power (in absolute value) without EV and
with EV (with and without EMS). It is noticeable that the
EMS allows a 25% reduction of the substation peak power in
comparison with the unmanaged charging scenario.
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Table VI details the comparison of the energy efficiency
with and without EMS, in terms of absolute maximal daily
substation power (Pmax global), exceeded exchanged energy
(Eex), cumulative overloading durations and average substa-
tion power (Psub ave) during the overloading periods. The
energy Eex is determined by (9) when the substation power is
overloaded:

(9)Eex =

n∑
i=1

(∫ tk

tj

(
|P i

sub(t)|−Prated

)
dt

)
,

with |P i
sub(t)|> Prated

TABLE VI
RESULTS: SCENARIO COMPARISON

Items Pmax global

(kW)
Eex

(MWh)
Duration
(h)

Psub ave

(kW)

Non EMS 488 21.2 613 35
EMS 376 2.0 186 11
Improvement
ratio (%)

23 90 70 71

Results show a drastic improvement in the transformer op-
erating conditions with the implementation of the EMS, with
a reduction of 70% in the cumulative overloading durations,
and a reduction of 90% in the energy exchanged during
overloading periods.

2) EV penetration rate: sensitivity analysis: Finally, we
aim at conducting a sensitivity analysis on the EV penetration
rate, and assessing the impact of the latter on the transformer
operating conditions. This analysis could provide insights on
the ability of the EMS to accept more ore less EV charging
periods, depending on the EV sales’ evolution. We consider
three scenarios in terms of EV numbers in each fleet. They
are summarized in TABLE VII.

TABLE VII
SENSITIVITY ANALYSIS; NUMBER OF EVS PER FLEET

Scenario EV Fleet A EV Fleet B EV Fleet C

Pessimistic Scenario (P) 80 50 5
Baseline Scenario (A) 160 100 10
Optimistic Scenario (O) 240 150 15

Fig. 5a and 5b show respectively the distribution function
of the overloading average powers and overloading durations.

The EMS performs well in terms of overloading average
powers. The EV penetration rate only has a small impact
on this parameter. On the other side, the impacts on the
overloading durations is more significant. As indications, the
transformer rated power that would be required, if there was
no EMS, are provided in TABLE VIII (with the EMS, in the
main scenario, there is no need to change the rated power
(Prated = 252kW )).

These results could be used in future work to compute
savings in investment costs.
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Fig. 5. Operating conditions of the transformer during overloading occur-
rences, with respect to the limitations provided in [15]

TABLE VIII
TRANSFORMER RATED POWER THAT WOULD BE REQUIRED WITHOUT

EMS

Scenario Apparent power
Srated (kVA)

Active power
Prated (kW)

Pessimistic Scenario (P) 400 320
Baseline Scenario (A) 500 400
Optimistic Scenario (O) 630 504

VI. CONCLUSION

In this paper, the energy modeling of an eco-district is
presented. First, only residential and commercial consump-
tions are considered, and an optimal sizing for the substation
transformer is determined. Then, PV panels and EVs are
introduced in the district. In order to limit the impacts both
in terms of transformer operating conditions and electricity
costs, and Energy Management System is proposed. Results
show a reduction of 70% in overloading durations, 71% in
average overloading power, and 17% in electricity costs with
the EMS.

Overall, yearly electricity savings amount to 3370e(TABLE
V), considering 270 flexible EVs (baseline scenario A). Thus,

a direct remuneration of the EV end users does not appear
as a very suitable business model, as drivers would only
earn 12e/year. Policy recommendations, such as changes in
electricity pricing, driven by the environmental gains of this
solution could foster the developments of such EMS. In
a next work, the impact of single phase 7kW chargers in
residential parkings will be analysed because there seems to
be a consensus for installing them. Their cost is barely more
expensive than a 3 kW charge.
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