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Abstract Cognitive radio has been proposed as a promising technology to resolve
the spectrum scarcity problem by dynamically exploiting underutilized spectrum
bands. Cognitive radio technology allows unlicensed users to exploit the spec-
trum vacancies at any time with no or limited extra interference at the licensed
users. Usually, cognitive radios create networks in order to better identify spectrum
vacancies, avoid resultant interference, and consequently, magnify their revenues.
One of the main challenges in cognitive radio networks is the high energy consump-
tion, which may limit their implementation especially in battery-powered termi-
nals. The large consumption mainly occurs during the spectrum sensing stage,
especially if a cooperative approach is employed, and has an impact on the data
transmission stage. Many algorithms have been proposed in the literature in or-
der to improve the energy efficiency of cooperative spectrum sensing methods in
cognitive radio networks. In this article, we provide an overview of state-of-the-art
research that addresses this problem. Furthermore, we suggest important design
guidelines of an energy-efficient framework for cooperative spectrum sensing.
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1 Introduction

Due to worldwide growth of the number of mobile terminals and the request of
higher data rates, a tremendous increase of the energy consumption of the telecom-
munications industry has been recently reported, which has a significant environ-
mental impact. From the mobile terminals’ perspective, given the limitation on
energy resources, energy consumption poses a main concern. Thus, energy effi-
ciency has recently triggered a significant amount of research [1]. Indeed, energy
efficiency is receiving a higher priority for some wireless systems and becomes a
pressing need for their operation. A notable example is Cognitive Radio (CR) [2].

CR technology was presented to be a tempting solution to the spectrum scarcity
problem. The spectrum scarcity is a result of the exponentially-increase in the
number of terminals, applications and data rates in view of the current static
allocation of the limited frequency spectrum. CR technology allows unlicensed
users to opportunistically exploit temporally and spatially unused portions of the
licensed spectrum [3]. Several standardization organizations have developed CR
standards or modified their standards with the objective of including this novel
technology [4-7].

A key function of CR consists in the capability of acquiring the knowledge
of the instantaneous spectrum status. Such capability can be accomplished by
using geo-location techniques, by receiving control and management information
or by performing spectrum sensing [8-10]. Geo-location methods require a central
database, self-locating capability and frequently updates of the database by license-
holders. Likewise, control and management information techniques require both
infrastructure elements and a database. On the other hand, spectrum sensing is
considered the most promising solution for spectrum awareness [11].

Spectrum sensing is a periodic monitoring process of the spectrum, which is
aimed at detecting the presence of the licensed users [12,13]. Due to the high de-
sired detection requirements [11], spectrum sensing performed by individual radios
suffers from unreliable estimates in presence of multipath fading and shadowing
[14-18]. Thus, spectrum sensing is usually performed in a cooperative fashion
among several altruistic Cognitive Users (CU), which are willing to share their
individual sensing results in order to provide a more reliable global estimate of
the spectrum occupancy. This approach is referred to as Cooperative Spectrum
Sensing (CSS) [19,20]. The application of CSS in CR systems induces new design
and optimization challenges, such as transmission delay [21,22], security risks [23,
24] and energy consumption [25,26]. Much effort has been devoted to overcome
these implementation challenges, which may offset the potential benefits of CSS
[27].

In the literature, there are several surveys, tutorials and overview papers in top-
ics related to CR. For example, Surveys in CR networking, spectrum management,
architectures, routing, standardization activities, economic aspects and recent ad-
vances are found in [4,27-35]. Other surveys on MAC protocols and strategies
can be found in [36-38]. The applications of game theory and artificial intelli-
gence in Cognitive Radio Networks (CRNs) have been reviewed in [39] and [40],
respectively. As for spectrum sensing, [41-46] discuss the performance of different
spectrum sensing techniques. In [47], wide-band spectrum sensing algorithms have
been reviewed. However, the above mentioned works have not deeply discussed
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CSS. The challenges associated to CSS have been surveyed in some other works.
For example, a survey in the design of common control channel is presented in
[48], while the security risks are reviewed in [49-52,23]. Surveys in [13] and [53]
are fully dedicated for CSS process, where its mechanisms, performance, and chal-
lenges have been discussed. However, a little attention has been paid to energy
efficiency problem in CSS. This article provides an overview of current research
activities that are aimed at reducing energy consumption of CSS applied to CRNs.
To the best of our knowledge, this is the first work that handles this issue. The
presented article classifies the available works on energy-efficient CSS into three
approaches. The classification is based on the running stage of each work. All the
works are discussed in detail, emphasizing on the performance in terms of energy
efficiency.

The Energy Efficiency (EE) is defined as the ratio of the average transmitted
bits to the average consumed energy [54]. Recently, it has gained an increasing
importance, and it has received a lot of interest in different topics in wireless
communications [55-60]. This attention is due to the limited energy resources at
the CRs, which is often accompanied with a big demand for data rates. The EE
is considered to be a comprehensive metric that is able to represent the overall
performance of a CRN because it is capable of jointly taking into account the
achievable throughput, the overall energy consumption and the detection accuracy.
The combination of these indicators in a single metric has made the EE metric a
relevant indicator of the quality of cognitive transmission.

2 Cooperative Spectrum Sensing

Cooperative spectrum sensing is the key factor of a successful cognitive trans-
mission. The ultimate aim of CSS is to identify temporally and spatially unused
portions of the spectrum. CSS usually starts by an individual spectrum sensing
process, which is performed by each CU individually. This first stage is then fol-
lowed by a sharing stage, where the sensing results are processed in order to make
a final decision about the spectrum occupancy. CSS can be either centralized or
distributed. In centralized CSS, local sensing results are reported at a common re-
ceiver that is in charge of making a global decision [61]. In distributed CSS, on the
other hand, the CUs exchange their sensing results among themselves without the
need of an infrastructure [62,63]. This article focuses on the centralized CSS that
is shown in Fig. 1. In this section, we review in detail the stages that constitute
CSS and the available metrics to evaluate the achievable performance.

2.1 Stages of CSS

A typical frame structure of a cognitive transmission is shown in Fig. 2. CSS starts
by a local sensing performed by each CU individually. Different methods to sense
the spectrum are available in the literature, such as energy detection [64], matched
filters based sensing [65], cyclostationarity-based sensing [66], wavelet-based sens-
ing [67] and waveform-based sensing [68]. Energy detection is the most popular
method due to its low computational and implementation complexity. Besides, it
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Fig. 1 General description of centralized cooperative spectrum sensing process.

does not require any prior knowledge about the signal to be detected, while the
others depend mainly on the prior knowledge of the signals to be identified [69].
However, energy detection achieves the worst detection accuracy compared to the
other available techniques [46,44,70].

Regardless the sensing method used, each CU, before sharing the local results
with other CUs, has to find a way to represent the local result. There are two
popular schemes to this end: soft-based and hard-based schemes. In soft-based
scheme [71], the local result is reported as it is , usually by quantizing it with a
large number of bits in order to minimize the impact of the resultant distortion.
On the other hand, hard-based scheme are based on comparing the local result
to a predefined threshold in order to make a local binary decision that can be
transmitted via a single bit [14].

The next stage is to report the local results/decisions to a common receiver,
called fusion center (FC), that is responsible for processing them and for making a
global decision of the spectrum occupancy. The reporting of the results is usually
accomplished through a common control channel based on either a centralized
time-division multiple access (TDMA) [72] or a random access [73]. In a centralized
TDM access, each CU has its own time slot for reporting its local result, while
in a random access reporting scheme the CUs transmit their reports without any
coordination.

At the FC, the results received from different CUs are processed by employing
a specific fusion rule (FR) in order to make the global decision. In general, the

Final Decision
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results received in soft-based CSS schemes are weighted and summed up, and then,
the sum is compared to a threshold to make a global decision. FRs for soft-based
scheme can be classified according the weights used, such as equal-gain combining
(EGC), where the weights of the all CUs are identical, maximal ratio combining
(MRC) [71], where each CU is weighted by its signal-to-noise-ratio (SNR) and
likelihood-ratio (LR) [74], where the likelihood ratio statistical test is used to
obtain the most likely decision of the spectrum availability. As for hard-based CSS
schemes, the general rule is called K-out-of-N rule [75], where the number of CUs
that detect a signal is compared to a threshold (K'), where N is the total number
of CUs. Depending on K, several rules can be derived for the K-out-of-N rule,
such as the OR rule (K = 1) [61], the AND rule (K = N) [76] and majority-logic
rule (K = N/2), also called voting or counting rule [77]. Fig. 3 depicts the function
of the K-out-of-N rule.

\ A N @
Y Y
Sensing Time Reporting Time Transmission Time

Fig. 2 The frame structure of the cognitive transmission.

2.2 Performance Metrics

In the literature, the performance of CSS has been evaluated by using different
metrics, such as detection accuracy, energy consumption, and achievable through-
put. Detection accuracy is measured by two probabilities: the detection proba-
bility and the false-alarm probability. The detection probability is defined as the
probability that the CSS scheme identifies a used spectrum as used, while the
false-alarm probability is the probability that the CSS scheme identifies an unused
spectrum as used. The complementary probability of the detection probability is
called missed-detection probability. It is apparent that a low false-alarm proba-
bility improves the efficient exploitation of the unused spectrum, as well as that
a low missed-detection probability limits the resulting interference at the licensed
users. Usually, the detection accuracy is evaluated through the error probability
which represents the sum of false-alarm and missed detection probabilities.

The energy consumption is defined as the average energy consumed during local
sensing, results’ reporting and data transmission by all the CUs in the network.
The energy consumption depends on the number of cooperating CUs, the sensing
time and the detection accuracy. The achievable throughput is represented by the
average successfully transmitted data by the scheduled CU. It is worthy mentioning
that the achievable throughput is directly affected by the detection accuracy.
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Fig. 3 The function of the K-out-of-N fusion rule.

Energy efficiency is the most recent metric that has been used to assess the
performance of CSS. The energy efficiency is defined as the average successfully
transmitted data normalized by the energy consumption. Based on this definition,
the energy efficiency combines all the other performance metrics presented above.
Thus, the EE has been widely accepted as a comprehensive metric that can achieve
the balance between the different aspects of CSS performance.

3 Energy-Efficient CSS Approaches

The energy consumption of CR system is related to: (i) the periodic nature of
the process, (i4) its increase with the number of CUs, and (éii) the increase of
the number of channels. Moreover, the energy loss in the case of missed-detection
magnifies the problem. Thus, energy-efficient approaches for CSS are mandatory.

Many approaches aiming at improving the energy efficiency of CSS have been
presented in the literature. In this section, we review these approaches. The pre-
sented approaches are classified, as shown in Fig. 4, according to the CSS stage
that they are aimed at optimizing. As such, they can be split in three categories:
(i) EE approaches for the local sensing stage, (i¢) EE approaches for the reporting
stage and (ii¢) EE approaches for the decision-making stage.

N
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Fig. 4 The classification of the several energy-efficient CSS approaches found in the litera-
ture.

3.1 Energy-Efficient Approaches for The Local Sensing Stage

The energy consumed for local sensing is equal to the product of the number
of sensing users, the sensing time and the sensing power. Thus, reducing energy
consumption in the sensing stage can be accomplished in two different ways, either
reducing the number of sensing users or by reducing the sensing time.

3.1.1 Optimizing the number of sensing users

The number of sensing users plays a significant role in the energy consumed in
CSS. This is related to the fact that any reduction in the number of sensing users
leads to a reduction in all the preceding stages. In [78-80], the energy consump-
tion is reduced based on different scenarios by using the minimum number of CUs
that satisfies predefined thresholds on the detection accuracy. In [78], an energy
efficiency optimization problem is formulated by minimizing the number of sens-
ing CUs while satisfying predefined constraints on the detection and false-alarm
probabilities. However, considering a limited frame length, minimizing the num-
ber of sensing CUs does not necessarily maximize energy efficiency. In limited
frame length, modifying the time given for a stage will affect the time distribution
for other stages in CSS. Hence, minimizing the the number of sensing CUs may
decrease the reporting time but it gives more time for data transmission which
consumes more energy. In [80], the minimum number of sensing CUs that satis-
fies two constraints on detection and false-alarm probabilities is mathematically
formulated. Unlike [78], in [80] only the energy consumed in sensing stage is con-
sidered, while energy consumed in results’ reporting and data transmission have
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not been taken into consideration. A similar approach is presented in [79], where
a dynamic algorithm is presented to let only the minimum number of CUs partici-
pate in the sensing process. The proposed algorithm continuously checks a binary
indicator which represents the satisfaction of the desired detection accuracy in
terms of detection and false alarm probabilities. A new joining CU is ordered to
sense if the desired detection accuracy is not attained. Otherwise, it can join the
network without sensing. The energy consumed in data transmission has not been
considered in [79]. It is worth mentioning that the attention in [78-80] has been
focused to energy consumption not to energy efficiency, representing a drawback
in all of them. Moreover, they assume identical sensing performance for all CUs,
which is unrealistic assumption in light of different channel conditions including
the multi-path fading and shadowing.

In [81], the CUs are divided into non-disjoint subsets such that only one subset
senses the spectrum while the other subsets enter a low power mode. The energy
minimization problem is formulated as a network lifetime maximization problem
with constraints on the detection accuracy. However, the mapping between network
life time and energy consumption is not investigated. Similarly, the authors of [82]
propose an algorithm that divides the CUs into subsets. Only the subset that has
the lowest cost function and guarantees the desired detection accuracy is selected.
The desired detection accuracy is defined by two thresholds on detection and
false-alarm probabilities, while the cost function is represented by the total energy
consumption. The proposed algorithm is built based only on the OR rule. Although
OR rule can limit the interference at the licensed users, but it causes a high false-
alarm rates. Moreover, the achievable throughput of the proposed algorithm is not
discussed in the paper. In both works [81,82], the proposed algorithms assume
that the local sensing performance of each CU is available at the FC in advance,
which requires extra resource expenditure in terms of time and energy due to the
accompanied overhead.

A distributed approach for selecting the participating CUs is proposed in [83],
where the expected energy consumption is calculated by each CU prior to the be-
ginning of the CSS process: if it is lower than a given threshold, the corresponding
CU will participate. Otherwise, it will not participate. However, the optimiza-
tion of the participation threshold is not investigated, especially in terms of the
achievable detection accuracy.

Another distributed approach for selecting the sensing CUs is presented in
[84]. The proposed algorithm is based on excluding CUs that have high correlated
spectrum sensing results. In detail, it is assumed that each CU has the ability to
overhear the sensing results of other CUs. Thus, each CU calculates its correlation
is within an acceptable range, it will participate in the sensing stage. Otherwise,
the corresponding CU will not participate. Besides its additional complexity, the
ability to overhear the sensing result of other CUs is not always possible.

In [85], the instantaneous battery level is considered as a base for selecting
the participating CUs in CSS. Particularly, the FC classifies the CUs into two
groups based on their battery level which is assumed to be known at the FC. The
minimum number of sensing CUs is determined such that a predefined threshold
on detection probability is satisfied. The minimum number of the sensing users is
selected from the second group (which has th battery highest level). If the number
of CUs in the second group is less than the minimum required number of CUs, the
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rest is selected form the first group (which has the lowest battery level) with equal
probabilities. Although the algorithm shows a good performance in extending the
lifetime of the CRN by considering the battery level, it does not guarantee the
achievable energy efficiency.

In [86], a two-stage CSS is proposed, where CUs are divided into two groups. In
the first stage, the first group senses the spectrum and reports the local decisions
to the FC. If the FC decides that the spectrum is occupied, the CSS will be
terminated. Otherwise, a second stage will be commenced, where the second group
of CUs senses and reports the results to the FC. At the FC, the sensing results
of both stages are processed in order to issue a global final decision. The energy
efficiency is maximized by optimizing the number of CUs in each group and the
fusion thresholds. A suboptimal solution for the maximization problem is found
using the well-known particle swarm optimization algorithm. A practical drawback
is in combining sensing results obtained at different time instants. This might
degrade the reliability of the global decision as it is based on results gathered from
two different stages.

Three different energy-efficient CSS algorithms for multi-channel systems are
proposed in [87]. The three approaches select the sensing users based on their
SNRs. In the first algorithm, the minimum number of CUs that satisfies the desired
false-alarm probability and minimizes the the energy consumption is assigned to
sense a specific channel. The energy consumption includes the energy consumed
in sensing and reporting. The second algorithm assigns the CUs with the highest
SNRs over a specific channel to sense it, while, in the third algorithm, it is assumed
that CUs already sensed the channel, and only the CUs with the highest SNRs
will report their sensing results. However, the three proposed algorithms assume
the availability of the SNRs at the FC which is unrealistic assumption. Moreover,
the energy consumed in data transmission is not taken into account.

3.1.2 Optimizing the sensing time

Optimizing the sensing time/period constitutes another approach that can be
adopted for enhancing the energy efficiency of CSS. In [88-90], the sensing time/period
is investigated for individual sensing systems. An adaptive sensing period based
on the past spectrum occupancy pattern is presented in [88]. Also, they propose a
sequential sensing policy that enforces the CUs to extend the sensing time when its
sensing result lies in a specific range. In [89], the CU switches to a non-sensing mode
(sleep mode) when a licensed user is detected. The non-sensing time is optimized
for maximizing a utility function that combines energy saving and throughput
loss. The sensing and transmission durations are optimized in [90] with the aim of
maximizing the energy efficiency while satisfying constraints on detection accuracy
and maximum available power. However, the proposals in [88-90] consider only a
single CU and do not investigate their proposal based on CSS scenario.

As for CSS, [91,92] and [80] consider the sensing time as a possible approach
in order to reduce the energy consumption. In [91], the CUs perform an initial
short sensing stage called coarse sensing. If the sensing result of a CU lies outside
a specific predefined range, a binary local decision will be reported from the cor-
responding CU to the FC. In the case that the sensing result lies in the predefined
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range, no local decision will be reported from the corresponding CU. At the FC, a
global decision (either used or unused) can be made only if the majority decide it.
The global decision cannot be made if no majority exists, and therefore, a another
sensing stage is commenced by all CUs, called fine sensing. The fine sensing stage
is two times longer that the coarse stage. Regardless of the fine sensing results, all
CU will report their binary decision to the FC where the global decision should
follow the majority decision. Although this two-stage sensing scheme can affec-
tively reduce sensing time, it causes extra energy consumption in reporting stage
since it is repeated twice, which is not taken into account. Moreover, the influence
of waiting the first global decision on the achievable throughput is not investigated
in [91], which might degrade energy efficiency.

In [92], a utility function that consists of the difference between the achievable
throughput (revenue) and the consumed energy (cost) is maximized by optimiz-
ing the sensing time. A constraint is kept on the detection probability. However,
the utility function does not consider the energy/time spent during reporting the
results to the FC. Also, only the AND rule is adopted at the FC, which causes
a high missed detection rate. The optimal sensing time that minimizes energy
consumption is obtained in [80]. Two constraints on the false alarm and detection
probabilities are set, while only the sensing energy is considered in the formulated
problem.

In [93], energy efficiency is maximized by optimizing the number of sensing
users, the sensing time, the transmit power and the local detection threshold
jointly and individually. An iterative algorithm is presented to solve the joint
optimization. An interesting property of [93] is considering the energy efficiency
as a performance metric to be maximized with a constraint on the detection prob-
ability. However, the energy consumed in reporting is not considered in energy
consumption calculations.

A utility function that includes the difference between the achievable through-
put and the consumed energy is maximized in [94] by a joint optimizing of the
sensing time and the number of sensing users. The optimal solution is found using
an iterative algorithm. However, the energy and time consumed in reporting the
results to the FC are not taken into consideration.

In [95] the sensing time is optimized in order to maximize the energy efficiency.
The energy consumption function includes all the energy consumed in sensing,
reporting and data transmission. However, no closed form expression of the optimal
sensing time is given. Instead, the golden section search algorithm is used to find
the optimal value.

A related work is in [96], where the sampling rate of the sequential sensing is
optimized in order to reduce the energy consumption. The optimization problem
is subject to constraints on detection and false alarm probabilities. However, the
work only considers a single CU, and energy expenditure during CSS has not been
considered while formulating the optimization problem.

3.2 Energy-Efficient Approaches for The Reporting Stage

The second stage of CSS is the reporting stage, where CUs transmit their local
sensing results to the FC. Compared to the sensing power, the power consumed
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in the reporting could be higher. On the other hand, the time spent in sensing is
much longer than the time spent in reporting. Therefore, the energy consumed in
the reporting stage may be comparable to the energy consumed during the sensing
stage. Several works have studied techniques for reducing the energy consumption
during the reporting stage, as summarized as follows

3.2.1 Optimizing the report form

In order to report the local result to the FC, each CU has to represent its own re-
sult by using a finite a number of bits. The reporting load has a contrasting impact
on the overall performance of the CSS. On the one hand, increasing the number of
bits enhances the amount of knowledge that is available at the FC, which improves
the detection accuracy. On the other hand, a larger number of bits requires more
bandwidth and increases the energy consumption. A single-bit reporting scheme
is called hard-based scheme, while multiple-bit reporting schemes are called soft-
based reporting schemes. Although many works have compared them under differ-
ent setups and assumptions [97-101], none of them has investigated the resulting
energy consumption nor energy efficiency.

In [102], a novel reporting scheme is proposed, which requires a single bit as in
the hard-based scheme, but, at the same time, it is capable of achieving a similar
detection accuracy as in soft-decision scheme. The idea is that each CU reports
one bit in a time slot that is related to its sensing result, so that at the FC the
sensing result can be inferred from the arriving time slot. Considering the collision
probability between CUs, the proposed scheme is shown to be more energy-efficient
than both soft-based and hard-based schemes. A main drawback is that the scheme
requires a high accuracy in the synchronization between the FC and CUs.

3.2.2 Censoring and Confidence Voting

Censoring is a promising approach that can significantly reduce the reporting CUs.
In censoring, a CU does not report its sensing result unless it lies outside a spe-
cific range [61,103,104]. The censoring thresholds are optimized for minimizing the
energy consumption with constraints on the detection accuracy in [72]. Two se-
tups for the availability of the prior information about the probability of spectrum
occupancy are considered, namely, blind setup and knowledge-aided setup. How-
ever, the considered problem would show more effectiveness if the energy efficiency
maximization was considered rather than energy consumption minimization as a
problem objective. Besides, energy consumed in data transmission is not consid-
ered while computing the total energy consumption.

Recently, in [105], censoring and truncated sequential sensing are combined
in order to reduce the energy consumption in CSS. Specifically, the spectrum
is sequentially sensed, and once the accumulated energy of the sensed samples
lies outside a certain region, the sensing is stopped and a binary decision is sent
to the FC. If the sequential sensing process continues until a timeout, censoring
is applied and no decision is sent. The thresholds of the censoring region are
optimized in order to minimize the maximum energy consumption per CU subject
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to a constraint on the detection accuracy. Similar to [72], transmit energy is not
considered. Moreover, only two FRs are investigated instead of considering the
general K-out-of-N FR.

In [106], a confidence voting scheme is presented. It works as follows: if the
sensing result of a specific CU agrees with the global decision, it gains its con-
fidence; otherwise, it loses its confidence. When a user’s confidence level drops
below a threshold, it considers itself as unreliable and stops sending its results.
But it keeps sensing the spectrum and tracking the global decision. As long as
the result matches, it gains its confidence. Once its confidence level passes beyond
the threshold, it rejoins the voting. The energy saving and the detection accuracy
of this approach are investigated in [106]. However, confidence level is based on
the global decision which is in some cases not reliable enough, especially in case of
malfunction or malicious CUs. Moreover, detection accuracy cannot be guaranteed
since the number of reported CUs is varying in each sensing round.

Another simple approach for reducing the number of reporting CUs without
affecting the detection accuracy can be found in [107]. The idea is based on an
instantaneous processing of the received results at the FC. Whenever a global
decision can be made, the reporting process is terminated and the rest of the
CUs do not report their local sensing results. Despite its simplicity, this approach
does not impact the detection accuracy and it offers more energy efficiency than
other approaches. On the other hand, in case of non-identical sensing performance
among CUs, the reporting order of CUs brings extra complexity and overhead
at the FC . A similar approach to [107] is presented in [108], where the reported
sensing statistics from CUs will processed sequentially at the FC. The FC performs
a hypothesis test each time after receiving a statistic from a CU. The FC stops
the reporting process when statistics gathered is sufficient for making a decision at
a specified reliability level. Otherwise, it will acquire an additional statistic from
another CU and repeat the above procedures until it terminates. Unlike [107], the
FC employs Neyman-Pearson decision strategy instead of K-out-of-N FR. The
analytical and simulation results in [108] do not show the performance of the
proposed algorithm in terms of energy efficiency.

3.2.8 Clustering

Clustering is a popular approach to reduce the overhead load between the CUs
and the FC. In clustering, CUs are separated into clusters and one from each clus-
ter is nominated as cluster-head, which is in charge of collecting sensing results
from cluster-members and reporting a cluster-decision to the FC on behalf of the
cluster-members [109]. The cluster-head can be dynamically changed in each CSS
round. Fig. 5 shows an example of cluster-based CSS. The energy saving and the
accuracy loss are investigated in [106]. In addition to energy consumption analy-
sis, time delay is conducted in [110]. In [111] and [112] clustering and censoring
approaches are combined in one energy-efficient algorithm considering the noisy
reporting channels. In [113], a multi-level cluster-based CRN is proposed, where
the cluster-head that are far away from the FC can forward their cluster decisions
to the near cluster-head rather than the FC. Such a technique aims at reducing en-
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ergy consumption in reporting process, however, it may generate synchronization
challenges.

Although clustering reduces reported information to the FC, it induces ex-
tra energy consumption during results exchange inside the cluster itself. Besides,
creating clustering is a complicated process that adds a significant amount of com-
plexity to the CRNs, especially in mobile CUs scenario.

CM: Cluster Member CM
CH: Cluster Head
FC: Fusion Centre @

CcM

Fig. 5 An example of cluster-based cooperative spectrum semsing.
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3.3 Energy-Efficient Approaches for The Decision-Making Stage

Every CSS round ends by making a global decision about the spectrum occupancy.
The global decision is made by processing the received local results/decisions,
where a specific FR is applied. Regardless of the form of the received results, a
predefined fusion threshold is needed to make a decision. In [114], the fusion thresh-
old of the K-out-of-N FR is optimized for maximizing energy efficiency without
constraints, while a constraint on resulting interference represented by the missed
detection probability is set in [115]. In [116], the optimal fusion threshold that
maximizes the throughput of CRN is obtained with constraints on the consumed
energy per CU and the overall detection probability. However, these optimization
problems require prior information bout the activity of the licensed users. Besides,
an identical sensing performance among all CUs is assumed in [114-116], which is
considered unrealistic assumption.

Three popular FRs for the noisy binary decisions are compared based on lim-
ited time assumption in [117]. The considered FRs are LR, MRC and EGC. It is
assumed that the amount of prior information required for each FR is reported
together with the sensing decision, which impacts the time and energy resources.
Considering the limited time assumption, EGC has been proved to be the optimal
FR in terms of detection accuracy and energy efficiency.

4 General Discussion and Concluding Considerations

In this section, we present a simple example to show the performance of some CSS
approaches that have been reviewed in the previous sections. We consider a CRN
of 20 CUs that experience the same signal-to-noise-ratio (—20dB). The cognitive
transmission is divided into frames, where each frame lasts 50 ms. The sub-frame
for data transmission is assumed 45ms, while the reporting time for each CU is
assumed 0.05ms. The hard-based CSS is employed.

Fig. 6 plots the performance of six different EE approaches. First, the num-
ber of sensing users is optimized for energy efficiency maximization as proposed
n [78]. Second, the sensing time is optimized for energy efficiency maximization
, as presented in [95]. The third column shows the maximum energy efficiency
if the fusion threshold is optimized, as proposed in [114] and [115]. The energy
efficiency if clustering approach is applied, as proposed in [113]. The confidence
voting approach, presented in [106] is shown in the fifth bar. Finally, the achieved
energy efficiency by the optimal censoring threshold is represented by the last bar,
as proposed in [72].

The results show that optimizing the number of sensing users is the most effi-
cient approach in improving the energy efficiency. This is due to the reason that
excluding some users from sensing will not only save sensing energy, but also will
reduce energy consumption in reporting stage. Another observation that can be
seen on Fig 6 is that the least significant approach is optimizing the sensing time
as it directly affects the detection accuracy for all CUs. Although the clustering
reduces energy consumed in reporting to the FC, it induces extra energy consump-
tion during reporting the results to the cluster-heads.Therefore, clustering shows
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a moderate energy efficiency value. As both censoring and confidence voting af-
fect the detection accuracy, they do not outperform other techniques in energy
efficiency. Optimizing the employed FR achieves a high energy efficiency since it
does not require any other energy costs.

4
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Fig. 6 The energy efficiency for different energy efficient approaches.

We conclude this article by providing some design guidelines that are useful
for designing energy efficient CSS methods (summarized in Table 1):

— More practical conditions should be considered while proposing, designing and
evaluating energy-efficient approaches. Table 2 summarizes the whole energy-
efficient works discussed in this article. Apparently, faded sensing channels and
noisy reporting channels have been rarely considered although channel charac-
teristics might severely influence the performance. Therefore, we recommend
that realistic channel conditions, for sensing and reporting, should be assumed
in order to provide accepted practical evaluation.

— The overall performance of the CRN can be comprehensively described by the
energy efficiency rather than using other metrics. In other metrics, additional
constraints should be set in order to avoid negative effects on other performance
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aspects. For instance, minimizing energy consumption is usually accompanied
by additional constraint(s) on detection probability, false-alarm probability
and/or throughput as shown in Table 2. However, employing energy efliciency
as the evaluating metric will strike a balance between the different aspects
of the performance from the CUs perspective since all the other metrics are
inherently combined in it. The only constraint that might be required is an
upper bound on the missed-detection probability, which limits the interference
at the licensed users.

Following the energy efficiency definition, the transmit energy of the scheduled
CU, if any, should be taken in consideration once the total energy consumption
is calculated. Although transmit energy is spent after CSS; it is directly affected
by the detection accuracy of CSS and the remaining time resources of the total
cognitive frame. Similarly, energy and time that are spent in results reporting
should be considered in the energy efficiency evaluation.

According to limited time/ bandwidth resources assumption, decreasing (or
increasing) the number of participating CUs in CSS does not necessarily entail
reducing energy consumption (or increasing achievable throughput). There-
fore, the available limited resources should be considered while optimizing the
number of participating CUs for maximizing energy efficiency.

Proposed approaches for a single stage should take into account the possible
influence on the other stages. Specifically, a proposed algorithm may decrease
energy expenditure in a specific stage, but it causes (or requires) additional
energy consumption in preceding (or following) stages, leading to inferior over-
all performance of the proposed algorithm. For instance, some CU-selection
algorithm requires additional information about each CU, which should be ac-
counted while evaluating the performance. Also, in clustering approach, the
induced overhead to form clusters and nominate heads causes extra time and
energy resources. However, there are some other approaches with low complex-
ity and have no side-effects. An example is censoring technique that can hugely
reduces the reporting load, and consequently, energy consumption, without
extra resources expenditure since censoring is performed distributively with a
simple manner.

The literature lacks a comprehensive solution that integrates several proposed
algorithms among multiple stages of the CSS. However, the diversity of the
scenarios and assumptions that delineate the cognitive transmission makes a
unique universal solution not an easy task. For instance, algorithms designed
for cognition in TV band should be different from those dedicated for cellu-
lar bands, where the different activity pattern of the licensed users should be
considered. Similarly, other factors play a significant role in marking a specific
solution among others, such as the amount of prior information, the number
of CUs, the frame time length, the maximum allowable interference, the avail-
able limited power resources, channel characteristics and QoS requirements.
Moreover, all cognitive transmission stages starting from the local sensing and
ending by the data transmission should be included in the designed global
energy-efficient framework.
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Table 1: Summary of the proposed guidelines for designing EE CSS

approaches
1 | An EE algorithm that is designed for a specific stage should not induce extra energy
consumption in the preceding/following CSS stages
2 | An EE algorithm should not affect the detection accuracy, or should be able to keep
it within an acceptable range
3 | Realistic channel conditions including fading and shadowing should be considered
while evaluating the performance of the proposed EE algorithm
4 | Noisy reporting channels between the FC and The CUs should be considered.
5 | Non-identical channel conditions should be taken into account while designing EE
CSS algorithms.
6 | Energy consumed during data transmission should be taken into consideration since
it is directly affected by the CSS.
7 | The performance of the designed EE CSS algorithms should be performed in terms of
the energy efficiency with additional constraint on the detection probability.
8 | The designer should take into account that the available resources including time
and energy are limited.
9 | Maximizing the energy efficiency of CSS is achieved by a comprehensive EE approach
that addresses the energy efficiency in all CSS stages.
Table 2: Summary of the EE approaches for CSS
Work | Adopted Constraints Channel Noisy Employed Transmit
Approach fading reporting | energy metric energy
(Section con- consid- consid-
No.) sidered ered? ered?
?
[78] | 3.1.1 Detection and | No No No. of users No
false-alarm
probs.
[79] | 3.1.1 Detection and | No No Percentage No
false-alarm
probs.
[80] | 3.1.1 & | Detection and | No No Energy in | No
3.1.2 false-alarm Joule
probs.
[81] | 3.1.1 Detection and | No No Network No
false-alarm lifetime
probs.
82] | 3.1.1 Detection No No Energy in | No
prob. Joule
[83] | 3.1.1 None Yes Yes Energy ef- | Yes
ficiency in
bit/Joule
[84] | 3.1.1 False-alarm No No Energy in | No
prob. Joule
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[85] | 3.1.1 Detection Yes Yes Sensor’s  life- | Yes
prob. time & no. of
sensors
[86] | 3.1.1 None No No Energy ef- | Yes
ficiency in
bit/Hz/Joule
[87] | 3.1.1 Detection No No Energy No
prob. inJoule
[88] | 3.1.2 None Yes No Energy  effi- | No
ciency ratio
[89] | 3.1.2 None ND No Energy saving | No
ratio
[90] | 3.1.2 Detection ND No energy ef- | Yes
prob. ficiency in
bit/Joule
[91] | 3.1.2 None No No Energy saving | No
ratio
92] | 3.1.2 Detection No No Normalized Yes
prob. utility  func-
tion
93] | 3.1.1 Detection and | No No energy ef- | Yes
3.1.2 false-alarm ficiency in
probs. bit/Joule
[94] | 3.1.1 Detection Yes No Utility ~ func- | Yes
3.1.2 prob. tion
[95] | 3.1.2 None No No Energy ef- | Yes
ficiency in
Bit/Hz/Joule
[96] | 3.1.2 Detection and | No No energy  con- | No
false-alarm sumption  in
probs. Joule
[102] | 3.2.1 false-alarm No No Energy ef- | Yes
probability ficiency in
bit/Joule
[105] | 3.2.2 Detection and | No No Energy  con- | No
false-alarm sumption  in
probs. Joule
[106] | 3.2.2 None No No Energy  con- | No
3.2.3 sumption
ratio
[107]| 3.2.2 None No Yes Energy ef- | Yes
ficiency in
bit/Joule
108 | 3.2.2 None No No No. of users No
110]| 3.2.3 None ND No Power con- | No
sumption

ratio
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[111]] 3.2.3 & | None Yes Yes Energy saving | No
3.2.2 percentage
[112]] 3.2.3 & | None No No Power  con- | No
3.2.2 sumption
ratio
[113]] 3.2.3 None No Yes Energy in | Yes
Joule
[114] | 3.3 None No No Energy ef- | Yes
ficiency in
bit/Joule
[115] | 3.3 Detection ND Yes Energy ef- | Yes
probability ficiency in
bit/Joule
[116]] 3.3 detection No No Normalized Yes
probability throughput
and energy
consumption
[117]] 3.3 None Yes Yes Energy ef- | Yes
ficiency in
Joule/bit
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