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L p-stabilization of integrator chains subject to
Input saturation using Lyapunov-based

homogeneous design

Yacine Chitour, Mohamed Harmouche, Salah Laghrouche

Abstract Consider then-th integratorx'= J.x+ o(u)e,, wherex € R", u € R, J, is the n-
th Jordan block angy, = (0 ---0 1)T € R". We provide easily implementable state feedback
laws u = k(x) which not only render the closed-loop system globally asytigally stable but
also are finite-gairlp-stabilizing with arbitrarily small gain, as in_[25]. Thesg-stabilizing
state feedbacks are built from homogeneous feedbacks rappea finite-time stabilization of
linear systems. We also provide additiohal-stabilization results for the case of both internal
and external disturbances of timeth integrator, namely for the perturbed system= J,x+
eno(k(x)+d)+D whered € R andD € R".

. INTRODUCTION

In this paper, we address robust stabilizability issuesafointegrator chain subject to input
saturation, i.e., Systert®)
(2) X = JnX+eno(u), (1)

wheren is a positive integens € R", the matrixJ, is then-th Jordan block, i.e. tha x n matrix
with entries(Jn)ij =1 if i = j —1 and zero otherwise, the vectey € R" has all its coordinates
equal to zero except the last one equal to one, @andR — R is a saturation function whose

prototype is the standard saturation functmyis) = 7 In the sequel, we refer to System

S
max(1,s|
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(2) as then-th integrator or an integrator chain of lengthOur purpose consists of investigating
robustness properties associated with the (global asyiopsiabilization to the origin ofX).
Note that semi-global stabilization issues for linear sys subject to input saturation have
been essentially all addressed, thanks to the work of LibeGand their coworkers by using
ingenious low-and-high gain design technics (cf.l [15] aeférences therein).

Consider then atabilizing state feedback k f¢E), i.e., a static feedback law= k(x), where
k is a real-valued function defined d&" so that every trajectory of the closed-loop system is
globally asymptotically stable (GAS) with respect to thégor. Note that we do not assume
k to be even continuous, which will require if it is the case teqisely define solutions of
Cauchy problems. Nevertheless, in order to test robustoieks one considers, fop € [1,],

the trajectoriesqy of the perturbed system
X = JnXx+eno(k(x) +d), 2)

starting respectively from the origin ip is finite and from any point ofR" if p = and
which are associated to an arbitrary disturbadce Lp(R4,R), i. e. d has finite Lp-norm
(Idlp:= (fR\d(t)\pdt)l/p < oo jf pis finite and||d||» :=ess supp |d| < e« if p= ). Then,
k is said to be arlL,-stabilizing state feedback fqiZ) if there existsy, € %, such that for
every d € Lp(R4,R) and x4 defined as above, one hadsg||p < yp(||d||p) for p finite and
limsup_., [Xd(t)|| < ¥(]|d||e) for p= 0. The previous definition fok.-stabilizability is called
asymptotic gain property and it is required in the definitmininput to State Stability (ISS)
introduced by Sontag, cf. [26]. In case th&, function y is linear, i.e.,yp(X) = ypx for x>0,
the perturbed system is said to beite-gain Ly-stable with finite gainy,. One also says that
Eq. (2) stands for the-th integrator subject to input saturation withternal disturbance doy

opposition with the dynamics
Xx=Jx+eno(k(x))+D, DeR" (3)

which is referred as the-th integrator subject to input saturation wiglxternal disturbance D
The problem at stake belongs to a more general issue, thittolizng globally overR" linear

systems subject to input saturation of the typat) x = Ax+Bo(u), wherex € R", u € RP with

p a positive integer and the pajA, B) is controllable. Here, th&P-valued saturation function

o(u) is equal to(gy(uy), -+, 0p(up))T whereu= (ug, -+, up).
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Global stabilization of(Sat) can be achieved if and only if the eigenvaluesfohave non
positive real part, cf.[[27]. Most delicate issues arise mliee spectrum ofA lies on the
imaginary axis and we will assume that this is the case froenrést of the discussion. The
first stabilizing state feedbadk is the one given by the optimal control problem consisting
of transferring any point oRR" to the origin in minimum time along trajectories (8at), cf.
[24] for a description of the optimal synthesis correspagdbp the double and triple integrators.
However, it is immediate to see that, already for the doubtegrator, this feedback cannot
ensurel p-stability for any p € [1,]. Another candidate for stabilizingSat) consists of taking
linear state feedbacks= KTx. In caseA is marginally stable (i.e., trajectories &f= Ax are
bounded) or fom-th integrators witin < 2, one can find such linear stabilizing state feedbacks.
As concerns theit p-stabilization properties, it was shown in_ [19] whéns marginally stable
that the linear state stabilizing feedback is dlgestabilizing for everyp € [1, ], with additional
results for external distubances. As for the double integréhe linear stabilizing feedbacks are
proved to belp-stabilizing for everyp € [1,0] in [3], which also contains a partial answer
for an open problem oh,-stability proposed in[]2]: that problem asks to compute lthegain
of the input-output mam — o(x+x+d), i. e. the smallest positive numbgs such that for
every disturbancel € Lo(R,R), one has|o(x+x+d)|[2 < y»|/d||2, wherex is the solution
of the Cauchy problemx = —o(x+x+d), x(0) = x(0) = 0. Besides the proof in_[3] thak is
finite, non linear stabilizing state feedbacks with betterfgrmances than the linear ones (see
also [8] for other non linear stabilizing state feedback®) also provided together with results
for external distubances. One should notice that the rakgstresults of linear state feedbacks
for the double integrator (and more generally planar sysjemave been used for the robust
stabilization of cascade and delay systems,[¢f. [1], [43].[834], [12], [21].

It was then proved by Fuller and Sussmann, Yang ([9] [29) the n-th integrator,n > 3
cannot be stabilized by linear state feedbacksk”x and thus one has to resort to non linear
state feedbacks. Thanks to Teell[30] and Sussmann, YangantddS[28], general and explicit
stabilizing state feedbacks were constructed using nestedations, i.e., feedbackg(-) built
inductively as follows:No(x) = 0 and, for 1< j <1, one setsNj(x) = Ajaj (k] x+ Nj_1(x))
where the positive integdris the level of the nested satutatid, the Aj’s are constants and
the kj’s are vectors ofR". However, by taking disturbances eventually equatite —Np_1(X)

and using the abovementionned result of Fuller, Sussmadrivang, one readily deduces that
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nested saturations cannot bg-stabilizing feedbacks of the-th integratorn > 3 andp € [1, »].
RelatedL,-stabilization results for the feedbacks built with nessaduration were obtained by
Teel in [31] for external disturbanag, i.e., for perturbed systems= Ax+ Bo(k(x)) +d where
(A,B) is controllable, the eigenvalues Afhave non positive real part and the disturbaddeas
finite Lo-norm. One should also mention the construction of anotjye of stabilizing feedbacks
due to Megretsky (cf[]22]), which are state dependant liniea, of the typeu = BTP(g(x))x,

where the low-gain paramete(x) is state-varying and defined as
g(x) = max{r € (0,1]| x"P(r)x Tr(BTP(r)B) < A}, (4)

whereA > 0 is fixed andP(r) is the unique symmetric positive definite solution of a Ricat
equation parameterized by Then, using a variant of Megretsky feedbacks, Saberi, Hul a
Stoorvogel were able to provide in_[25] the first solution te tfinite-gain L p-stabilisation
problem associated to the internally perturbed systeim @2)pfe [1,]. In addition, it has
been recently shown in_[32] that Megretsky feedbacks peo\lig-stabilization properties for
the n-th integrator subject to input saturation with externastdibances[({3). In that work,
no a priori bound only depending on the system is requiredtter external disturbance and
more importantly a crucial distinction is pointed out beéwemismatched disturbance, i.e.,
eID = 0 and matched disturbance, i.ej,D =0 for 1<i<n-1, where theg's are vectors
in R" with zero coordinates except theh one which is equal to one. However, the practical
interest of these beautiful feedbacks is questionableedddthe real-time implementation of
that feedback requires the real-time solving of the optatien problem[(4). Furthermore, no
approximated off-line computation can be envisioned basefinite covering of the state-space.
To see that, first recall from [32] that the matiXr) in Eq. (4) is defined as the symmetric
positive definite solution o8] P+ PJ, — Pe,glP+rP = 0 and thus is equal tdD,P(1)D; with

Dr = diag(r"1,---r,1). Therefore, the mapping— P(r), defined on(0, 1] and taking values
in the cone of real symmetric positive definite matrices ity increasing as well the function
Ex(r) = r>x"D;P(1)D;x defined for non zero. It follows that the functione(-) defined in
Eqg. () is the unique solution if0, 1] of Ex(e) = A for non zerox. The fact that this equation
is polynomial of degreerin ¢ together with the fact thdtm,_...&(x) =0 (as shown in[[25])
require that infinitely many quantized regions are necgsiarcover the whole state-space in
order to achieve off-line precomputation &f (4). This is wayenthough[[25] and [32] represent
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important breakthroughs, there is still need for easily lenpentablel p-stabilizing feedbacks
for perturbed systemg&l(2) and (3).

In this paper, we provide yet another solution to the finiééad p-stabilization of(Z) where
our feedbacks are modifications of stabilizing feedbacksiray in the context of finite-time
stabilization technics of the tydesign(cw(x)) for appropriate constahtand continuous functions
w(-), cf. [14], [17] and references therein. These feedbackseapdicitely defined as Holder
functions of the coordinates of the stat@nd have been successfully implemented on practical
examples of integrator chains, up to order four, Icf/ [11], [B3].

Trajectories of the corresponding closed-loop systemJ,x+ Le,sign(w(X)) converge to the
origin in finite-time and the crucial point lies in the factaththese feedbacks come together
with global Lyapunov functions which are also ISS-Lyapurfov the perturbed system =
JnX — Lensign(w(x) +d). To pass from these systems to systems given by[Eq. (2), anéoha
replace the feedback= w(-) in a neighborhood/" of the origin by a linear feedback, which
results in a global discontinuous feedback. The proof ohtlaén result is then based on analytical
manipulations using two positive definite functions, onengdSS-Lyapunov outsid¢” and the
other ISS-Lyapunov insidé¢”. We finally extend theskp-stabilization results fok-stabilization
in the presence of both internal and external disturbansés [82]. In particular, our feedbacks
L.-stabilize the perturbed syster="J.x+ e,o(u+d)+ D whereD represents a mismatched
external disturbance.

Acknowledgements.The authors would like to thank A. Chaillet for constructs@mments

and suggestions.

II. NOTATIONS AND MAIN DEFINITIONS

If nis a positive integer, we consider for<li < n the vectorg € R" having zero coordinates
except the—th one equal to 1. We udd, andJ, respectively to denote thex n identity matrix
and then—th Jordan block respectively, the latter definedJag = g _1 for 1 <i < n with the
convention thae; =0 if j <0 or j > n. If Ais any matrix, we usé\' to denote the transpose
of A. A function ¢: R; — R, is said to be of class?, (¢ € %) if it is continuous, strictly
increasing,@(0) = 0 and lim; ;. ¢(s) = . Recall that ifgp € 7, theng™! € .

For p € [1,0) (p = « respectively), we usé&p(R;) (Lo(R4) respectively) to denote the

Banach space of measurable real-valued functibnp defined onR, endowed with thelp-
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norm || f||p:= <f5°|f(t)|pdt>l/p (IIf |l :=ess supp | f| respectively). IfK is a measurable set
of Ry and f € Lp(R) for finite p, we use|K| and || f| ok respectively to denote the Lebesgue
mesure oK and <fK | f(t)|pdt>1 P respectively. We define the functigign as the multivalued
function defined orR by sign(x) = ﬁ for x# 0 andsign(0) = [—1, 1]. Similarly, for everya> 0
andx € R, we use|x]? to denote|x|?sign(x). Note that|-]? is a continuous function foa > 0
and of classC! with derivative equal ta|-|*"* for a> 1. We uses(-) to denote the standard

saturation function defined bg(x) = m for xe R.

Definition 1. An S-function (or saturation functiorg : R — R is any locally Lipschitz function
so that
(i)  there exists positive constants € a, and % < ﬁ—i for which the following inequality

holds true for every x R:
X X
X 9i—) < xo(X) < axx —);
by b,

(i)  The limMitS O = liMy_; 10 0(X) and 0_o = limy_,_« 0(X) are defined, opposite and
there exists a positive constang Guch that, for x R,

Co

O(|X])— 04| < .
0(1x) - 01l < 17

()

For k > 0 and an S-functioro(-), we useoi(:) to denote the S-functioa(k-). For instance

s(+), arctan(-) andtanh(-) are examples of S-functions for every 0.

Remark 1. One can define a a saturation function only with Itéim It is for technical issues

considered later in the paper that Itefii) is needed.

In this paper, we consider stabilization issues for the robrstystem(Z) defined in Eq.[(1),
wheren is a positive integerx € R", ue R" ando is anS-function. This is essentially equivalent
as considering the control system BA given by X = Jyx+ eyu, with bounded control. Notice
that the bound on the amplitude af is irrerelevant as regards feedback stabilization since
multiplying x = Jyx+ e u by a positive constan€ and making the linear change of variable
y = Cx only changes the bound on the amplitudeuof

We next provide the definition of a stabilizing feedback aj.
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Definition 2. We say that the function:KR" — R is a stabilizing feedback (SF) fa&) if the
closed-loop system = Jx+ eno(k(x)) is globally asymptotically stable (GAS) with respect to
the origin. Note that k can possibly be discontinuous so m ¢hase where k is not locally
Lipschitz, one must not only define specifically what thetmwis of Cauchy problems are and

guarantee that the origin is GAS with respect to all of them.

We next provide a notion of robustness of a stabilizing fee#b(see )which generalizes that

of linear systems, cf [27].

Definition 3. Let pe [1,]. We say that the function:RR" — R is an Ly-stabilizing feedback
(Lp-SF) for (2) if there existsy, € % such that for every & Ly(R;) and x in the set of

trajectories of
_ x(0) =0 for p finite,
X = JnX+ eno(k(x) +d), (6)
X(0) € R" for p= oo,
one has

(Lp=9) lxdllp < wo(l/d]|p) for p finite;

(Lo —S) limsup, .. [|Xd(S)]| < ¥(||d||«). Sometimes one can consider another statement
where the left hand-side of the previous inequality is repthby||X4|| While assuming
that the trajectory starts at the origin.

The functiony, € 75 is referred as the gain function. When it is linear, i.gs(X) = ypx for

x>0, then () is said to be finite-gain }-stabilizable by u= k(x) with finite gainy;.

Remark 2. If (Z) admits an l-stabilizing feedback (k) for some pe [1,), then K-) is also
a stabilizing feedback fofX). This is essentially established in It€éy of [19, Lemma 5].

Remark 3. Assume that kR" — R is an Ly-stabilizing feedback (}-SF) for () for some

p € [1,). From Items(1) and (3) of [19, Lemma 4], one gets that, for everyed (R, ),
any X in the set of solutions of EqB) tends to zero as t tends to infinity. If moreover, k is
differentiable at zero andyJ 0(0)e KT is Hurwitz with K:= 0Ok(0), then for every solutiongx

of Eq. (6) belongs to lr(R).

DRAFT



IIl. PRELIMINARY SOLUTION TO THE Lp-STABILIZATION PROBLEM

As mentionned in Introduction, the purpose of this papers@is in constructing arh.-
stabilizing feedbacksL(-SF) for (Z) for every p € [1,]. To proceed, we actually start with
a preliminary solution for thé p-stabilization of(X) where the saturation function is replaced
by the functionsign More precisely, we consider the stabilization (&) given in [1) by the
feedback—I,sign(an(X)) wherel, is a positive constant (to be defined) and the feedback law
wn(+) defined inductively as follows (cfl [14] and references #iry.

Define the following parameters:

i—1 _ —1+i .
pizl—lT, 1<i<n+1andfB = py, Biznn_-iH, 1<i<n-1 (7)

Note thatpn.1 =0, fo <1 andf > 1 for 1<i<n. Then, given positive constans 1 <i <n,

define the following functions for & i <n

Vo = 0,
Pit1 s ' (8)
Vi, %) = —hila@(xa, )] PR = [x1A — viia(xg,,%o1) )P

Note thatv; is defined orR' for 1 <i < nandvp(x) = —Ixsign(an(x)). One has then the following

theorem.

Theorem 1. ([14]) There exists positive constants1 <i < n, such that the controller & v,(X)
is a stabilizing feedback for the control system= J,x+ eyu, with |u| < |,. Moreover, this

stabilization occurs in finite time.

Since the the feedback law= v,(X) is discontinous, solutions of Cauchy problem must
be specified. Here, solutions correspond to Filippov sohsi(seel[7] for a definition of such
solutions) associated to the differential inclusiog Jox — Inensign(wn(X)). This fundamental
result is obtained by building a Lyapunov function whichvaié instrumental for the rest of the

paper. We provide its construction below. Fox1 < n, first definew : R' — R, as

X . ' (Bl gy (Bt '
W (X1, -+, %) =/ [Pt — [vi_q]Ptds= b : Vi1 — Viea 1A (= visa).
Vi1 Bi-1+1
9)
Note that‘;ﬂ)q = w (X1, --,%). Then the Lyapunov functiol, is defined as
n
Vn(X) = ZW.(xl,--- %), (10)
i=
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Vn o . . . . .
and one ha o = wn(X). The key inequality then is the following one. Thanks to hgereity
properties, the time derivative &f, along non trivial trajectories ok = J.x+ enu, which is

denoted by, can be upper bounded by

Vi < —CaV& (X) + wn(X) (U + Insign(wn(x)), (11)

where ¢, is a postive constant and := Zéﬂj) < 1. If one chooses the feedback law=

—Insign(an(x)), TheorentlL follows at once.

Remark 4. In [14], Theoren{l is established for homogeneity degfeek/n,0) only. However,
the proof there extends readily to the case of a homogeneityed equal to—1/n which
corresponds to what is given in the present paper, as welloath¢ case of a homogeneity

degree equal to zero, which corresponds to a linear feedback

Note also the following technical inequality (to be useceiatholds true: for eveng > 0,
there existK(C) > 0 such that, along any trajectory-) of X = J,x+ eyu with |u| < 1, the time

derivativeV,, of Vi (x(+)) verifies a. e.
[Val < K(C)V (x(1)), if Va(x(t)) = C. (12)

To be completely rigorous, Ed. ([11) actually holds almosrgtwhere on the open set of times
t so thatx(t) # 0. For Lp-stabilization purposes, one can always work on this seinoéd. We
will therefore assume for the rest of the paper and withouth&r mention that we evaluate
guantities of interest along pieces of non trivial trajee® passing through the origin at isolated
times.

We now proceed with thép-stabilization of the control system= J.x+ e,u. However, we
must consider a similar definition to that given in Definit@@rvhere the S-functiow is replaced

by the functionsign We then consider the trajectories of the perturbed system

X(0) =0 for p finite,
0) p (13)

X = JnX — Inensign(ah(x) +d),
x(0) € R" for p= oo,

whered € Lp(Ry) and p € [1,].
We prove the following result, which is reminiscent lof-stabilization.

Theorem 2. Let pe [1,]. For every de Lp(R1) and x in the set of solutions of the Cauchy
problem defined by Eq13), one has
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(signp IV (Xa)llp < zcir:‘||d||p for p finite. Moreover, if3 := a(p— 1), one has that
20PA+B) L 1s
Vo) o < (B E Py

n
and >4 tends to zero at infinity;

(SigN)e  liMsup, VY (x4(s)) < 1:||d||oo.

Proof. The key inequality relative to Ed._(IL3) is the following. Fe@rery measurable function
d defined onR, and every non trivial trajectory of Eq_(l13), the time defiva of V,, along

such a trajectory verifies, for almost every non negativeetim

Vi(t) < —caVy (X(t)) + 2ln|d(1)]. (14)
Indeed, from Eq.[(11), one deduces that
Va(t) < —GaVid (X(1)) + I (X(1)) (Sign(@n(x(1))) — Sign(an(x(t)) +d(1))).
It Jan(x(t))] > [d(t)], thensign(en(x(t))) = Signan(x(t)) +d(t)) and if |an(x(1))| < |d(t)], then
|an(X(1)) (sign(wn(x(t))) — sign(an(x(t)) +d(t)))| < 2|d(t)].
From Eq. [14), we deduce at once It€Bign)e.
As regards Itengsign)p for p € [1,), set = a(p—1). We first multiply Eq. [(14) b))x/rf3 (x(1))

and then integrate it between= 0 andt =T whereT > 0 is arbitrary. We obtain that

B+1
D) e, [ < 2 [ a0V e 1)

If p=1, we immediately obtain the inequality in Itefsign); by letting T tend to infinity. If
p > 1, we apply Holder’'s inequality to the right-hand side of di®ve inequality and proceed
as forp=1 to get the first inequality in Itenisign)p.
For the sup-norm estimate, one plugs theestimate oV to get that, for everyl > 0,
Vi ()
B+1
thus implying the second part of Itefsign)p.

=
< 2ln||d][plVa'Ip

To obtain the claim on convergence to zero as time tends toitinfiwe first notice that
liminfi_. Vh(X(t)) = 0 due to the convergence of the integral. Reasoning by atiotian, we

deduce the existence ef> 0 and two sequences of timés) and (t;) such that, fol > 1,

S <ti, fims =c, lim Vn(x(s)) =0, VE L (x(t)) > .
—>00 —r 00
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Multiplying Eq. (I4) byVa(x(t))? and then integrate it betweén=5 andt =t, , we obtain that
)
£ <VIE (1)) < VIE () + 2n(1+B) [ [a(0) M (x(D)dt
S

Since the right-hand side converges to zerd tends to infinity, we derive a contradiction and

conclude the proof of the theorem.

Remark 5. The differential inequality{1d) shows that \ is an I1SS-Lyapunov function for=

JnX— Inensign(an(X) +d), rendering that system ISS according to![26, Theorem 5]

V. SOLUTION TO THE FINITE-GAIN Lp-STABILIZATION PROBLEM

First of all, one can use = sign(wh(x)) to stabilizex'= Jyx— ;—l%a(u) but this feedback
is not anLp stabilizing feedback for any € [1,] since the perturbatiod = —sign(wn(X))
after a certain time on appropriate intervals of time woukld/arbitrarily large trajectories. The
second attempt woud consist in taking- wnh(X). We are not able to prove that it is a stabilizing
feedback for(), i.e., the closed-loop syster= Jx—Ineno(wn(X)) is GAS with respect to the

origin. We however get the following proposition.

Proposition 1. Consider the perturbed systex= JyX — Inenok(wh(X) +d) where o is an S-
function, k> 0 and de L. (R.. Then, there exists a positive constant-© and k large enough
such that, along any non trivial trajectory of the above peboed system, one gets
. 2, 1+C
im supvi (x4(s)) < =(— =

S0 ~ Cp

+2|[dl]eo)- (16)

Proof. This simply results from EqL(34).

Moreover, numerical simulations (with = s, k > 0 large) seem indicating that it does not
hold true. Indeed, the problem occurs when trajectoriep@@eh the origin, and in that case, the
saturated feedbaal(wn(-)) tends to zero (instead of keeping a constant amplitude apa@u
to the feedbacksign(wn(x))) loses its stabilizing effect. This is why we had to replabe t
feedbacku = wn(x) in a neighborhood of the origin, obtaining a discontinucesdback.

For that purpose, we considire R" and a real symmetric positive matri such that, for

everyp € [g, 2], it holds

(In— plnenK TP+ P(J — plhenK™) < —ldh.
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SuchK and P do exist according ta [5] (which was inspired Ky [10]). Boe R", define the
positive definite function/y(x) = (x' Px)1/2 and the feedbackx(x) = KTx. Note that one has
the following inequality along every non trivial trajecyoof X = (J, —r(t)lnenKT)x+ end,

Vo < —CoVo -+ lo|d], (17)

wherecy,lg are positive constants and-) is any measurable function taking values[gfl, %]'
For k > 0, we then define the feedback: R" — R by

X), If Vo(X) > A,
0(x) = wn(X) 0(X) (18)
@i Vo(x) < A,
where the constar is chosen small enough so that
max |ap(X)| < min(1, by, by). (19)

Vo(X) <A
We next state the main result of the paper.

Theorem 3. For A > 0 small enough so that EqI9) holds true,o an S-function and k- 0
large enough, Systertk) given byx = Jx+eno(u) is finite-gain Ly-stabilizable by the state
feedback u=kw(-) for every pe [1,0].

Remark 6. One must recall that the fundamental work[25] provides atéigjain L,-stabilizer
with arbitrarily small gain. In our case we reach the same dosion by simply reparameterizing

the trajectories o = Jyx —Inén g (wn (X)) to rDrX(;), where r>0and Dy = diag(r"t,---,r,1).

The proof of Theoreni]3 is actually based on the next promwsitTo state it, we need
the following definition. LetW be the positive definite function ové&" defined byW(x) =
min(Vo(X), V¥ (X)) which tends to infinity ag/x|| tends to infinity.

Proposition 2. For A> 0 small enough so that Eq19) holds true,o an S-function and k 0
large enough, the feedbackvk:) defined in Eq.(I8) is an Ly-stabilizing feedback fox =

JnX — U':meha(u) for every pe [1,0|. More precisely, we prove that, for A0 small enough so

that Eq.(19) holds true,o an S-function and k- 0 large enough,
(S—o) if p =, there exists € > 0 such that, for every & L.(R.) and trajectory of
X = Jnx— —1e,o(kw(X) +d)), one has

Ot

limsupW(x(s)) < Co||d]|co- (20)
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(S—p) If pe[1,), there exists > 0 such that, for every & Lp(R,), one has
IWX()l[p < Cplld]p, (21)

for every trajectory ofk = Jyx — a'jwena(kw(x) +d)) starting at the origin and all of

them converge to the origin at infinity.

Proof of Proposition [2. Up to a linear change of variable, we assume with no loss of
generality thato, . = 1. We also fixA small enough so that Ed._(19) holds true.

We first set some notations. We ugg. , Vg, V§'. andVg_ respectively to denote the sets
{X|Vo(x) > A}, {x|Vo(x) <A}, {x|Vo(X) <A} and {x| Vo(x) = A} respectively. Foil >0, we
setVg:!, Vo andVy'' respectively as the intersections\i., V&, V& andV4L with [0,T]
respectively. Finally seta = min, . Vn(X) andVa = MaXyp Vh(X).

Since we are dealing with a discontinuous feedback, we mrestige what we mean by
solutions ofx'= J.x— Ineno(kw(x) +d). It is enough to consider the cade= 0. First, define
for x e R" the closed interval(x) of R delimited by oy (wnh(x)) and an(X). In the open se‘t/(f>,
trajectories are absolutely continuous curves solutidres differential equation with continuous
right hand-side. At its boundar\j(f:, the selection made among trajectories of the differential
inclusionx € J,x— Inenl (X) as given by Eq[(18) is well-defined because any nontrivaéatory
of X=Jnx—Inena(KTx) starting onV§'_ stays inV§'. for all non negative times.

The proof of the theorem is based on the following two ineljeal whose proofs are given
in Appendix.

(i)  On the open se‘t/(f>, the time derivativeVy(-) of V;, along trajectories ok = Jx —

Ineno (kw(x) +d) verifies almost everywhere

&
2

(i)  On the closed saf(fg, the time derivative{/o(-) of Vo along non trivial trajectories of

Vi < =2V (x(t)) +4ln|d]. (22)

X = JnX— Ineno (kw(x) +d) verifies almost everywhere
Vo < —%Vo(x(t))+4I0min(1,|d\). 23)

We start with the case = . Let X(-) be a non trivial trajectory ok = JyX— Ineno(kw(Xx) +d).

Assume first that there existgs> 0 such that one of the following alternatives occurs:
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(a) eitherVp(x(t)) <A for everyt > to, and then limsup.,Vo(x(s)) < %Hd”oo by using
Eq. (23);
(b)  or Vp(x(t)) > A for everyt > tp, and then limsup,, V¥ (x(s)) < %?Hd”oo by using
Eq. (22).
If such atp does not exist, then one h\i§‘> = Ux>olk Wherely = (s, tk) is a non-empty interval,
limy_, Sc =00 and there is a subsequenég) tending to infinity so thati, < s 1. By integrating
Eq. (23) onlty,sq+1] (or part of it), one gaets thah < %Hdnm. SetL :=limsup, ., V7 (X(9)).
If L<2V7, thenL < Cp|d|je with Cy = 33410

A
and up to a subsequenR,<fy in Iy for everyk > 0 so that,

If L>2V{, there exists, foe > 0 small enough

VI (x(&)) =V (x(tk)) =L —¢, andVZ(x(s)) > L—¢€ on (5, ).

Integrating Eq.[(22) ofé, ], then lettinge tend to zero, one getd). That concludes the proof
of Item (S— ).
We next turn to the proof of the theorem fpre [1,). Let x(-) be a non trivial trajectory of

X = JnX— Ineno(kw(x) +d). For T > 0, one has the following disjoint union
0,T] =V uvgl v

Assume first thav(f;T is empty. By multiplying Eq.[(23) bwop_l and integrating ovejo, T],

one gets that
8lp

c
AT . AT .

Assume now, > is non empty and thug,>_ is non empty as well.

Multiplying Eq. (22) byVi¥ *~Y, integrating it oveNz"!

>

Vol pjory < ——lldllpjo.1)-

and applying Holder’s inequality if
p>1 leads to
a(p-1y, & ap / a(p-1) ap|p—1
[r ¥ /vg}gv" (X A [ O] < Al PP
By applying now Young’s inequality ip > 1 to the right-hand side of the above set of inequalities,

one deduces that there exists a positive conglagtonly depending ore,, |, and p so that

—1)\ C
WV N [ VEP()dt < Copld (24)

. A,
V0,> 4 VO.> 770>

The absolutely continuous functidn— Vo(x(t)) is constant on the measurable $gt' . If its

Lebesque measuﬂet/OA’:T | is positive, then there exis® C VT with | F |=| VOA’:T | so that the
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time derivative of\p(x(t)) is equal to zero fot € F. By using Eq.[(Z2B), we get that, for almost
everyt EVOA’:T, A=Vo(x(t)) < %|d(t)|. That implies thatA | VOA’:T |Y/P< \d||pVA.T. On the other

] ’ V0,=
hand, integrating Eq[L(12) OVMGAJ yields that

K(va)VoP
< —— 52 d|?

Dy -1 AT
[ VPR <KOmVE T [ < KOmVEP VG < =g

A
0.= VO.:

By using Young's inequality ifo > 1, we deduce that there exists a positive constant only

depending orcy, I and p such that

1) C
VA,TVnam )|V”|+Zn VA.TVOp(x(t))dt§C27p||d||gyv§f. (25)

o . ~
It remains to obtain a similar estimate vﬁj The latter is an open set @, T| and since the
trajectory starts at the origin, one has tldét<T = Uo<j<alj(sj,tj) Ult, whered < oo, Ig = [so,10)
with =0, |j = (sj,tj) for 1 < j <J andl¢ is either empty or equal téss,t] with ty =T.
ThenVy(x(t)) = A for t =tg,s¢ andt = sj,tj for 1 < j < J. One next multiplies Eq[(23) by
Vop_l, integrate it and apply Holder inequality if > 1 on each interval;, 0 < j <J and onls.

One then obtains

Co : .
£ S INols < 4lo V8l < bl Vol (26)
whereE = 2" if | =lp, E=0if I =1}, 1< ] <J andE = XT=A jf | — | By using

Young's inequality ifp > 1, we deduce that there exists a positive constanptonly depending
on ¢y, |, and p such that
Co
B+ [ V8 < Capldl}. @)

with the same notational conventions férl as above.

We now need to upper bourdt; := [, Vi ® YV, by a constant timegd| o, on each interval
ap

. v
|. For| = lg, settingCyp = xp, ONE has

Va(X(t))oP V7P AP
Inty, = )T Y < Cap— < Ca.Caplld -
ap ap p ’
Forl =1j, 1< j <Jandls we consider two cases, whether mip > "7A or not.

In the first case, we rely on Eq.(12) to obtadimt; < K(‘%\)VAO"O |1 |. On the other hand, there
existsCa > 0 such thaty(x) > Ca if Vih(x) > . Therefore| | | is bounded by a constant times

Hvoﬂsl and one deduces the existence of a positive conSlggtsuch that

Int; < Csp|/d||?

Jo*
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Assume now that miiv, < "7’* With no loss of generality, we can also assume thgt> 0
otherwise we are done. B = a(p—1) and the extremities of ares andt, recall that
1 1
(1) W (x(s)
B+1 ’
with Vih(X(S)) > va. Then there exists < f in (s t) such that

Va(X(8)) = Va(x(f)) = va andVi(X(+)) > va on(s,§ U 1).

kv
One deduces thdnt; < tﬁH

Collecting all our estimates on tHet, yields the existence of a positive consté&t, such
that

Int =

and we are back to the first case.

VPV, <
VO<

VAT

Gathering now Eq.[(26) and(R7) with the above estimate, wetlge existence of a positive
constantCs , such that
VP (X(T
o (X( )) Vn(p 1Vn+co/ <o
p Vb<
Setc= w. By adding Egs.[(24),[(25) and_(28), we get the existence obsitipe
constaniCg , such that

p
s (28)

VE(X(T) Vi () | b
D) YOI [T We < Copldl? gy (29)
with possibly the term\% not appearing ifly = 0. In any case, by letting tends to

infinity, we get Eq.[(2IL). As regards the convergence to thgroof any non trivial trajectory,
first notice that liminf_. x(s) = 0. Then, there is an increasing sequence of tifhestending
to infinity so that lim_.X(tj) = 0. Forl > 0, consider any tim& > t; so thatx(t) remains in
V&g for t € [t;, T]. Multiplying Eq.[23 byVO'O*l and integrating it oveft;, T], one gets that
VP(x(T)) < VP(x(t)) +4|0/°°V0p1|d|‘
p 4
The right-hand side tends to zero lagends to intinity. One deduces that flolarge enough, the

trajectory remains ir\/oA< for t >t and the above estimate is actually valid for everyt,.

Remark 7. Eventhough we did not exhibit an ISS-Lyapunv functiox fod,x— U'jw eno (kw(x)+

d)), the contents of IteniS— ) in Proposition[2 show that the above system is indeed ISS

according to [26, Theorem 2]
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Proof of Theorem[3. In order to derive the theorem from Propositidn 2, first rekmidue
following: in the argument of Propositidd 2, if the positidefinite functionV,, is replaced by a
positive definite functiorZ veryfing Eqs.[(I2) and(22) for some positive constaft€), ¢, dn
and somed € (0,1), then one obtains a proposition similar to Proposifibn 2 nehdesides
new constants in Eqd. (R0) arld121), one replaces the posiéfinite functiodV by a positive
definite functionW = min(Vo(x),Z%(x)).

Recall thata = éﬂ Y was defined in Eq.[(11). Fou € (1—a,1], let Z, be the positive

definite function equal tv4'. If Z“ denotes the derivative &, along non-trivial trajectories of
the perturbed closed-loop system- Jx—enlno(w(X)), then Z,J = uvn“_lvn and one deduces
at once the generalization of EQ. {22) only valid on the omN§>,

4uly |d\
Vn

: ucn, .,
Zu < =V < —cuZil' +1uld],

where ¢, |, are positive constants anal, = = ff“ Since Z““ VA one can use the
preceding remark, one immediately deduces a propositimilasi to Propositiori 2 folW, :=

min(Vo(X), Vit~ 1+O’( X)). Furthermore, notice from Ed.](9) that, fordli < n, there exists a positive
constantCj so that|xi|l3if1+1 < CW < GV, For 1<i <n, first notice from Eq.[(9) that there
exists a positive consta; so that\x,\ﬁI 1+l < GW < GV, After settinguj =1—a + B. +1’
one gets thatx, < C/Vi'™ 1 and then|x| < C'W, for some positive constantg/,C/. One
deduces, for Xi <n, that theLp-norm ofx; is upper bounded by a constant times khenorm

of the internal disturbance, and then the finite-gain property for the state feedhaekw(x).

V. Lo-STABILIZATION IN THE PRESENCE OF EXTERNAL DISTURBANCES

In this section, we focus on the,-stabilization of the perturbed system
X = JnX+ €eno(u+d) + E +dnen, (30)

whereu, d,d, € R andE € R"1 verifiesE' e, = 0. Hered corresponds to an internal disturbance,
E to a mismatched external disturbance (i.e. misaligned thighinput directiorg,) andd, stands
for the matched external disturbance. We assume thatdathe (R, ) andE € Lo(R,,R"1).

As for d,, we assume it belongs to the subsp&xeintroduced in([32] and defined

t
Q. ={f:R; — R, measurable such that sup f(s)dg < o}.
t>0 /O
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For f € Qe andE = (dy,---,dn_1) € Le(R,R"1), set

2p2

. to n—1 P2
N(f):=lim sup | | f(s)ds, F(E):=|E]+ Z||di||£,'+1. (31)
T®t>t >t =
We next provide a variant of the feedbagk= k(x) given by Theoreni]3 in order tb. stabilize

the perturbed systeri (30).

Theorem 4. There exist positive constants-l- - ,1,, defining the functioru,(-) in Eq. (), A> 0
small enough so that Eq19) holds true, and k- 0 large enough, such that, & an S-function,
the dynamic feedback defined by-kw(x— ye) with y(t) = [Sdn(s)ds, t> 0, Le-stabilizes the
perturbed syster{80) in the following sense: there exists & 0 such that, for every € Lo (R.),

E € Lo(R,,R"™ 1), dy € Qs and every trajectory ok = Jox— O'jmena(kw(x—yeh) +d))+E+
dnen, one has
lim supW (x(s)) < Ceo (||d|[eo + N(dhy) + T (E)). (32)
S—00

Proof. SetE = (dy,---,dn_1)" gathering then— 1 mismatched scalar external disturbances.
First of all, note thay(-) is anL.-function sinced, € Q... By performing the change of variable

X = X—ye,, the perturbed system= J,x— '”mena(kw(x—yeh) +d)) +E +dnen reducesX =

Oy

JnX — Aeno(kw(X) +d)) +F with a mismatched disturbande = (dy,---,y+dn_1)T. It is

0o

therefore enough to prove the theorem in the ahse 0 and thusy = 0.

We essentially follow the lines of the proof of PropositldnFdr that purpose, one needs to
modify inequalities[(2R),[(23) so as to take into accountrtismatched disturbande. Since
the Lyapunov functionVy is quadratic, it is immediate to get an inequality extendiwg (23)
where the term mifl,|d|) is replaced by mifi, |d|) + ||E|| by possibly changing the constants
Co,lo.

As concerns the modification of Ed._{22), the main ingrediemmsists of the following
extension of Eq.[(11) in the presence of the mismatched rbatheceE, which is proved in
Appendix: there exist positive constanis- - -, |, defining the functionuwy(+) in Eq. (8) so that
the time derivative o¥, along non trivial trajectories of = J,x+enu+E, whereETe, =0, can

be upper bounded as next,

n-1 2py
Vi < —CaViy' (X) + @h(X) (u+ Insign(an (X)) +C2 ; |dif P, (33)
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whereC,,C; are positive constants. It is then immediate to get Eg. (d@pfthe argument given
for Eq. (33). From that, we simply reproduce the same argisngiven to obtain Eq[{22) to
derive its generalization corresponding to the presenctne@fmismatched disturbanée one
replaces the termlidid| by 4Ln(|d|+ 3} |di] F’I+1) for some positive constarti,. The proof of
TheorenT# then proceeds as that of [t€81+ ) in Theoren[2 and one gets Theorém 4.

Remark 8. One should notice the solution proposed in Theokém 4 for thethbilisation of
the perturbed systeif80), as well as that given in Theorer2sand 3 in [32] present a possible
restrictive feature when the matched perturbatignisl not zero because, for all of them, the
proposed feedbacks depend gn d

VI. APPENDIX
A. Proof of Eqs.(22) and (23)
We next provide an argument for EG.122). Consider a trajgaibx = Jox—Ineno (kw(x) 4-d)
lying in Vg.. Then one has
X = JnX— Inensign(ken(x) 4 d) — Inen (0 (kan(x) +d) — sign(ken(x) 4 d)).
Seté(t) = kan(X(t)) +d(t). Using Eq. [(I4), one deduces that
Vo < GV (X(D) + 21+ DId(t)| + 7 IE )] | 0(& (1)~ SignE(n) .
If |kaon(x(t)) +d(t)| > 1, then, by using EqL5)
01| 0(E (1) ~sianE (D) |< T2 <

Otherwise Vp < —CV9 (X(t)) +2(1+%)In|d( )+ 5 2n which implies that one always has that

(2+Co)|n
k

Using the fact that the trajectories IiesW@>, one finally deduces that

LJFEU)”‘+2(1+E)In|d(t)|.

By taking k > max(2, 2+C")'”) one derives Eq[(22).
We now turn to a proof for EqL(23). Spt=ming<; — 968 50 andp := =MaXg<1—g 98 Consider

Co.
Vi < —CaVi (X(1)) +

+2(1+§)In|d(t)|. (34)

. C C
Vo < ~ SV (X(1) ~ TR+

a trajectory ofx = Jnx— Ineno(kw(x) +d) lying in V(fg- Then one has
%= (Jn—r(t)enKT)x— Inen (0 (wn(x) +d) — o(an(x))),
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wherer (t) = olw (SE(S%)) andr(t) € [p, p]. We can now use lterti) of Definition[d, apply Eq.[(T7)

and conclude.

B. Proof of Eq.(33)

The argument actually consists of following the steps of thmiginal proof of Eq. [(1l)
as elaborated by Hong in_[14] while incorporating the exaémtisturbancesls,---,d,_1 and
handling their effect.

To this end, we need to recall several technical data us€tidhdnd in particular to precise
the notion of homogeneity mentioned when the Lyapunov fonct,, was first considered in
Eqg. (10). For I<i<nande >0, let 5‘,,:'CTi be the family of dilations defined oR' by 68'5‘(x) =
(eP1xq,---,€P%) wherex = (x1,---,x) €R!, i = (py,---, pi) is defined in Eq.[{7). A function
V:R'— R is said to be homogeneous of degree- 0 (with respect to the family of dilations
8P) if V(ePixq, -, €Px) = £9V(x) for everyx € R,

For 1<i < n define the positive definite functioh : R' — R asVj(x) = zij:J_VVj (X1, ,Xj)
and, for 1<i <n-1, the constants

2pp n - 2p
I+p—p’ " Pt
Note thataii —|—% =1 for 1<i<n-—1. As proved in[[14], one has that, for<li <n, W andV,

are homogeneous of degree-p, and, along non trivial trajectories of the unperturbed eryst

a; =

X = J.X+ eqU, the time derivativey; of V; is homogeneous of degre@x
For 1<i<n-—1, we prove by induction that there exist positive consténts- ,1,,_1 so that
] i [ i
Vi<—S 2w L1 V) +C S |di|M. 35
i < j212| %+ (X1 VI>+CI'Z]_| il (35)
We start the induction at= 1 and get, for any choice of positive,

V1= [x]P (%2 +d1) < —lg|eor (%) + oo (Xa) (X2 — V1) + @ (Xa ) dha.

By using Young's inequality, one getso (x1)da| < % 7| (xq)|% 4 c1|d1|™, for some positive
constantc;, and hence Eq[(35) far=1
Assume we have established EQ.](35) fer 1 with i <n—1 and some positive constants
l1,---,li_1. Then one gets
Vi = \7i—1+Zij 11‘2\>I<V(X1+1+d )+ @ (X1 — Vi) + @vi+ wd;,
< _Zij:1§|wj| J+oq(x,+1—v,)+C,_1zj:1\dj|'71+Vio,
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wherel; > 0 will be chosen below and
I 1 ow
VP =—5lw|%+ Z 2%, (Xj+1+dj) + @-1(X — Vi—1) + @di,

By applying Young’s inequality tq)%d” and|wd|,

one deduces that® <V!+-c|di|™, where

i—1 i—1
AW 1 d
Cf| C{] _ .
w| +§ %, ,+1+§ ) dx,| +w_1(% —Vi_1).

The last step of the reasoning consists of showmglthao can be chosen large enough so that
V! < 0. This is done by first noticing that! is homogeneous of degreg2and by checking
that the homogeneity argument provided at the end of pagea284the top of page 235 of
[14] exactly applies to the present situation. That conetuthe induction step and the proof of

Eq (35).
Again by following the end of the argument in the top of pag& 28 [14], one deduces

Eq. (33) from Eq[(3b) since there is no external disturbancete dynamics ok,.
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