Yacine Chitour 
  
Mohamed Harmouche 
  
Salah Laghrouche 
  
L p -stabilization of integrator chains subject to input saturation using Lyapunov-based homogeneous design

. These L p -stabilizing state feedbacks are built from homogeneous feedbacks appearing in finite-time stabilization of linear systems. We also provide additional L ∞ -stabilization results for the case of both internal and external disturbances of the n-th integrator, namely for the perturbed system ẋ = J n x + e n σ (k(x) + d) + D where d ∈ R and D ∈ R n .

I. INTRODUCTION

In this paper, we address robust stabilizability issues for an integrator chain subject to input saturation, i.e., System (Σ)

(Σ) ẋ = J n x + e n σ (u), (1) 
where n is a positive integer, x ∈ R n , the matrix J n is the n-th Jordan block, i.e. the n × n matrix with entries (J n ) i j = 1 if i = j -1 and zero otherwise, the vector e n ∈ R n has all its coordinates equal to zero except the last one equal to one, and σ : R → R is a saturation function whose prototype is the standard saturation function σ 0 (s) = s max (1,|s|) . In the sequel, we refer to System
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Note that semi-global stabilization issues for linear systems subject to input saturation have been essentially all addressed, thanks to the work of Lin, Saberi and their coworkers by using ingenious low-and-high gain design technics (cf. [START_REF] Hu | Control systems with actuator saturation: analysis and design[END_REF] and references therein).

Consider then a stabilizing state feedback k for (Σ), i.e., a static feedback law u = k(x), where k is a real-valued function defined on R n so that every trajectory of the closed-loop system is globally asymptotically stable (GAS) with respect to the origin. Note that we do not assume k to be even continuous, which will require if it is the case to precisely define solutions of Cauchy problems. Nevertheless, in order to test robustness of k, one considers, for p ∈ [1, ∞],

the trajectories x d of the perturbed system ẋ = J n x + e n σ (k(x) + d), [START_REF] Blondel | Open problems in Mathematical Systems and Control Theory[END_REF] starting respectively from the origin if p is finite and from any point of R n if p = ∞ and which are associated to an arbitrary disturbance d ∈ L p (R + , R), i. e. d has finite L p -norm introduced by Sontag, cf. [START_REF] Sontag | Input to State Stability: Basic Concepts and Results[END_REF]. In case the K ∞ function γ p is linear, i.e., γ p (x) = γ p x for x ≥ 0, the perturbed system is said to be finite-gain L p -stable with finite gain γ p . One also says that Eq. ( 2) stands for the n-th integrator subject to input saturation with internal disturbance d by opposition with the dynamics

( d p := R |d(t)| p dt 1/p < ∞ if p is finite and d ∞ := ess. supp. |d| < ∞ if p = ∞).
ẋ = J n x + e n σ (k(x)) + D, D ∈ R n , (3) 
which is referred as the n-th integrator subject to input saturation with external disturbance D.

The problem at stake belongs to a more general issue, that of stabilizing globally over R n linear systems subject to input saturation of the type (Sat) ẋ = Ax + Bσ (u), where x ∈ R n , u ∈ R p with p a positive integer and the pair (A, B) is controllable. Here, the R p -valued saturation function σ (u) is equal to (σ 1 (u 1 ), • • • , σ p (u p )) T where u = (u 1 , • • • , u p ).

DRAFT Global stabilization of (Sat) can be achieved if and only if the eigenvalues of A have non positive real part, cf. [START_REF] Sontag | Mathematical control theory: Deterministic Finite Dimensional Systems[END_REF]. Most delicate issues arise when the spectrum of A lies on the imaginary axis and we will assume that this is the case from the rest of the discussion. The first stabilizing state feedback k opt is the one given by the optimal control problem consisting of transferring any point of R n to the origin in minimum time along trajectories of (Sat), cf.

[24] for a description of the optimal synthesis corresponding to the double and triple integrators. As concerns their L p -stabilization properties, it was shown in [START_REF] Liu | On finite-gain stabilizability of linear systems subject to input saturation[END_REF] when A is marginally stable that the linear state stabilizing feedback is also L p -stabilizing for every p ∈ [1, ∞], with additional results for external distubances. As for the double integrator, the linear stabilizing feedbacks are proved to be L p -stabilizing for every p ∈ [1, ∞] in [START_REF] Chitour | On the L p stabilization of the double integrator subject to input saturation[END_REF], which also contains a partial answer for an open problem on L 2 -stability proposed in [START_REF] Blondel | Open problems in Mathematical Systems and Control Theory[END_REF]: that problem asks to compute the L 2 -gain of the input-output map d → σ (x + ẋ + d), i. e. the smallest positive number γ 2 such that for

every disturbance d ∈ L 2 (R + , R), one has σ (x + ẋ + d) 2 ≤ γ 2 d 2 ,
where x is the solution of the Cauchy problem ẍ = -σ (x + ẋ + d), x(0) = ẋ(0) = 0. Besides the proof in [3] that γ 2 is finite, non linear stabilizing state feedbacks with better performances than the linear ones (see also [START_REF] Forni | A family of global stabilizers for quasi-optimal control of planar linear saturated systems[END_REF] for other non linear stabilizing state feedbacks) are also provided together with results for external distubances. One should notice that the robustness results of linear state feedbacks for the double integrator (and more generally planar systems) have been used for the robust stabilization of cascade and delay systems, cf. [START_REF] Angeli | Robust stabilization via saturated feedback[END_REF], [START_REF] Chitour | On the continuity and incremental-gain properties of certain saturated linear feedback loops[END_REF], [START_REF] Yakoubi | Linear systems subject to input saturation and time delay: global asymptotic stabilization[END_REF], [START_REF] Yakoubi | Linear Systems Subject to Input Saturation and Time Delay: Finite-Gain L p -Stabilization[END_REF], [START_REF] Gruszka | Bounded tracking controllers and robustness analysis for UAVs[END_REF], [START_REF] Mazenc | Global stabilization of oscillators with bounded delayed input[END_REF].

It was then proved by Fuller and Sussmann, Yang ( [START_REF] Fuller | In-the-large stability of relay and saturating control systems with linear controllers[END_REF], [START_REF] Sussmann | On the stabilization of multiple integrators by means of bounded feedback controls[END_REF]) that the n-th integrator, n ≥ 3 cannot be stabilized by linear state feedbacks u = k T x and thus one has to resort to non linear state feedbacks. Thanks to Teel [START_REF] Teel | Global stabilization and restricted tracking for multiple integrators with bounded controls[END_REF] and Sussmann, Yang and Sontag [START_REF] Sussmann | A general result on the stabilization of linear systems using bounded controls[END_REF], general and explicit stabilizing state feedbacks were constructed using nested saturations, i.e., feedbacks N l (•) built inductively as follows: N 0 (x) = 0 and, for 1 ≤ j ≤ l, one sets N j (x) = λ j σ j (k T j x + N j-1 (x)) where the positive integer l is the level of the nested satutation N l , the λ j 's are constants and the k j 's are vectors of R n . However, by taking disturbances eventually equal to d = -N p-1 (x) and using the abovementionned result of Fuller, Sussmann and Yang, one readily deduces that DRAFT nested saturations cannot be L p -stabilizing feedbacks of the n-th integrator, n ≥ 3 and p ∈ [1, ∞].

Related L 2 -stabilization results for the feedbacks built with nested saturation were obtained by Teel in [START_REF] Teel | On L 2 performance induced by feedbacks with multiple saturations[END_REF] for external disturbance d, i.e., for perturbed systems ẋ = Ax + Bσ (k(x)) + d where (A, B) is controllable, the eigenvalues of A have non positive real part and the disturbance d has finite L 2 -norm. One should also mention the construction of another type of stabilizing feedbacks due to Megretsky (cf. [START_REF] Megretski | L 2 output feedback stabilization with saturated control[END_REF]), which are state dependant linear, i.e., of the type u = B T P(ε(x))x, where the low-gain parameter ε(x) is state-varying and defined as

ε(x) = max{r ∈ (0, 1]| x T P(r)x Tr(B T P(r)B) ≤ ∆}, (4) 
where ∆ > 0 is fixed and P(r) is the unique symmetric positive definite solution of a Ricatti equation parameterized by r. Then, using a variant of Megretsky feedbacks, Saberi, Hou and Stoorvogel were able to provide in [START_REF] Saberi | On simultaneous global external and internal stabilization of critically unstable linear systems with saturating actuators[END_REF] the first solution to the finite-gain L p -stabilisation problem associated to the internally perturbed system (2) for p ∈ [1, ∞]. In addition, it has been recently shown in [START_REF] Wang | Control of a chain of integrators subject to actuator saturation and disturbances[END_REF] that Megretsky feedbacks provide L ∞ -stabilization properties for the n-th integrator subject to input saturation with external disturbances [START_REF] Chitour | On the L p stabilization of the double integrator subject to input saturation[END_REF]. In that work, no a priori bound only depending on the system is required for the external disturbance and more importantly a crucial distinction is pointed out between mismatched disturbance, i.e., e T n D = 0 and matched disturbance, i.e., e T j D = 0 for 1 ≤ i ≤ n -1, where the e i 's are vectors in R n with zero coordinates except the i-th one which is equal to one. However, the practical interest of these beautiful feedbacks is questionable. Indeed the real-time implementation of that feedback requires the real-time solving of the optimization problem (4). Furthermore, no approximated off-line computation can be envisioned based on finite covering of the state-space.

To see that, first recall from [START_REF] Wang | Control of a chain of integrators subject to actuator saturation and disturbances[END_REF] that the matrix P(r) in Eq. ( 4) is defined as the symmetric positive definite solution of J T n P + PJ n -Pe n e T n P + rP = 0 and thus is equal to rD r P(1)D r with D r = diag(r n-1 , • • • , r, 1). Therefore, the mapping r → P(r), defined on (0, 1] and taking values in the cone of real symmetric positive definite matrices is strictly increasing as well the function E x (r) = r 2 x T D r P(1)D r x defined for non zero x. It follows that the function ε(•) defined in Eq. ( 4) is the unique solution in (0, 1] of E x (ε) = ∆ for non zero x. The fact that this equation is polynomial of degree 2n in ε together with the fact that lim x →∞ ε(x) = 0 (as shown in [START_REF] Saberi | On simultaneous global external and internal stabilization of critically unstable linear systems with saturating actuators[END_REF]) require that infinitely many quantized regions are necessary to cover the whole state-space in order to achieve off-line precomputation of (4). This is why, eventhough [START_REF] Saberi | On simultaneous global external and internal stabilization of critically unstable linear systems with saturating actuators[END_REF] and [START_REF] Wang | Control of a chain of integrators subject to actuator saturation and disturbances[END_REF] represent DRAFT important breakthroughs, there is still need for easily implementable L p -stabilizing feedbacks for perturbed systems (2) and (3).

In this paper, we provide yet another solution to the finite-gain L p -stabilization of (Σ) where our feedbacks are modifications of stabilizing feedbacks arising in the context of finite-time stabilization technics of the type Lsign(ω(x)) for appropriate constant L and continuous functions ω(•), cf. [START_REF] Hong | Finite-time stabilization and stabilizability of a class of controllable systems[END_REF], [START_REF] Levant | Finite-time stability and high relative degrees in sliding-mode control[END_REF] and references therein. These feedbacks are explicitely defined as Holder functions of the coordinates of the state x and have been successfully implemented on practical examples of integrator chains, up to order four, cf. [START_REF] Girin | High-Order Sliding-Mode Controllers of an Electropneumatic Actuator: Application to an Aeronautic Benchmark[END_REF], [START_REF] Di Gennaro | Sensorless High Order Sliding Mode Control of Induction Motors With Core Loss[END_REF], [START_REF] Rivera Dominguez | Copper and Core Loss Minimization for Induction Motors Using High-Order Sliding-Mode Control[END_REF].

Trajectories of the corresponding closed-loop system ẋ = J n x + Le n sign(ω(x)) converge to the origin in finite-time and the crucial point lies in the fact that these feedbacks come together with global Lyapunov functions which are also ISS-Lyapunov for the perturbed system ẋ = J n x -Le n sign(ω(x) + d). To pass from these systems to systems given by Eq. ( 2), one has to replace the feedback u = ω(•) in a neighborhood V of the origin by a linear feedback, which results in a global discontinuous feedback. The proof of the main result is then based on analytical manipulations using two positive definite functions, one being ISS-Lyapunov outside V and the other ISS-Lyapunov inside V . We finally extend these L p -stabilization results for L ∞ -stabilization in the presence of both internal and external disturbances as in [START_REF] Wang | Control of a chain of integrators subject to actuator saturation and disturbances[END_REF]. In particular, our feedbacks L ∞ -stabilize the perturbed system ẋ = J n x + e n σ (u + d) + D where D represents a mismatched external disturbance.

Acknowledgements. The authors would like to thank A. Chaillet for constructive comments and suggestions.

II. NOTATIONS AND MAIN DEFINITIONS

If n is a positive integer, we consider for 1 ≤ i ≤ n the vector e i ∈ R n having zero coordinates except the i-th one equal to 1. We use Id n and J n respectively to denote the n × n identity matrix and the n-th Jordan block respectively, the latter defined by J n e i = e i-1 for 1 ≤ i ≤ n with the convention that e j = 0 if j ≤ 0 or j > n. If A is any matrix, we use A T to denote the transpose 

of A. A function φ : R + → R + is said to be of class K ∞ (φ ∈ K ∞ ) if it is continuous, strictly increasing, φ (0) = 0 and lim s→∞ φ (s) = ∞. Recall that if φ ∈ K ∞ , then φ -1 ∈ K ∞ . For p ∈ [1, ∞) (p = ∞ respectively), we use L p (R + ) (L ∞ (R + ) respectively) to denote the Banach space of measurable real-valued functions f (•) defined on R + endowed with the L p - DRAFT norm f p := ∞ 0 | f (t)| p dt 1/p ( f ∞ := ess. supp. | f | respectively). If K is a measurable set of R + and f ∈ L p (R + )
(i)
there exists positive constants a 1 ≤ a 2 and a 1 b 1 ≤ a 2 b 2 for which the following inequality holds true for every x ∈ R:

a 1 x s( x b 1 ) ≤ xσ (x) ≤ a 2 x s( x b 2 );
(ii) The limits σ +∞ := lim x→+∞ σ (x) and σ -∞ := lim x→-∞ σ (x) are defined, opposite and there exists a positive constant C σ such that, for x ∈ R, 

|σ (| x |) -σ +∞ | ≤ C σ 1+ | x | . ( 5 

Remark 1. One can define a a saturation function only with Item (i). It is for technical issues

considered later in the paper that Item (ii) is needed.

In this paper, we consider stabilization issues for the control system (Σ) defined in Eq. ( 1),

where n is a positive integer, x ∈ R n , u ∈ R n and σ is an S-function. This is essentially equivalent as considering the control system on R n given by ẋ = J n x + e n u, with bounded control u. Notice that the bound on the amplitude of u is irrerelevant as regards feedback stabilization since multiplying ẋ = J n x + e n u by a positive constant C and making the linear change of variable y = Cx only changes the bound on the amplitude of u.

We next provide the definition of a stabilizing feedback for (Σ).

DRAFT Definition 2. We say that the function k : R n → R is a stabilizing feedback (SF) for (Σ) if the closed-loop system ẋ = J n x + e n σ (k(x)) is globally asymptotically stable (GAS) with respect to the origin. Note that k can possibly be discontinuous so in the case where k is not locally Lipschitz, one must not only define specifically what the solutions of Cauchy problems are and guarantee that the origin is GAS with respect to all of them.

We next provide a notion of robustness of a stabilizing feedback (see )which generalizes that of linear systems, cf [START_REF] Sontag | Mathematical control theory: Deterministic Finite Dimensional Systems[END_REF].

Definition 3. Let p ∈ [1, ∞].
We say that the function k : R n → R is an L p -stabilizing feedback (L p -SF) for (Σ) if there exists γ p ∈ K ∞ such that for every d ∈ L p (R + ) and x d in the set of trajectories of

ẋ = J n x + e n σ (k(x) + d),    x(0) = 0 for p finite, x(0) ∈ R n for p = ∞, (6) 
one has To proceed, we actually start with a preliminary solution for the L p -stabilization of (Σ) where the saturation function is replaced by the function sign. More precisely, we consider the stabilization of (Σ) given in (1) by the feedback -l n sign(ω n (x)) where l n is a positive constant (to be defined) and the feedback law ω n (•) defined inductively as follows (cf. [START_REF] Hong | Finite-time stabilization and stabilizability of a class of controllable systems[END_REF] and references therein).

(L p -S) x d p ≤ γ p ( d p ) for p finite; (L ∞ -S) lim sup s→∞ x d (s) ≤ γ ∞ ( d ∞ ).
Define the following parameters:

p i = 1 - i -1 n , 1 ≤ i ≤ n + 1 and β 0 = p 2 , β i = n -1 + i n -i , 1 ≤ i ≤ n -1. ( 7 
)
Note that p n+1 = 0, β 0 < 1 and β i > 1 for 1 ≤ i ≤ n. Then, given positive constants l i , 1 ≤ i ≤ n, define the following functions for 0

≤ i ≤ n    v 0 ≡ 0, v i (x 1 , • • • , x i ) = -l i ⌊ω i (x 1 , • • • , x i )⌉ p i+1 p i β i-1 , ω i = ⌊x i ⌉ β i-1 -⌊v i-1 (x 1 , • • • , x i-1 )⌉ β i-1 . (8) 
Note that v i is defined on R i for 1 ≤ i ≤ n and v n (x) = -l n sign(ω n (x)). One has then the following theorem.

Theorem 1. ([14]

) There exists positive constants l i ,

1 ≤ i ≤ n, such that the controller u = v n (x)
is a stabilizing feedback for the control system ẋ = J n x + e n u, with |u| ≤ l n . Moreover, this stabilization occurs in finite time.

Since the the feedback law u = v n (x) is discontinous, solutions of Cauchy problem must be specified. Here, solutions correspond to Filippov solutions (see [START_REF] Filippov | Differential equations with discontinuous right-hand side[END_REF] for a definition of such solutions) associated to the differential inclusion ẋ ∈ J n xl n e n sign(ω n (x)). This fundamental result is obtained by building a Lyapunov function which will be instrumental for the rest of the paper. We provide its construction below. For 1

≤ i ≤ n, first define W i : R i → R + as W i (x 1 , • • • , x i ) = x i v i-1 ⌊s⌉ β j-1 -⌊v i-1 ⌉ β i-1 ds = |x i | β i-1 +1 -|v i-1 | β i-1 +1 β i-1 + 1 -⌊v i-1 ⌉ β i-1 (x i -v i-1 ) . (9) 
Note that

∂W i ∂ x i = ω i (x 1 , • • • , x i ).
Then the Lyapunov function V n is defined as

V n (x) = n ∑ i=1 W i (x 1 , • • • , x i ), (10) 
DRAFT and one has

∂V n ∂ x n = ω n (x).
The key inequality then is the following one. Thanks to homogeneity properties, the time derivative of V n along non trivial trajectories of ẋ = J n x + e n u, which is denoted by Vn , can be upper bounded by

Vn ≤ -c n V α n (x) + ω n (x)(u + l n sign(ω n (x)), (11) 
where c n is a postive constant and α := 2(n-1) 2n-1 < 1. If one chooses the feedback law u = -l n sign(ω n (x)), Theorem 1 follows at once. Remark 4. In [START_REF] Hong | Finite-time stabilization and stabilizability of a class of controllable systems[END_REF], Theorem 1 is established for homogeneity degrees (-1/n, 0) only. However, the proof there extends readily to the case of a homogeneity degree equal to -1/n which corresponds to what is given in the present paper, as well as to the case of a homogeneity degree equal to zero, which corresponds to a linear feedback.

Note also the following technical inequality (to be used later) holds true: for every C > 0, there exists K(C) > 0 such that, along any trajectory x(•) of ẋ = J n x + e n u with |u| ≤ 1, the time derivative Vn of V n (x(•)) verifies a. e.

| Vn | ≤ K(C)V α n (x(t)), if V n (x(t)) ≥ C. ( 12 
)
To be completely rigorous, Eq. ( 11) actually holds almost everytwhere on the open set of times t so that x(t) = 0. For L p -stabilization purposes, one can always work on this set of times. We will therefore assume for the rest of the paper and without further mention that we evaluate quantities of interest along pieces of non trivial trajectories passing through the origin at isolated times.

We now proceed with the L p -stabilization of the control system ẋ = J n x + e n u. However, we must consider a similar definition to that given in Definition 3 where the S-function σ is replaced by the function sign. We then consider the trajectories of the perturbed system ẋ = J n xl n e n sign(ω n (x) + d),

   x(0) = 0 for p finite, x(0) ∈ R n for p = ∞, (13) 
where

d ∈ L p (R + ) and p ∈ [1, ∞].
We prove the following result, which is reminiscent of L p -stabilization.

Theorem 2. Let p ∈ [1, ∞].
For every d ∈ L p (R + ) and x d in the set of solutions of the Cauchy problem defined by Eq. ( 13), one has

DRAFT (sign) p V α n (x d ) p ≤ 2l n c n d p for p finite. Moreover, if β := α(p -1), one has that V n (x d ) ∞ ≤ (2l n ) p (1 + β ) c p-1 n 1 1+β d p 1+β
p , and x d tends to zero at infinity;

(sign) ∞ lim sup s→∞ V α n (x d (s)) ≤ 2l n c n d ∞ .
Proof. The key inequality relative to Eq. ( 13) is the following. For every measurable function d defined on R + and every non trivial trajectory of Eq. ( 13), the time derivative of V n along such a trajectory verifies, for almost every non negative time,

Vn (t) ≤ -c n V α n (x(t)) + 2l n |d(t)|. (14) 
Indeed, from Eq. ( 11), one deduces that

Vn (t) ≤ -c n V α n (x(t)) + l n ω n (x(t)) sign(ω n (x(t))) -sign(ω n (x(t)) + d(t)) . If |ω n (x(t))| > |d(t)|, then sign(ω n (x(t))) = sign(ω n (x(t)) + d(t)) and if |ω n (x(t))| ≤ |d(t)|, then |ω n (x(t)) sign(ω n (x(t))) -sign(ω n (x(t)) + d(t)) | ≤ 2|d(t)|.
From Eq. ( 14), we deduce at once Item (sign) ∞ .

As regards Item (sign) p for p ∈ [1, ∞), set β = α(p-1). We first multiply Eq. ( 14) by V β n (x(t)) and then integrate it between t = 0 and t = T where T > 0 is arbitrary. We obtain that

V β +1 n (x(T )) β + 1 + c n T 0 V α p n (x(t))dt ≤ 2l n T 0 |d(t)|V β n (x(t))dt. (15) 
If p = 1, we immediately obtain the inequality in Item (sign) 1 by letting T tend to infinity. If p > 1, we apply Holder's inequality to the right-hand side of the above inequality and proceed as for p = 1 to get the first inequality in Item (sign) p .

For the sup-norm estimate, one plugs the L p estimate of V α n to get that, for every T ≥ 0, V

β +1 n (x(T )) β + 1 ≤ 2l n d p V α n p-1 p ,
thus implying the second part of Item (sign) p .

To obtain the claim on convergence to zero as time tends to infinity, we first notice that lim inf t→∞ V n (x(t)) = 0 due to the convergence of the integral. Reasoning by contradiction, we deduce the existence of ε > 0 and two sequences of times (s l ) and (t l ) such that, for l ≥ 1,

s l < t l , lim l→∞ s l = ∞, lim l→∞ V n (x(s l )) = 0, V β +1 n (x(t l )) ≥ ε.
DRAFT Multiplying Eq. ( 14) by V n (x(t)) β and then integrate it between t = s l and t = t l , we obtain that

ε ≤ V β +1 n (x(t l )) ≤ V β +1 n (x(s l )) + 2l n (1 + β ) t l s l |d(t)|V β n (x(t))dt.
Since the right-hand side converges to zero as l tends to infinity, we derive a contradiction and conclude the proof of the theorem.

Remark 5. The differential inequality [START_REF] Hong | Finite-time stabilization and stabilizability of a class of controllable systems[END_REF] shows that V n is an ISS-Lyapunov function for ẋ = J n xl n e n sign(ω n (x) + d), rendering that system ISS according to [START_REF] Sontag | Input to State Stability: Basic Concepts and Results[END_REF]Theorem 5] 

IV. SOLUTION TO THE FINITE-GAIN L p -STABILIZATION PROBLEM

First of all, one can use u = sign(ω n (x)) to stabilize ẋ = J n x -l n σ ∞ e n σ (u) but this feedback is not an L p stabilizing feedback for any p ∈ [1, ∞] since the perturbation d = -sign(ω n (x)) after a certain time on appropriate intervals of time would yield arbitrarily large trajectories. The second attempt woud consist in taking u = ω n (x). We are not able to prove that it is a stabilizing feedback for (Σ), i.e., the closed-loop system ẋ = J n xl n e n σ (ω n (x)) is GAS with respect to the origin. We however get the following proposition. Proposition 1. Consider the perturbed system ẋ = J n xl n e n σ k (ω n (x) + d) where σ is an Sfunction, k > 0 and d ∈ L ∞ (R + . Then, there exists a positive constant C > 0 and k large enough such that, along any non trivial trajectory of the above perturbed system, one gets

lim sup s→∞ V α n (x d (s)) ≤ 2l n c n ( 1 +C σ k + 2 d ∞ ). (16) 
Proof. This simply results from Eq. (34).

Moreover, numerical simulations (with σ = s k , k > 0 large) seem indicating that it does not hold true. Indeed, the problem occurs when trajectories appproach the origin, and in that case, the saturated feedback σ (ω n (•)) tends to zero (instead of keeping a constant amplitude as compared to the feedback sign(ω n (x))) loses its stabilizing effect. This is why we had to replace the feedback u = ω n (x) in a neighborhood of the origin, obtaining a discontinuous feedback.

For that purpose, we consider K ∈ R n and a real symmetric positive matrix P such that, for

every ρ ∈ [ a 1 b 1 , a 2 b 2 ]
, it holds (J n -ρl n e n K T ) T P + P(J n -ρl n e n K T ) ≤ -Id n .

DRAFT Such K and P do exist according to [START_REF] Chitour | On the stabilization of persistently excited linear systems[END_REF] (which was inspired by [START_REF] Gauthier | Observability and observers for nonlinear systems[END_REF]). For x ∈ R n , define the positive definite function V 0 (x) = (x T Px) 1/2 and the feedback ω 0 (x) = K T x. Note that one has the following inequality along every non trivial trajectory of ẋ = (J nr(t)l n e n K T )x + e n d,

V0 ≤ -c 0 V 0 + l 0 |d|, (17) 
where c 0 , l 0 are positive constants and r(•) is any measurable function taking values in

[ a 1 b 1 , a 2 b 2 ].
For k > 0, we then define the feedback ω : R n → R by

ω(x) =    ω n (x), if V 0 (x) > A, ω 0 (x) k , if V 0 (x) ≤ A, ( 18 
)
where the constant A is chosen small enough so that max

V 0 (x)≤A |ω 0 (x)| ≤ min(1, b 1 , b 2 ). ( 19 
)
We next state the main result of the paper.

Theorem 3.

For A > 0 small enough so that Eq. ( 19) holds true, σ an S-function and k > 0 large enough, System (Σ) given by ẋ = J n x + e n σ (u) is finite-gain L p -stabilizable by the state

feedback u = kω(•) for every p ∈ [1, ∞].
Remark 6. One must recall that the fundamental work [START_REF] Saberi | On simultaneous global external and internal stabilization of critically unstable linear systems with saturating actuators[END_REF] provides a finite-gain L p -stabilizer with arbitrarily small gain. In our case we reach the same conclusion by simply reparameterizing the trajectories of ẋ = J n xl n e n σ (ω n (x)) to rD r x( • r ), where r > 0 and D r = diag(r n-1 , • • • , r, 1).

The proof of Theorem 3 is actually based on the next proposition. To state it, we need the following definition. Let W be the positive definite function over R n defined by W (x) = min(V 0 (x),V α n (x)) which tends to infinity as x tends to infinity.

Proposition 2.

For A > 0 small enough so that Eq. ( 19) holds true, σ an S-function and k > 0 large enough, the feedback kω(•) defined in Eq. ( 18) is an L p -stabilizing feedback for ẋ =

J n x -l n σ +∞ e n σ (u) for every p ∈ [1, ∞].
More precisely, we prove that, for A > 0 small enough so that Eq. [START_REF] Liu | On finite-gain stabilizability of linear systems subject to input saturation[END_REF] holds true, σ an S-function and k > 0 large enough,

(S -∞) if p = ∞, there exists C ∞ > 0 such that, for every d ∈ L ∞ (R + ) and trajectory of ẋ = J n x -l n σ +∞ e n σ (kω(x) + d)), one has lim sup s→∞ W (x(s)) ≤ C ∞ d ∞ . ( 20 
) DRAFT (S -p) If p ∈ [1, ∞), there exists C p > 0 such that, for every d ∈ L p (R + ), one has W (x(•)) p ≤ C p d p , (21) 
for every trajectory of ẋ = J n x -l n σ +∞ e n σ (kω(x) + d)) starting at the origin and all of them converge to the origin at infinity. Proof of Proposition 2. Up to a linear change of variable, we assume with no loss of generality that σ +∞ = 1. We also fix A small enough so that Eq. ( 19) holds true.

We first set some notations. We use V A 0,> , V A 0,≤ , V A 0,< and V A 0,= respectively to denote the sets

{x | V 0 (x) > A}, {x | V 0 (x) ≤ A}, {x | V 0 (x) < A} and {x | V 0 (x) = A} respectively. For T ≥ 0, we set V A,T 0,> , V A,T 0,≤ and V A,T 0,= respectively as the intersections of V A 0,> , V A 0,≤ , V A 0,< and V A 0,= with [0, T ] respectively. Finally set v A = min x∈V A 0,= V n (x) and V A = max x∈V A 0,= V n (x).
Since we are dealing with a discontinuous feedback, we must precise what we mean by solutions of ẋ = J n xl n e n σ (kω(x) + d). It is enough to consider the case d = 0. First, define for x ∈ R n the closed interval I(x) of R delimited by σ k (ω n (x)) and ω 0 (x). In the open set V A 0,> , trajectories are absolutely continuous curves solutions of a differential equation with continuous right hand-side. At its boundary V A 0,= , the selection made among trajectories of the differential inclusion ẋ ∈ J n xl n e n I(x) as given by Eq. ( 18) is well-defined because any nontrivial trajectory of ẋ = J n xl n e n σ (K T x) starting on V A 0,= stays in V A 0,≤ for all non negative times. The proof of the theorem is based on the following two inequalities whose proofs are given in Appendix.

(i)

On the open set V A 0,> , the time derivative Vn (•) of V n along trajectories of ẋ = J n xl n e n σ (kω(x) + d) verifies almost everywhere

Vn ≤ - c n 2 V α n (x(t)) + 4l n |d|. ( 22 
)
(ii) On the closed set V A 0,≤ , the time derivative V0 (•) of V 0 along non trivial trajectories of ẋ = J n xl n e n σ (kω(x) + d) verifies almost everywhere

V0 ≤ - c 0 2 V 0 (x(t)) + 4l 0 min(1, |d|). ( 23 
)
We start with the case p = ∞. Let x(•) be a non trivial trajectory of ẋ = J n xl n e n σ (kω(x) + d).

Assume first that there exists t 0 ≥ 0 such that one of the following alternatives occurs: DRAFT (a) either V 0 (x(t)) ≤ A for every t ≥ t 0 , and then lim sup s→∞ V 0 (x(s)) ≤ 8l 0 c 0 d ∞ by using Eq. ( 23);

(b)

or V 0 (x(t)) > A for every t ≥ t 0 , and then lim sup s→∞ V α n (x(s)) ≤ 8l n c n d ∞ by using Eq. ( 22).

If such a t 0 does not exist, then one has V A 0,> = ∪ k≥0 I k where I k = (s k ,t k ) is a non-empty interval, lim k→∞ s k = ∞ and there is a subsequence (k l ) tending to infinity so that t k l < s k l +1 . By integrating Eq. ( 23) on

[t k l , s k l +1 ] (or part of it), one gets that A ≤ 16l 0 c 0 d ∞ . Set L := lim sup s→∞ V α n (x(s)). If L ≤ 2V α A , then L ≤ C 2 d ∞ with C 2 = 32V α A l 0 Ac 0 . If L > 2V α
A , there exists, for ε > 0 small enough and up to a subsequence, sk < tk in I k for every k ≥ 0 so that,

V α n (x( sk )) = V α n (x( tk )) = L -ε, and V α n (x(s)) > L -ε on ( sk , tk ).
Integrating Eq. ( 22) on [ sk , tk ], then letting ε tend to zero, one gets (b). That concludes the proof of Item (S -∞).

We next turn to the proof of the theorem for p ∈ [1, ∞). Let x(•) be a non trivial trajectory of ẋ = J n xl n e n σ (k ω(x) + d). For T > 0, one has the following disjoint union

[0, T ] = V A,T 0,> ∪V A,T 0,< ∪V A,T 0,= .
Assume first that V A,T 0,> is empty. By multiplying Eq. ( 23) by V p-1 0 and integrating over [0, T ],

one gets that

V 0 p,[0,T ] ≤ 8l 0 c 0 d p,[0,T ] .
Assume now V A,T 0,> is non empty and thus V A,T 0,= is non empty as well. Multiplying Eq. ( 22) by V α(p-1) n , integrating it over V A,T 0,> and applying Holder's inequality if p > 1 leads to

V A,T 0,> V α(p-1) n Vn + c n 2 V A,T 0,> V α p n (x(t))dt ≤ 4l n V A,T 0,> V α(p-1) n |d| ≤ 4l n d p,V A,T 0,> V α p n p-1 p,V A,T 0,>
.

By applying now Young's inequality if p > 1 to the right-hand side of the above set of inequalities, one deduces that there exists a positive constant C 1,p only depending on c n , l n and p so that

V A,T 0,> V α(p-1) n Vn + c n 4 V A,T 0,> V α p n (x(t))dt ≤ C 1,p d p p,V A,T 0,> . (24) 
The absolutely continuous function t → V 0 (x(t)) is constant on the measurable set V A,T 0,= . If its Lebesque measure | V A,T 0,= | is positive, then there exists F ⊂ V A,T 0,= with | F |=| V A,T 0,= | so that the DRAFT time derivative of V 0 (x(t)) is equal to zero for t ∈ F. By using Eq. ( 23), we get that, for almost

every t ∈ V A,T 0,= , A = V 0 (x(t)) ≤ 8l 0 c 0 |d(t)|. That implies that A | V A,T 0,= | 1/p ≤ d p,V A,T 0,=
. On the other hand, integrating Eq. ( 12) over V A,T 0,= yields that

V A,T 0,= V α(p-1) n | Vn | ≤ K(v A )V α(p-1) A V A,T 0,= V α n ≤ K(v A )V α p A | V A,T 0,= |≤ K(v A )V α p A A p d p p,V A,T 0,=
.

By using Young's inequality if p > 1, we deduce that there exists a positive constant C 2,p only depending on c n , l n and p such that

V A,T 0,= V α(p-1) n | Vn | + c n 4 V A,T 0,= V p 0 (x(t))dt ≤ C 2,p d p p,V A,T 0,= . (25) 
It remains to obtain a similar estimate on V A,T 0,< . The latter is an open set of [0, T ] and since the trajectory starts at the origin, one has that V A,T 0,< = ∪ 0≤ j≤J I j (s j ,t j ) ∪ I f , where J ≤ ∞, I 0 = [s 0 ,t 0 ) with s 0 = 0, I j = (s j ,t j ) for 1 ≤ j ≤ J and I f is either empty or equal to (s f ,t f ] with t f = T . Then V 0 (x(t)) = A for t = t 0 , s f and t = s j ,t j for 1 ≤ j ≤ J. One next multiplies Eq. ( 23) by

V p-1 0
, integrate it and apply Holder inequality if p > 1 on each interval I j , 0 ≤ j ≤ J and on I f .

One then obtains

E + c 0 2 V 0 p p,I ≤ 4l 0 I V p-1 0 |d| ≤ 4l 0 d p,I V 0 p-1 p,I , (26) 
where

E = A p p if I = I 0 , E = 0 if I = I j , 1 ≤ j ≤ J and E = V 0 (x(T )) p -A p p
if I = I f . By using Young's inequality if p > 1, we deduce that there exists a positive constant C 3,p only depending on c n , l n and p such that

E + c 0 4 I V p 0 ≤ C 3,p d p p,I , (27) 
with the same notational conventions for E, I as above.

We 

Int I 0 = V n (x(t 0 )) α p α p ≤ V α p A α p ≤ C 4,p A p p ≤ C 4,p C 3,p d p p,I 0 .
For I = I j , 1 ≤ j ≤ J and I f we consider two cases, whether min I V n ≥ v A 2 or not. In the first case, we rely on Eq. ( 12) to obtain

Int I ≤ K( v A 2 )V α p A | I |.
On the other hand, there exists 

C A > 0 such that V 0 (x) ≥ C A if V n (x) ≥ v A 2 .
V n < v A 2 .
With no loss of generality, we can also assume that Int I > 0 otherwise we are done. If β = α(p -1) and the extremities of I are s and t, recall that

Int I = V β +1 n (x(t)) -V β +1 n (x(s)) β + 1 , with V n (x(s)) ≥ v A .
Then there exists s < t in (s,t) such that

V n (x( s)) = V n (x( t)) = v A and V n (x(•)) ≥ v A on(s, s) ∪ ( t,t).
One deduces that Int I ≤

t t V α n V
β +1 and we are back to the first case. Collecting all our estimates on the Int I yields the existence of a positive constant C 6,p such that

V A,T 0,< V α(p-1) n Vn ≤ C 6,p d p p,V A,T 0,< .
Gathering now Eq. ( 26) and [START_REF] Sontag | Mathematical control theory: Deterministic Finite Dimensional Systems[END_REF] with the above estimate, we get the existence of a positive constant C 7,p such that

V p 0 (x(T )) p + V A,T 0,< V α(p-1) n Vn + c 0 4 V A,T 0,< V p 0 ≤ C 7,p d p p,V A,T 0,< . (28) 
Set c = min(c n ,c 0 )

4

. By adding Eqs. ( 24), ( 25) and ( 28), we get the existence of a positive constant C 8,p such that

V p 0 (x(T )) p + V β +1 n (x(T )) β + 1 + c T 0 W p ≤ C 8,p d p p,[0,T ] , (29) 
with possibly the term V n (x(T )) β +1 β +1 not appearing if I f = / 0. In any case, by letting T tends to infinity, we get Eq. [START_REF] Mazenc | Global stabilization of oscillators with bounded delayed input[END_REF]. As regards the convergence to the origin of any non trivial trajectory, first notice that lim inf s→∞ x(s) = 0. Then, there is an increasing sequence of times (t l ) tending to infinity so that lim l→∞ x(t l ) = 0. For l ≥ 0, consider any time T > t l so that x(t) remains in

V A 0,≤ for t ∈ [t l , T ]. Multiplying Eq. 23 by V p-1 0
and integrating it over [t l , T ], one gets that

V p 0 (x(T )) p ≤ V p 0 (x(t l )) p + 4l 0 ∞ t l V p-1 0 |d|.
The right-hand side tends to zero as l tends to intinity. One deduces that for l large enough, the trajectory remains in V A 0,< for t ≥ t l and the above estimate is actually valid for every t ≥ t l .

Remark 7. Eventhough we did not exhibit an ISS-Lyapunv function for ẋ = J n x-l n σ +∞ e n σ (kω(x)+ d)), the contents of Item (S -∞) in Proposition 2 show that the above system is indeed ISS according to [START_REF] Sontag | Input to State Stability: Basic Concepts and Results[END_REF]Theorem 2] DRAFT Proof of Theorem 3. In order to derive the theorem from Proposition 2, first remark the following: in the argument of Proposition 2, if the positive definite function V n is replaced by a positive definite function Z veryfing Eqs. ( 12) and ( 22) for some positive constants K(C), cn , dn and some α ∈ (0, 1), then one obtains a proposition similar to Proposition 2 where, besides new constants in Eqs. [START_REF] Malisoff | Construction of strict Lyapunov functions[END_REF] and [START_REF] Mazenc | Global stabilization of oscillators with bounded delayed input[END_REF], one replaces the positive definite function W by a positive definite function W = min(V 0 (x), Z α (x)).

Recall that α = 2(n-1) 2n-1 was defined in Eq. [START_REF] Girin | High-Order Sliding-Mode Controllers of an Electropneumatic Actuator: Application to an Aeronautic Benchmark[END_REF]. For µ ∈ (1 -α, 1], let Z µ be the positive definite function equal to V 

V A 0,> , Żµ ≤ - µc n 2 V µ-1+α n + 4µl n |d| V µ-1 n ≤ -c µ Z α µ µ + l µ |d|,
where c µ , l µ are positive constants and α µ = µ-1+α µ . Since Z

α µ µ = V µ-1+α n
one can use the preceding remark, one immediately deduces a proposition similar to Proposition 2 for W µ := min(V 0 (x),V µ-1+α n (x)). Furthermore, notice from Eq. ( 9) that, for 1 ≤ i ≤ n, there exists a positive

constant C i so that |x i | β i-1 +1 ≤ C i W i ≤ C i V n . For 1 ≤ i ≤ n,
first notice from Eq. ( 9) that there exists a positive constant C i so that

|x i | β i-1 +1 ≤ C i W i ≤ C i V n . After setting µ i = 1 -α + 1 β i-1 +1 , one gets that |x i ≤ C ′ i V µ-1+α n and then |x i | ≤ C ′′ i W µ i for some positive constants C ′ i ,C ′′ i .
One deduces, for 1 ≤ i ≤ n, that the L p -norm of x i is upper bounded by a constant times the L p -norm of the internal disturbance d, and then the finite-gain property for the state feedback u = ω(x).

V. L ∞ -STABILIZATION IN THE PRESENCE OF EXTERNAL DISTURBANCES

In this section, we focus on the L ∞ -stabilization of the perturbed system ẋ

= J n x + e n σ (u + d) + E + d n e n , (30) 
where u, d, d n ∈ R and E ∈ R n-1 verifies E T e n = 0. Here d corresponds to an internal disturbance, E to a mismatched external disturbance (i.e. misaligned with the input direction e n ) and d n stands for the matched external disturbance. We assume that both d ∈ L ∞ (R + ) and E ∈ L ∞ (R + , R n-1 ).

As for d n , we assume it belongs to the subspace Ω ∞ introduced in [START_REF] Wang | Control of a chain of integrators subject to actuator saturation and disturbances[END_REF] and defined

Ω ∞ = { f : R + → R, measurable such that sup t≥0 | t 0 f (s)ds| < ∞}. DRAFT For f ∈ Ω ∞ and E = (d 1 , • • • , d n-1 ) ∈ L ∞ (R + , R n-1 ), set N( f ) := lim t→∞ sup t 2 ≥t 1 ≥t | t 2 t 1 f (s)ds|, Γ(E) := E ∞ + n-1 ∑ i=1 d i 2p 2 p i+1 ∞ . (31) 
We next provide a variant of the feedback u = k(x) given by Theorem 3 in order to L ∞ stabilize the perturbed system (30). small enough so that Eq. ( 19) holds true, and k > 0 large enough, such that, if σ an S-function, the dynamic feedback defined by u = kω(xye n ) with y(t) = t 0 d n (s)ds, t ≥ 0, L ∞ -stabilizes the perturbed system [START_REF] Teel | Global stabilization and restricted tracking for multiple integrators with bounded controls[END_REF] in the following sense: there exists C ∞ > 0 such that, for every d

∈ L ∞ (R + ), E ∈ L ∞ (R + , R n-1 ), d n ∈ Ω ∞ and every trajectory of ẋ = J n x -l n σ +∞ e n σ (kω(x -ye n ) + d)) + E + d n e n , one has lim sup s→∞ W (x(s)) ≤ C ∞ d ∞ + N(d n ) + Γ(E) . ( 32 
) Proof. Set E = (d 1 , • • • , d n-1 ) T gathering the n -1 mismatched scalar external disturbances.
First of all, note that y(•) is an L ∞ -function since d n ∈ Ω ∞ . By performing the change of variable

X = x -ye n , the perturbed system ẋ = J n x -l n σ +∞ e n σ (kω(x -ye n ) + d)) + E + d n e n reduces Ẋ = J n X -l n σ +∞ e n σ (kω(X ) + d)) + F with a mismatched disturbance F = (d 1 , • • • , y + d n-1 ) T .
It is therefore enough to prove the theorem in the case d n = 0 and thus y = 0.

We essentially follow the lines of the proof of Proposition 2. For that purpose, one needs to modify inequalities [START_REF] Megretski | L 2 output feedback stabilization with saturated control[END_REF], ( 23) so as to take into account the mismatched disturbance E. Since the Lyapunov function V 0 is quadratic, it is immediate to get an inequality extending Eq. [START_REF] Rivera Dominguez | Copper and Core Loss Minimization for Induction Motors Using High-Order Sliding-Mode Control[END_REF] where the term min(1, |d|) is replaced by min(1, |d|) + E by possibly changing the constants c 0 , l 0 .

As concerns the modification of Eq. ( 22), the main ingredient consists of the following extension of Eq. [START_REF] Girin | High-Order Sliding-Mode Controllers of an Electropneumatic Actuator: Application to an Aeronautic Benchmark[END_REF] in the presence of the mismatched disturbance E, which is proved in Appendix: there exist positive constants l 1 , • • • , l n defining the function ω n (•) in Eq. ( 8) so that the time derivative of V n along non trivial trajectories of ẋ = J n x + e n u + E, where E T e n = 0, can be upper bounded as next, Vn ≤ -C 1 V α n (x) + ω n (x)(u + l n sign(ω n (x)) +C 2 n-1

∑ i=1 |d i | 2p 2 p i+1 , (33) 
DRAFT where C 1 ,C 2 are positive constants. It is then immediate to get Eq. ( 12) from the argument given for Eq. [START_REF] Yakoubi | Linear systems subject to input saturation and time delay: global asymptotic stabilization[END_REF]. From that, we simply reproduce the same arguments given to obtain Eq. ( 22 We next provide an argument for Eq. ( 22). Consider a trajectory of ẋ = J n x -l n e n σ (kω(x) +d) lying in V A 0,> . Then one has ẋ = J n xl n e n sign(kω n (x) + d) -l n e n σ (kω n (x) + d)sign(kω n (x) + d) .

Set ξ (t) = kω n (x(t)) + d(t). Using Eq. ( 14), one deduces that Vn ≤ -c n V ), one derives Eq. [START_REF] Megretski | L 2 output feedback stabilization with saturated control[END_REF].

We now turn to a proof for Eq. [START_REF] Rivera Dominguez | Copper and Core Loss Minimization for Induction Motors Using High-Order Sliding-Mode Control[END_REF]. Set ρ := min |s|≤1 σ (s) s > 0 and ρ := max |s|≤1 σ (s) s . Consider a trajectory of ẋ = J n xl n e n σ (kω(x) + d) lying in V A 0,≤ . Then one has ẋ = (J nr(t)e n K T )xl n e n σ (ω 0 (x) + d) -σ (ω 0 (x)) , DRAFT where l i > 0 will be chosen below and

V 0 j = - l i 2 |ω i | α i + i-1 ∑ j=1 ∂W i ∂ x j (x j+1 + d j ) + ω i-1 (x i -ν i-1 ) + ω i d i ,
By applying Young's inequality to | ∂W i ∂ x j d j | and |ω i d i |, one deduces that V 0 j ≤ V 1 j + c i |d i | η i , where

V 1 j = - l i 4 |ω i | α i + i-1 ∑ j=1 ∂W i ∂ x j x j+1 + i-1 ∑ j=1 1 α j | ∂W i ∂ x j | α j + ω i-1 (x i -ν i-1 ).
The last step of the reasoning consists of showing that l i > 0 can be chosen large enough so that V 1 j ≤ 0. This is done by first noticing that V 1 j is homogeneous of degree 2p 2 and by checking that the homogeneity argument provided at the end of page 234 and the top of page 235 of [START_REF] Hong | Finite-time stabilization and stabilizability of a class of controllable systems[END_REF] exactly applies to the present situation. That concludes the induction step and the proof of Eq (35).

Again by following the end of the argument in the top of page 235 of [START_REF] Hong | Finite-time stabilization and stabilizability of a class of controllable systems[END_REF], one deduces Eq. ( 33) from Eq (35) since there is no external disturbance for the dynamics of x n .

  Then, k is said to be an L p -stabilizing state feedback for (Σ) if there exists γ p ∈ K ∞ such that for every d ∈ L p (R + , R) and x d defined as above, one has x d p ≤ γ p ( d p ) for p finite and lim sup t→∞ x d (t) ≤ γ ∞ ( d ∞ ) for p = ∞. The previous definition for L ∞ -stabilizability is called asymptotic gain property and it is required in the definition of Input to State Stability (ISS)

Definition 1 .

 1 for finite p, we use |K| and f p,K respectively to denote the Lebesgue mesure of K and K | f (t)| p dt 1/p respectively. We define the function sign as the multivalued function defined on R by sign(x) = x |x| for x = 0 and sign(0) = [-1, 1]. Similarly, for every a ≥ 0 and x ∈ R, we use ⌊x⌉ a to denote |x| a sign(x). Note that ⌊•⌉ a is a continuous function for a > 0 and of class C 1 with derivative equal to a |•| a-1 for a ≥ 1. We use s(•) to denote the standard saturation function defined by s(x) = x max(1,|x|) for x ∈ R. An S-function (or saturation function) σ : R → R is any locally Lipschitz function so that

)

  For k > 0 and an S-function σ (•), we use σ k (•) to denote the S-function σ (k•). For instance s k (•), arctan k (•) and tanh k (•) are examples of S-functions for every k > 0.

  now need to upper bound Int I := I V α(p-1) n Vn by a constant times d p p,I on each interval I. For I = I 0 , setting C 4,p = V α p A αA p , one has

  Therefore | I | is bounded by a constant times V 0 p p,I and one deduces the existence of a positive constant C 5,p such that Int I ≤ C 5,p d p p,I 0 . DRAFT Assume now that min I

µn. 1 n

 1 If Żµ denotes the derivative of Z µ along non-trivial trajectories of the perturbed closed-loop system ẋ = J n xe n l n σ (ω(x)), then Żµ = µV µ-Vn and one deduces at once the generalization of Eq. (22) only valid on the open set

Theorem 4 .

 4 There exist positive constants l 1 , • • • , l n defining the function ω n (•) in Eq. (8), A > 0

2 pRemark 8 .

 28 ) to derive its generalization corresponding to the presence of the mismatched disturbance E: one replaces the term 4l n |d| by 4L n (|d| + ∑ n-1 i=1 |d i | 2p i+1 ) for some positive constant L n . The proof of Theorem 4 then proceeds as that of Item (S -∞) in Theorem 2 and one gets Theorem 4. One should notice the solution proposed in Theorem 4 for the L ∞ -stabilisation of the perturbed system (30), as well as that given in Theorems 2 and 3 in [32] present a possible restrictive feature when the matched perturbation d n is not zero because, for all of them, the proposed feedbacks depend on d n . VI. APPENDIX A. Proof of Eqs. (22) and (23)

  + 1 k )l n |d(t)| + 2l n k, which implies that one always has that

		Vn ≤ -c n V α n (x(t)) +	(2 +C σ )l n k	+ 2(1 +	2 k	)l n |d(t)|.	(34)
	Using the fact that the trajectories lies in V A 0,> , one finally deduces that
	Vn ≤ -	c n 2	V α n (x(t)) -	c n 2	v α A +	(2 +C σ )l n k	+ 2(1 +	2 k	)l n |d(t)|.
	By taking k ≥ max(2,	2(2+C σ )l n c n v α					

α n (x(t)) + 2(1 + 1 k )l n |d(t)| + l n k |ξ (t)| | σ (ξ (t))sign(ξ (t)) | . If |kω n (x(t)) + d(t)| ≥ 1

, then, by using Eq. (

5

)

|ξ (t)| | σ (ξ (t))sign(ξ (t)) |≤ C σ |ξ (t)| 1 + |ξ (t)| ≤ C σ .

Otherwise, Vn ≤ -c n V α n (x(t)) + 2(1 A

where r(t) = σ (ω 0 (x(t))) ω 0 (x(t)) and r(t) ∈ [ρ, ρ]. We can now use Item (i) of Definition 1, apply Eq. [START_REF] Levant | Finite-time stability and high relative degrees in sliding-mode control[END_REF] and conclude.

B. Proof of Eq. [START_REF] Yakoubi | Linear systems subject to input saturation and time delay: global asymptotic stabilization[END_REF] The argument actually consists of following the steps of the original proof of Eq. [START_REF] Girin | High-Order Sliding-Mode Controllers of an Electropneumatic Actuator: Application to an Aeronautic Benchmark[END_REF] as elaborated by Hong in [START_REF] Hong | Finite-time stabilization and stabilizability of a class of controllable systems[END_REF] while incorporating the external disturbances d 1 , • • • , d n-1 and handling their effect.

To this end, we need to recall several technical data used in [START_REF] Hong | Finite-time stabilization and stabilizability of a class of controllable systems[END_REF] and in particular to precise the notion of homogeneity mentioned when the Lyapunov function V n was first considered in Eq. [START_REF] Gauthier | Observability and observers for nonlinear systems[END_REF]. For 1 ≤ i ≤ n and ε > 0, let δ pi ε be the family of dilations defined on

is defined in Eq. ( 7). A function V : R i → R is said to be homogeneous of degree α > 0 (with respect to the family of dilations

Note that 1 α i + 1 η i = 1 for 1 ≤ i ≤ n -1. As proved in [START_REF] Hong | Finite-time stabilization and stabilizability of a class of controllable systems[END_REF], one has that, for 1 ≤ i ≤ n, W i and V i are homogeneous of degree 1 + p 2 and, along non trivial trajectories of the unperturbed system ẋ = J n x + e n u, the time derivative Vi of V i is homogeneous of degree 2p 2 .

For 1 ≤ i ≤ n -1, we prove by induction that there exist positive constants

We start the induction at i = 1 and get, for any choice of positive l 1 ,

By using Young's inequality, one gets

, for some positive constant c 1 , and hence Eq. (35) for i = 1.

Assume we have established Eq. ( 35) for i -1 with i ≤ n -1 and some positive constants