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ON THE CONTROLLABILITY OF THE ROLLING PROBLEM
ONTO THE HYPERBOLIC n-SPACE

YACINE CHITOUR Université Paris-Sud 11
MAURICIO GODOY MOLINA Universidad de La Frontera

PETRI KOKKONEN

Abstract. In the present paper, we study the controllability of the control sys-
tem associated to rolling without slipping or spinning of a Riemannian manifold
(M, g) onto the hyperbolic n-space Hn. Our main result states that the system is
completely controllable if and only if (M, g) is not isometric to a warped product
of a special form, in analogy to the classical de Rham decomposition theorem for
Riemannian manifolds. The proof is based on the observations that the control-
lability issue in this case reduces to determine whether (M, g) admits a reducible
action of a hyperbolic analog of the holonomy group and a well-known fact about
connected subgroups of O(n, 1) acting irreducibly on the Lorentzian space Rn,1.
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1. Introduction

A major problem in geometric control theory is to give easy-to-check conditions
for the controllability of the system under study. In the general geometric setting,
the most common way to proceed is to verify the Lie Algebraic Rank Condition
(LARC) which is a well-known sufficient condition for controllability: all the Lie
brackets of the vector fields steering the dynamics have to span the tangent bundle
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of the state space. As simple as this algebraic condition may seem, in practice,
however, this condition turns out to be sometimes cumbersome to verify. Kalman’s
controllability rank condition is a celebrated result in linear control theory that can
be seen as the holy grail for this point of view: reducing a priori lengthy and difficult
Lie algebraic computations to checking that a matrix has full rank. In order to find
a simple criterion for controllability without computing Lie brackets, one is often
forced to use strongly the geometric structure of the problem at hand, therefore,
it is necessary to employ differential geometric language and tools to achieve that
goal.

Our aim is to give a good geometric setting to study the controllability of the
system consisting of an oriented connected Riemannian manifold of dimension n ≥ 2
rolling without spinning or slipping against an n-dimensional space form of negative
sectional curvature. The study of the problem of two manifolds rolling in such
a way is old and provides surprisingly many difficulties. It is possible to trace
back the case of the ball rolling onto the plane to Chaplygin [8, 9] in the end of
the 19th century, though more modern accounts of the higher dimensional case
for embedded manifolds has been presented by Nomizu [22] and Sharpe [25]. A
coordinate-free definition for surfaces was introduced in [2, 7], and later extended
to general manifolds in [11, 14]. A general procedure to study the controllability of
the rolling model has been studied in [11, 16].

It was observed in [12], that the structure of the affine holonomy group charac-
terizes the orbits of the rolling problem, when one of the manifolds involved is the
Euclidean space, thus one can fully address the problem of complete controllability
for the rolling model. To state this observation precisely, let us recall the definition
of the rolling problem. Let (M, g) and (M̂, ĝ) be two oriented Riemannian manifolds
of dimension n. The configuration space of the rolling problem is the manifold

Q = Q(M, M̂) =
{
A : T |xM → T |x̂M̂

∣∣ x ∈M, x̂ ∈ M̂,

A linear isometry, det(A) > 0
}
.

An absolutely continuous curve q(t) = (γ(t), γ̂(t), A(t)) in Q is a rolling curve if
A(t)X(t) is parallel along γ̂(t) for every vector field X(t) that is parallel along γ(t)

(no twist condition) and if A(t)γ̇(t) = ˙̂γ(t) (no slip condition). There is a distribution
DR on Q, called the rolling distribution, such that the rolling curves in Q are exactly
the integral curves of DR. Lie brackets of vector fields spanning DR are expressed in
terms of the curvature tensors R and R̂ associated to the Riemannian metrics g on
M and ĝ on M̂ respectively, together with the covariant derivatives of R and R̂. It
seems therefore impossible to solve for general dimension n the controllability issue
on the sole knowledge of the Lie algebraic structure of DR, except for low dimensions
(for n = 2 this was achieved in [2, 7], and for n = 3 in [11, Section 7]). Indeed, in
the case for instance where (M̂, ĝ) is the n-dimensional Euclidean space, it would
amount to determine Hol(∇g), the holonomy group of the Levi-Civita connection
∇g associated to g, with the only knowledge of its curvature tensor and its covariant
derivatives. Instead, the latter issue can be successfully addressed by resorting on
group theoretic and algebraic arguments.

In general, it is not clear if there is a G-principal bundle structure on Qmaking DR

a G-principal bundle connection. However, this is indeed the case for the projection
Q(M, M̂) → M , when (M̂, ĝ) is a space form, as shown in [12]. More precisely,
if (M̂, ĝ) has constant sectional curvature c, there is a Lie group Gc(n) acting on
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Q such that DR is a Gc(n)-principal bundle connection, and moreover, its fibers of
orbits are all conjugate to the holonomy group of DR, which is a subgroup of Gc(n).

In the case where c = 0, we have G0(n) = SE(n) and this construction reduces to
study the affine holonomy group of M . One of the main results in [12] shows that,
provided (M, g) is complete and (M̂, ĝ) is the Euclidean space Rn with the standard
Riemannian structure, then the rolling system is controllable if and only if M has
full holonomy, i.e., Hol(∇g) = SO(n). This fact can be seen as a manifestation of
De Rham’s decomposition theorem since, if the holonomy ofM is reducible, one can
detect the components of M via the irreducible orbits of the distribution DR.

Up to rescaling, the cases remaining are when c = ±1 and, in these cases, G1(n) =
SO(n + 1) and G−1(n) = SO0(n, 1), the identity component of O(n, 1). In both
situations the controllability for the rolling system can be phrased in terms of the
holonomy of a connection. As shown in [12], there is a metric h and an h-metric
connection ∇c on the vector bundle TM ⊕ R over M such that the rolling system
is controllable if and only if Hc, the holonomy group of ∇c, is equal to Gc(n). In
the case c = 1, the aforementioned metric h is positive definite; whereas in the case
c = −1, the metric h has index one.

The case c = 1 was addressed in [12]: it is shown that if the action of H1 on the
unit sphere is not transitive, then (M, g) is the unit sphere. As a consequence, it
holds that, for n ≥ 16 and even, the rolling system Q = Q(M,Sn−1) is completely
controllable if and only if (M, g) is not isometric to the unit sphere. It is also impor-
tant to stress that the results we present here do not correspond to the ones obtained
in [26]. In that reference, the main result consists of an isometric decomposition of
a semi-Riemannian manifold into the direct product of semi-Riemannian irreducible
submanifolds.

In the present paper, we characterize the structure of a complete and simply
connected Riemannian manifold (M, g) in terms of the rolling systemQ = Q(M,Hn).
Our main result states that the action of H−1 is reducible if and only if there exists
a complete simply connected Riemannian manifold (M1, g1), so that (M, g) is a
warped product either of the form

(WP1): (R×M1, ds
2 ⊕e−s g1), or

(WP2): (Hk ×M1,g
k
−1 ⊕cosh(d(·)) g1),

where for each x ∈ Hk, d(x) is the distance between x and an arbitrary fixed point
x0 ∈ Hk, and 1 ≤ k ≤ n. This can be seen as a “hyperbolic” analogue of the
classical de Rham decomposition theorem for Riemannian manifolds, see [19, 24].
By the classification theorem due to Berger in [5] (and also proved directly in [13]),
the only connected subgroup of the Lorentz group O(n, 1) that acts irreducibly on
the Lorentzian space Rn,1 is its identity component SO0(n, 1). This irreducibility
criterion, together with our results, implies that the rolling system Q = Q(M,Hn)
is not controllable if and only if (M, g) decomposes, up to isometry, into a warped
product of the form (WP1) or (WP2). An interesting fact is that related results have
been obtained in the study of cones over pseudo-Riemannian manifolds, see [4], with
differential geometric motivations. Note also that the embedded case of two spaces
of constant sectional curvature rolling on each other has been analyzed in [18].

The structure of the paper is the following. In Section 2 we collect results concern-
ing the rolling problem that will be relevant in the proof of the main result. We give
special emphasis to the extra symmetry that appears in the system when one of the
manifolds is a space form. In Section 3, we recall the definition of warped products,
how to detect them and how to find their warping functions through a criterion due
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to Hiepko [17]. Finally, in Section 4, we present the main results of the paper and
their proofs. These results, in global formulation, consist of the decomposition of
(M, g) into a warped product of the form (WP1) or (WP2) (see Theorem 4.1), under
the assumption that the action of H−1 is reducible. Both proofs are divided in two
cases, depending whether a non-trivial subspace V1 of TM ⊕R, invariant under the
action of H−1, contains a lightlike vector or not.

2. Notations and previous results

Unless otherwise stated, all manifolds under consideration are smooth, connected,
oriented, of finite dimension n ≥ 2 and endowed with a Riemannian metric. Simi-
larly, all frames will be assumed to be positively oriented.

We intend to formulate some of the results in this paper by means of the rolling
formalism presented in [11, 14]. In order to do this, we need to introduce the
state space Q = Q(M, M̂) for the rolling problem of two n-dimensional connected,
oriented smooth Riemannian manifolds (M, g), (M̂, ĝ) as

Q = Q(M, M̂) =
{
A : T |xM → T |x̂M̂

∣∣ x ∈M, x̂ ∈ M̂,

A linear isometry, det(A) > 0
}
.

The case in which M̂ = Rn reduces to the study of the well-known concept of anti-
development of curves, as observed in [15]. The main idea is to lift appropriately
the information about the manifold M rolling onto Rn to the frame bundle FM . In
the general case, the situation is more complicated.

2.1. The rolling problem. For q = (x, x̂;A) ∈ Q and X ∈ T |xM we define the
rolling lift LR(X)|q ∈ T |qQ as

LR(X)|q =
d

dt

∣∣
0
(P t

0(γ̂) ◦ A ◦ P 0
t (γ)),(1)

where γ, γ̂ are any smooth curves in M, M̂ , respectively, such that γ̇(0) = X and
˙̂γ(0) = AX, and P b

a(γ) (resp. P b
a(γ̂)) denotes the parallel transport along γ from

γ(a) to γ(b) (resp. along γ̂ from γ̂(a) to γ̂(b)).
The rolling distribution DR on Q is the n-dimensional smooth distribution defined,

for q = (x, x̂;A) ∈ Q, by

DR|q = LR(T |xM)|q.(2)

An absolutely continuous (a.c. for short) curve t 7→ q(t) = (γ(t), γ̂(t);A(t)) is a
rolling curve if and only if it is a.e. tangent to the distribution DR. See [11, 14] for a
description using local coordinates. We use ODR

(q) to denote the DR-orbit passing
through q. Also, if q0 = (x0, x̂0;A0) ∈ Q and γ : [a, b] → M is a curve such that
γ(a) = x0, we let qDR

(γ, q0)(t), t ∈ [a, b′], to be the unique rolling curve through q0
that projects to γ on M Here b′ ≤ b in general; if (M, g) is complete, then one can
take b = b′. See [12, 19].

Remark 2.1 The use of the adjective “rolling” in the previous definitions has its origin
in the classical kinematic model of one Riemannian manifold rolling onto another one of
the same dimension, without spinning or slipping (cf. [2, 3, 11, 14, 25]). This kinematic
model can be traced back to the definition of holonomy by É. Cartan (cf. [6]) and has
important applications in robotics (e.g. the plate-ball problem [1, 20, 21]). The main
idea in this formulation is that each point (x, x̂;A) of the state space Q can be viewed
as describing a contact point of the two manifolds which is given by the points x and x̂
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of M and M̂ , respectively, and an isometry A of the tangent spaces T |xM , T |x̂M̂ at
this contact point, measuring the relative orientation of these tangent spaces. An a.c.
curve t 7→ q(t) = (γ(t), γ̂(t);A(t)) in Q is a rolling curve if the following constraints
(see e.g. [2], [3, Chapter 24], [10]) are satisfied

(i) The no-spinning condition: for every a.c. curve [a, b] → TM ; t 7→ X(t) of
vectors along t 7→ γ(t), we have

(3) ∇γ̇(t)X(t) = 0 =⇒ ∇̂ ˙̂γ(t)(A(t)X(t)) = 0 for a.e. t ∈ [a, b].

(ii) The no-slipping condition:

(4) A(t)γ̇(t) = ˙̂γ(t) for a.e. t ∈ [a, b].

2.2. Global properties of DR-orbits. An important technical result shown in [12]
is the action of Riemannian isometries of M and M̂ on the state space Q.

Proposition 2.2 Let F ∈ Iso(M, g) and F̂ ∈ Iso(M̂, ĝ) be Riemannian isometries of
(M, g) and (M̂, ĝ) respectively. Define smooth free right and left actions of Iso(M, g),
Iso(M̂, ĝ) on Q by

q0 · F := (F−1(x0), x̂0;A0 ◦ F∗|F−1(x0)),

F̂ · q0 := (x0, F̂ (x̂0); F̂∗|x̂0 ◦ A0),

where q0 = (x0, x̂0;A0) ∈ Q. We also set F̂ · q0 · F := (F̂ · q0) · F = F̂ · (q0 · F ). Then
for any q0 = (x0, x̂0;A0) ∈ Q, a.c. γ : [0, 1] → M , γ(0) = x0, and F ∈ Iso(M, g),
F̂ ∈ Iso(M̂, ĝ), one has, for all t ∈ [0, 1],

F̂ · qDR
(γ, q0)(t) · F = qDR

(F−1 ◦ γ, F̂ · q0 · F )(t).(5)

In particular, F̂ · ODR
(q0) · F = ODR

(F̂ · q0 · F ).
An initial reduction of the problem is the fact that the controllability question

for the rolling problem for M and M̂ is equivalent to study the controllability for
the rolling problem for Riemannian coverings of M and M̂ (cf. [11]). An immediate
consequence, is that one can assume with no loss of generality that both manifolds
M and M̂ are simply connected.

2.3. Space forms and their isometry groups. The n-dimensional space form
Fnc of curvature c 6= 0 as a subset of Rn+1, n ≥ 1, given by

Fnc :=
{

(x1, . . . , xn+1) ∈ Rn+1 | c(x21 + · · ·+ x2n) + x2n+1 = 1, xn+1 +
c

|c|
≥ 0
}
.

Equip Fnc with a Riemannian metric gnc defined as the restriction to Fnc of the non-
degenerate symmetric (0, 2)-tensor snc := (dx1)

2 + · · · + (dxn)2 + c−1(dxn+1)
2. The

condition xn+1 + c
|c| ≥ 0 in the definition of Fnc guarantees that Fnc is connected also

when c < 0. We denote, as usual, Fn1 and Fn−1 by Sn and Hn respectively.

Remark 2.3 Note that in the definition above there is an underlying continuity with
respect to the curvature parameter c, once we disregard the connectedness assumption.
More precisely, the set{

(x1, . . . , xn+1) ∈ Rn+1 | c(x21 + · · ·+ x2n) + x2n+1 = 1
}

consists of the two hyperplanes xn+1 = ±1 when c = 0, a two-sheeted hyperboloid with
fixed vertices (0, . . . , 0,±1) and foci (0, . . . , 0,± c−1

c
) when c < 0, and an ellipse with

vertices (0, . . . , 0,±1) in the xn+1-axis and semiaxes of length 1√
c
on the hyperplane
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xn+1 = 0. This is in accordance with the definition of the tensor snc since, for it to
behave well when c→ 0+ or c→ 0−, one needs to impose dxn+1 = 0 when c = 0.

Let Gc(n) be the identity component of the Lie group of linear maps Rn+1 → Rn+1

that leave invariant the bilinear form

〈x, y〉nc :=
n∑
i=1

xiyi + c−1xn+1yn+1,

for x = (x1, . . . , xn+1), y = (y1, . . . , yn+1). Observe that G1(n) = SO(n + 1) and
G−1(n) = SO0(n, 1), the identity component of O(n, 1).

If c = 0, the space form (Fn0 ,gn0 ) is simply equal to Rn with the Euclidean metric,
G0(n) is set to be the group SE(n), the special Euclidean group of (Fn0 ,gn0 ). Recall
that SE(n) is equal to Rn×SO(n) as a set, and is equipped with the group operation
? given by

(v, L) ? (u,K) := (Lu+ v, L ◦K).

The natural action, also written as ?, of SO(n) on Rn is given by

(u,K) ? v := Kv + u, (u,K) ∈ SO(n), v ∈ Rn.

Finally recall that, with this notation, the identity component of the isometry group
of (Fnc ,gnc ) is equal to Gc(n) for all c ∈ R (cf. [19]).

2.4. Reduction of the rolling problem. When rolling onto a space form it is
possible to reduce the controllability problem to the study of certain holonomy
groups. In other words, one can consider the change of the initial state of the
system after rolling along loops in the space Ωx(M) of piecewise C1-loops in M
based at x.

The fundamental feature of rolling onto a space form lies in the fact that there is a
Gc(n)-principal bundle structure for the state space compatible with the distribution
DR, i.e. DR is a Gc(n)-principal bundle connection. This was proved in [12] by using
Proposition 2.2, and it is provided below.

Proposition 2.4 (i) The bundle πQ,M : Q → M is a principal Gc(n)-bundle
with a left action µ : Gc(n)×Q→ Q defined for every q = (x, x̂;A) by

µ((ŷ, C), q) =(x,Cx̂+ ŷ;C ◦ A), if c = 0,

µ(B, q) =(x,Bx̂;B ◦ A), if c 6= 0.

Moreover, the action µ preserves the distribution DR i.e., for any q ∈ Q and
B ∈ Gc(n), (µB)∗DR|q = DR|µ(B,q) where µB : Q→ Q; q 7→ µ(B, q).

(ii) For any given q = (x, x̂;A) ∈ Q, there is a unique subgroup Hc
q of Gc(n), called

the holonomy group of DR, such that

µ(Hc
q × {q}) = ODR

(q) ∩ π−1Q,M(x).

Also, if q′ = (x, x̂′;A′) ∈ Q is in the same πQ,M -fiber as q, then Hc
q and Hc

q′ are
conjugate in Gc(n) and all conjugacy classes of Hc

q in Gc(n) are of the form Hc
q′ .

An open problem related to the proposition above asks for the extent to which
this result holds. More precisely, given two Riemannian manifolds M and M̂ of
dimension n ≥ 2 and the canonical projection Q = Q(M, M̂) → M , can one give
conditions on the manifolds so that there exists a G-principal bundle structure for
some Lie group G so that the rolling distribution DR is G-equivariant? For instance,
this is true if one of the manifolds is a space form.
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For the case c = 0, one can take advantage of the semi-direct product structure
of SE(n) by considering the projection of the fiber of an orbit onto SO(n), which is
nothing but the Riemannian holonomy group of M . As a result, it is proved in [12]
that complete controllability holds if and only if M has full holonomy.

For the case when c 6= 0, the problem is more subtle. It was shown in [12] that this
principal Gc(n)-bundle structure implies the existence of a vector bundle connection
∇c on the vector bundle πTM⊕R : TM ⊕ R → M , called the rolling connection,
defined as follows: for every x ∈M , X ∈ T |xM , (Y, s) ∈ VF(M)× C∞(M),

∇c
X(Y, s) =

(
∇XY + s(x)X,X(s)− cg

(
Y |x, X)

)
.(6)

Here we have canonically identified the space of smooth sections Γ(πTM⊕R) of πTM⊕R
with VF(M)× C∞(M).

The connection ∇c is a metric connection with respect to the fiber inner product
hc on TM ⊕ R defined by

hc((X, r), (Y, s)) = g(X, Y ) + c−1rs,

where X, Y ∈ T |xM , r, s ∈ R. Its holonomy group is denoted by Hc.
After a trivial scaling, it is enough to consider only the cases c = ±1. The use of

the rolling connection ∇c on the vector bundle TM ⊕ R has the advantage that it
allows one to prove that complete controllability of the rolling system is equivalent
to the fact that Hc equals SO(n + 1) for the spherical case c = 1, or SO0(n, 1) for
the hyperbolic case c = −1.

3. Warped products

In order to present our results, we need some standard material on warped prod-
ucts, as presented for example in [23], as well as means to detect when a manifold can
be decomposed as the warping of two (or more) manifolds. To set the terminology,
we recall the following definition.

Definition 3.1 (i) Let (N, h), (M, g) be Riemannian manifolds and f ∈ C∞(N)
a non-vanishing function. Then the manifold N ×M equipped with the metric

(h⊕f g)|(y,x) := h|y + f(y)2g|x, (y, x) ∈ N ×M,

is a Riemannian manifold called the warped product of (N, h) and (M, g) with
warping function f .

(ii) Let (N, h), (M1, g1), (M2, g2) be Riemannian manifolds and f1, f2 ∈ C∞(N).
Denote by pr1 : N × M1 → N the canonical projection. Then (N × M1 ×
M2, (h⊕f1 g1)⊕pr∗1(f2)

g2) is called the doubly warped product of (N, g), (M1, g1)
and (M2, g2) with warping functions f1, f2. We denote its metric simply by
h⊕f1 g1 ⊕f2 g2.

Remark 3.2 Note that the metric of the above doubly warped product at (y, x1, x2) ∈
N ×M1 ×M2 has the form

(h⊕f1 g1 ⊕f2 g2)|(y,x1,x2) = h|y + f1(y)2g1|x1 + f2(y)2g2|x2 .

Therefore, it is easy to see that (N×M1×M2, h⊕f1 g1⊕f2 g2) and (N×M2×M1, h⊕f2
g2 ⊕f1 g1) are isometric.

The main purpose of this section is to introduce a technical result due to Hiepko,
(see Theorem 3.4 below) that we use later in order to detect warped products. In
order to state this theorem, we need to introduce some terminology.
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Definition 3.3 A submanifold N of a Riemannian manifold (M, g) is said to be:
• umbilical if there is a local section ν of the normal bundle TN⊥ such that the
second fundamental form IIN of N has the form

IIN(X, Y ) = g(X, Y )ν, ∀X, Y ∈ T |xN, x ∈ N ;

• spherical if (M, g) is umbilical and, in addition, the section ν satisfies

∇Xν ∈ TN, ∀X ∈ TN.(7)

The last condition (7) means that ν is parallel with respect to the normal con-
nection of N . With this at hand, the following well-known theorem holds.

Theorem 3.4 ([17]) Let (M, g) be a Riemannian manifold and suppose there is a
smooth constant rank distribution D on M with the following properties:

(i) Both D and D⊥ are integrable.
(ii) The integral manifolds of D⊥ are totally geodesic.
(iii) The integral manifolds of D are spherical.

Then (M, g) is locally a warped product. If moreover (M, g) is complete and simply
connected, then (M, g) is globally a warped product. Finally, if f is the warping function
and ν is a section of the bundle D⊥ as in Definitions 3.1 and 3.3, then

ν = −∇f
f
.

Remark 3.5 More precisely, as explained in [17] (see Eqs. (11) and (17) there),
under the assumptions of the above theorem, every x ∈M has a neighbourhood U and
integral manifolds N,N⊥ through x of D, D⊥, respectively, such that U is diffeomorphic
to N⊥ ×N which maps g|U to g|N⊥ ⊕f h, where h is a certain metric on N . If (M, g)
is complete and simply connected, one may take U = M .

4. Presentation of the main results

We now present the main global result of the present paper.

Theorem 4.1 Let (M, g) be a complete and simply connected Riemannian manifold.
For c < 0, the rolling holonomy group Hc is reducible if and only if there exists a
complete simply connected Riemannian manifold (M1, g1) such that (M, g) is a warped
product either of the form

(WP1): (R×M1, ds
2 ⊕ecs g1), or

(WP2): (Fkc ×M1,g
k
c ⊕cosh(

√
−c d) g1), where 1 ≤ k ≤ n and for each x ∈ Fkc ,

d(x) is the distance between x and an arbitrary fixed point x0 ∈ Fkc .
From the previous result one immediately deduces the following characterization

of complete controllability of the rolling problem onto the hyperbolic space Hn.

Corollary 4.2 Let (M, g) be a complete, oriented and simply connected Riemannian
n-manifold rolling onto the space form (Hn,gn−1) of curvature −1. Then the associated
rolling problem is completely controllable if and only if (M, g) is not isometric to a
warped product of the form (WP1) or (WP2).

Proof of Corollary 4.2. With the notations of Theorem 4.1, and according to Sub-
section 2.4, studying the rolling problem reduces to determining the holonomy group
H−1. Assume that (M, g) is of the form (WP1) or (WP2), then H−1 is a proper
subgroup of SO0(n, 1), i.e., the rolling is not controllable according to [12]. On
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the other hand, if (M, g) is not of the form (WP1) or (WP2), then the action of
H−1 must be irreducible. Since M is simply connected, H−1 is connected, and thus
it is a connected subgroup of O(n, 1). Therefore it equals SO0(n, 1), according to
[5, 13]. �

4.1. Proof of the main result. The study of reducibility of Hc in the case c = 0
corresponds to the classical de Rham theorem, and for c = 1 this was done in
[12]. The rest of the present paper is devoted to the proof of Theorem 4.1. By a
trivial rescaling argument, we may assume without loss of generality, that c = −1.
Theorem 4.1 is a consequence of the following two propositions.

Proposition 4.3 With the notation above, assume that the holonomy group H−1 is
reducible. Then M is locally of one of the following forms:
(LW1) a warped product (I ×M1, ds

2 ⊕e−s g1), where I ⊂ R is a certain interval, or
(LW2) a doubly warped product (I ×M2 ×M1, ds

2 ⊕sinh(s) g2 ⊕cosh(s) g1), or
(LW3) a warped product (O × M1,g

k
−1 ⊕cosh(d(·)) g1), where O ⊂ Hk is a normal

neighbourhood of some x0 ∈ O and d is the distance function from x0 in Hk.
Here (M1, g1), (M2, g2) are some Riemannian manifolds.

Proposition 4.4 Suppose (M, g) is a doubly warped product of one of the above
forms (LW1), (LW2) or (LW3). Then the holonomy group H−1 is reducible.

Remark 4.5 In the previous propositions, it is possible to replace (I×M1, ds
2⊕e−s g1)

by (−I×M1, ds
2⊕esg1), since the map (s, x1) 7→ (−s, x1) provides an isometry between

them.
Note that both propositions are of local nature. Along the respective arguments,

we will provide the necessary modifications to derive the full proof of Theorem 4.1
Before starting with the proofs, we need to introduce some more notations. The

metric h := h−1 associated to the bundle πTM⊕R : TM ⊕ R→M is then

h((X, r), (Y, s)) = g(X, Y )− rs, (X, r), (Y, s) ∈ T |xM ⊕ R.

Moreover, for any X, Y ∈ VF(M), s ∈ C∞(M), the linear connection ∇−1 is given
by

∇−1X (Y, s) = (∇XY + sX,X(s) + g(X, Y )).

In particular, if γ is a unit speed geodesic on M and (Y (t), s(t)) is parallel along γ,
then {

∇γ̇Y + sγ̇ = 0,

ṡ+ g(γ̇, Y ) = 0,

and differentiating once more we get{
∇γ̇∇γ̇Y + ṡγ̇ = 0,

s̈+ g(γ̇,∇γ̇Y ) = 0,

which simplifies to {
∇γ̇∇γ̇Y = g(γ̇, Y )γ̇,

s̈− s = 0.

9



4.2. Proof of Proposition 4.3. In this section we provide the proofs of the “only
if” parts of Proposition 4.3 and of Theorem 4.1. The proofs of the “if” parts of them
is postponed to Section 4.3.

Let (V, h) be a Lorentzian vector space. For a vector subspace W ⊂ V we define

W⊥h = {v ∈ V | h(v, w) = 0, ∀w ∈ W},

the h-orthogonal space to W . We will occasionally use a notation ‖v‖2h := h(v, v),
when v ∈ V .

Let V1 be a vector subbundle of TM⊕R invariant under the holonomy group H−1
of ∇−1 and set V2 = V ⊥h1 . This is again invariant under H−1, since ∇−1 is metric
with respect to h. Since dim(V1 ∩ V2) ∈ {0, 1}, the argument is divided into two
cases.

4.2.1. Case V1∩V2 = {0}. We have TM ⊕R = V1⊕V2. For α = 1, 2, define subsets
Nα of M by

Nα = {x ∈M | (0, 1) ∈ Vα|x}.
The restrictions of h to V1 and V2 are both non-degenerate, and since h has signa-
ture (n, 1), h is positive definite on one of them, which we assume without loss of
generality to be V2. Let us assume h|V2 has signature (n − m, 0), for some m s.t.
0 ≤ m < n. Therefore h is Lorentzian on V1, i.e., h|V1 has signature (m, 1). In
particular, V1 intersects transversally the light cone. To this end, notice that since
∇−1 is a metric connection, it preserves the signatures of invariant subbundles V1, V2
so the above claims are well established.

First we prove that N1 is non-empty and N2 is empty in the case where M is
complete.

Lemma 4.6 One has N2 = ∅ and if M is complete, then N1 6= ∅.

Proof. The fact that N2 = ∅ is trivial because
h((0, 1), (0, 1)) = ‖(0, 1)‖2h = −1,

and h is positive definite on V2.
Suppose that M is complete and fix x0 ∈ M . Since h is Lorentzian on V1,

there is a (X0, r0) ∈ V1|x0 such that ‖(X0, r0)‖2h < 0. By scaling we may assume
that ‖(X0, r0)‖2h = −1, i.e., ‖X0‖2g − r20 = −1. Moreover, we may assume that
r0 > 0. If X0 = 0, then r0 = 1 and (0, 1) ∈ V1|x0 and we are done. Hence assume
that X0 6= 0. Let γ be a unit speed geodesic with velocity X0/ ‖X0‖g and write
(X(t), r(t)) for the ∇−1-parallel transport of (X0, r0) along γ. Since r(0) = r0 and
ṙ(0) = −g(γ̇(0), X0) = −‖X0‖g, and because r̈ − r = 0, we get

r(t) = r0 cosh(t)− ‖X0‖g sinh(t).

Since r20 − ‖X0‖2g = 1 and r0 > 0, there exists a unique t1 ∈ R such that

(cosh(t1), sinh(t1)) = (r0, ‖X0‖g).

Hence r(t1) = r20 − ‖X0‖2g = 1. But then

‖X(t1)‖2g − 1 = ‖X(t1)‖2g − r(t1)
2 = ‖(X(t1), r(t1))‖2h = ‖(X0, r0)‖2h = −1,

which implies that ‖X(t1)‖2g = 0 and hence (0, 1) = (X(t1), r(t1)) ∈ V1|γ(t1) i.e.
γ(t1) ∈ N1. This finishes the proof. �
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For α = 1, 2, let πVα := πTM⊕R|Vα : Vα → M and define smooth sections
(Wα, wα) ∈ Γ(πVα), such that at every point x ∈M ,

(0, 1) = (W1, w1) + (W2, w2).

Clearly then W1 = −W2, w1 + w2 = 1. The fact N2 = ∅ means that w1 never
vanishes on M . Indeed, if w1 = 0 at some point, then w2 = 1 and

−1 = ‖(0, 1)‖2h = ‖(W1, 0)‖2h + ‖(W2, 1)‖2h = ‖W1‖2g + ‖W2‖2g − 1,

hence W1 = 0, W2 = 0 and V2 3 (W2, w2) = (0, 1), a contradiction.
A simple calculation shows that the curvature R∇−1 of the rolling connection ∇−1

is given by

R∇
−1

((X, r), (Y, s))(Z, u) = (R(X, Y )Z +B(X, Y )Z, 0),

where B(X, Y )Z := g(Y, Z)X − g(X,Z)Y .

Lemma 4.7 For all x ∈M and X, Y ∈ T |xM , one has

R(X, Y )Wα = −B(X, Y )Wα, α = 1, 2.

Proof. Notice that for any (X, r), (Y, s) ∈ T |xM ⊕ R one has

R∇
−1

((X, r), (Y, s))(0, 1) = (R(X, Y )0 +B(X, Y )0, 0) = (0, 0).

On the other hand, if h−1|x denotes the Lie algebra of H−1|x, by the Ambrose-Singer
theorem R∇

−1
((X, r), (Y, s)) ∈ h−1|x, so

R∇
−1

((X, r), (Y, s))Vα|x ⊂ Vα|x, α = 1, 2.

Hence

(0, 0) =R∇
−1

((X, r), (Y, s))(0, 1)

=R∇
−1

((X, r), (Y, s))(W1, w1)︸ ︷︷ ︸
∈V1

+R∇
−1

((X, r), (Y, s))(W2, w2)︸ ︷︷ ︸
∈V2

,

because (Wα, wα) ∈ Vα, α = 1, 2. Therefore, since V1 ∩ V2 = {0}, we have

R∇
−1

((X, r), (Y, s))(Wα, wα) = (0, 0), α = 1, 2,

which means that

R(X, Y )Wα +B(X, Y )Wα = 0, α = 1, 2,

and hence the claim has been established. �

Define for every x ∈M ,

V M
α |x := {X | (X, r) ∈ Vα} ⊂ T |xM, α = 1, 2.

Clearly V M
α is a smooth distribution on M \ Nα with rank V M

α = rank Vα. In
particular, V M

2 is a smooth constant rank distribution on all of M , since N2 = ∅.
Moreover, it is clear that V M

1 is a smooth non-constant rank distribution and that
rank V M

1 = rank V1 − 1 = m at points x ∈ N1.

Lemma 4.8 For every x ∈M , the intersection V M
1 ∩V M

2 is spanned byW1 (= −W2)
and so is one dimensional on M \N1 and zero on N1.
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Proof. Indeed, if X ∈ V M
1 ∩ V M

2 , then there are r1, r2 ∈ R such that (X, rα) ∈ Vα,
α = 1, 2. But then one has

(X, r1)︸ ︷︷ ︸
∈V1

− (X, r2)︸ ︷︷ ︸
∈V2

= (0, r1 − r2) = (r1 − r2)(0, 1)

= (r1 − r2) (W1, w1)︸ ︷︷ ︸
∈V1

+(r1 − r2) (W2, w2)︸ ︷︷ ︸
∈V2

,

and since V1 ∩ V2 = {0}, one has

(r1 − r2)(W1, w1) = (X, r1),

(r2 − r1)(W2, w2) = (X, r2).

In particular, X = (r1 − r2)W1, which shows that V M
1 ∩ V M

2 ⊂ RW1. Finally, since
W1 ∈ V M

1 , W2 ∈ V M
2 and W1 = −W2, we have that RW1 ⊂ V M

1 ∩ V M
2 . �

Define D1 := (V M
2 )⊥ and D2 := (V M

1 )⊥ i.e. the orthogonal complements of V2
and V1 with respect to g. Notice that Dα ⊂ Vα for α = 1, 2. Since V M

2 is a smooth
constant rank distribution on M then so is D1 as well and rank D1 = m. Similarly,
D2 has constant rank n −m − 1 on M \ N1 and rank n −m on N1. It is obvious
that D2 is a smooth distribution on M \N1. However, it is not continuous at points
of x ∈ N1. Indeed, as will be proved in Lemma 4.9 below, N1 is a submanifold
of M positive codimension (it has dimension m). But the rank of a continuous
distribution is lower semicontinuous and hence can only locally increase, while D2

has rank n−m on the nowhere dense set N1 which is higher than its rank n−m−1
on M \N1, so D2 cannot be continuous at points of N1.

Lemma 4.9 Let {α, β} = {1, 2}. The distribution Dα is integrable on M \ Nβ and
the set N1 is an integral manifold of D1 which is embedded in M . Moreover, if O is
an integral manifold of Dα and if IIO is its second fundamental form, then for every
X, Y ∈ T |xO, x ∈M \Nβ,

IIO(X, Y ) =
g(X, Y )

wα
Wα.

In particular, each integral manifold of Dα is umbilical and N1 is totally geodesic.

Proof. Recall that Dα = (V M
β )⊥ and TM ⊕ R = Vα ⊕ Vβ. Suppose X, Y are vector

fields tangent to Dα on M \Nβ. Then

{0} = g({Y } × V M
β ) = h({(Y, 0)} × Vβ),

so (Y, 0) ∈ Vα, and similarly (X, 0) ∈ Vα. Hence

Vα 3 ∇−1X (Y, 0) = (∇XY, g(X, Y )).

Similarly, (∇YX, g(Y,X)) ∈ Vα and thus

([X, Y ], 0) = (∇XY, g(X, Y ))− (∇YX, g(Y,X)) ∈ Vα.

Therefore

g({[X, Y ]} × V M
β ) = h({([X, Y ], 0)} × Vβ) = {0},

so [X, Y ] is tangent to (V M
β )⊥ = Dα. This proves that Dα is involutive and hence

integrable on M \Nβ.
12



Let O be an integral manifold of Dα in M \Nβ and let X, Y be tangent to O. By
what we have shown above,

Vα 3 ∇−1X (Y, 0) =(∇XY, g(X, Y )) = (∇XY, 0) + g(X, Y )(0, 1)

=(∇XY, 0) + g(X, Y )(Wα, wα) + g(X, Y )(Wβ, wβ)

=(∇XY + g(X, Y )Wβ, g(X, Y )wβ) + g(X, Y )(Wα, wα),

and so

(∇XY + g(X, Y )Wβ, g(X, Y )wβ) ∈ Vα.

Since also wβ(∇XY, g(X, Y )) ∈ Vα, it follows that

((1− wβ)∇XY + g(X, Y )Wβ, 0) ∈ Vα,

and hence, because 1− wβ = wα and Wβ = −Wα,

0 = h({(wα∇XY − g(X, Y )Wα, 0)} × Vβ) = g({wα∇XY − g(X, Y )Wα} × V M
β ).

Thus wα∇XY − g(X, Y )Wα ∈ Dα. Since Wα = −Wβ ∈ V M
β = D⊥α , this proves that

IIO(X, Y ) =
g(X, Y )

wα
Wα.

We show that N1 is an integral manifold of D1. Indeed, let x1 ∈ N1 and let
(Yi, si), i = 1, . . . , n −m, be a local basis of V2 on an open set U 3 x1. Since h is
positive definite on V2, we may assume that the basis (Yi, si), i = 1, . . . , n−m is h-
orthonormal. Moreover, if x ∈ N1, then for all i, si(x) = −h((0, 1), (Yi|x, si(x))) = 0
since (0, 1) ∈ V1|x.

Define F : U → Rn−m by

F =
(
h((Y1, s1), (0, 1)), . . . , h((Yn−m, sn−m), (0, 1))

)
,

and notice that F−1(0) = N1 ∩U . To show that N1 is a smooth embedded subman-
ifold of dimension m, it thus suffices to show that F is a submersion at every point
x ∈ N1 ∩ U . But if x ∈ N1 ∩ U and k = 1, . . . , n−m, then

F∗|x(Yk) =
(
h(∇−1Yk|x(Yi, si), (0, 1)) + h((Yi|x, sk(x)),∇−1Yk (0, 1))

)n−m
i=1

,

because ∇−1 is metric w.r.t. h. Since ∇−1Yk|x(Yi, si) ∈ V2|x, and (0, 1) ∈ V1|x, the
term h(∇−1Yk|x(Yi, si), (0, 1)) vanishes. Moreover

h((Yi|x, sk(x)),∇−1Yk (0, 1)) =h((Yi|x, si(x)), (Yk|x, 0))

=h((Yi|x, si(s)), (Yk|x, sk(x))) = δik,

since sk(x) = 0. Hence if ei, i = 1, . . . , n−m, is the canonical basis of Rn−m, then for
all x ∈ N1∩U , F∗|x(Yk) = ek, k = 1, . . . , n−m and so they are linearly independent.
Hence F is submersive at every point of N1 ∩ U .

To show that T |xN1 = D1|x for all x ∈ U ∩N1, notice that if X ∈ D1|x, then by
computation as above,

F∗|x(X) =
(
h(∇−1X (Yi, si), (0, 1)) + g(Yi|x, X)

)n−m
i=1

= 0,

because ∇−1X (Yi, si) ∈ V2|x, (0, 1) ∈ V1|x and Yi|x ∈ V M
2 |x while X ∈ D1|x =

(V M
2 |x)⊥. This shows that D1|x ⊂ T |xN1 for all x ∈ N1 ∩ U and since both lin-

ear spaces have dimension m, we have the equality i.e. N1 is an integral manifold
of D1.
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Finally, since N1 is an integral manifold of D1 and since (W1, w1) = (0, 1) on N1,
one has that the second fundamental form IIN1 vanishes on N1. Therefore N1 is
totally geodesic. �

In particular, at every x ∈ N1 one has V M
1 |x = D1|x = T |xN1.

Lemma 4.10 Let {α, β} = {1, 2}. The integral manifolds of Dα in M \ Nβ are
spherical.

Proof. We need to show that ∇X(w−1α Wα) ∈ Dα for all X ∈ Dα on M \ Nβ. In-
deed, g(Wα, X) = 0 because Wα = −Wβ ∈ V M

β = D⊥α and since (w−1α Wα, 1) =

w−1α (Wα, wα) ∈ Vα, we have

Vα 3 ∇−1X (w−1α Wα, 1) = (∇X(w−1α Wα) +X, 0 + g(X,w−1α Wα))

= (∇X(w−1α Wα) +X, 0).

Because X ∈ (V M
β )⊥, it then follows that

0 =h({(∇X(w−1α Wα) +X, 0)} × Vβ) = g({∇X(w−1α Wα) +X)} × V M
β )

=g({∇X(w−1α Wα)} × V M
β ),

i.e., ∇X(w−1α Wα) ∈ (V M
β )⊥ = Dα. �

Lemma 4.11 The distributions V M
1 and V M

2 are integrable and their integral mani-
folds are totally geodesic.

Proof. Fix α = 1, 2 and let x ∈M \Nα. Since V M
α has constant rank around x, the

integrability of it in a neighborhood U of x which does not intersect Nα, is equivalent
to the involutivity of V M

α on U .
Thus take X, Y ∈ VF(U) which are tangent to V M

α . Then there is a unique
s ∈ C∞(U) such that (Y, s) ∈ Vα on U . But then

Vα 3 ∇−1X (Y, s) = (∇XY + sX,X(s) + g(X, Y )),

which implies that on U

∇XY + sX ∈ V M
α .

Since X is also tangent to V M
α on U , we get that ∇XY ∈ V M

α on U as well.
But since ∇ is torsion free and since by the above ∇XY,∇YX ∈ V M

α on U , one
has that [X, Y ] = ∇XY −∇YX ∈ V M

α on U , i.e. V M
α is involutive on U .

Moreover, if O is an integral manifold of V M
α through y ∈ U , and ifX, Y ∈ VF(O),

then on some neighborhood U ′ ⊂ U of y in M , there are X̃, Ỹ ∈ VF(U ′) which
restrict to X, Y on O and are tangent to V M

α on U ′. Then ∇XY = ∇X̃ Ỹ on O and
by what was shown above, this is tangent to V M

α i.e. tangent to O. Thus O is totally
geodesic.

This proves that V M
α is involutive on M \Nα and that its integral manifolds are

totally geodesic. Since N2 = ∅, the only thing left is to notice that by Lemma 4.9,
N1 is an integral manifold of V M

1 because D1|y = V M
1 |y for all y ∈ N1. �

Lemma 4.12 For every x ∈M and every unit vector u ∈ T |xM , one has

(P∇
−1

)t0(γu)(0, 1) = (− sinh(t)γ̇u(t), cosh(t)),

where γu(t) = expx(tu). In particular, if x ∈ N1 and u ∈ V M
2 |x, ‖u‖g = 1, then

γ̇u(t) ∈ V M
1 ∩ V M

2 for all t 6= 0.
14



Proof. Let (X(t), r(t)) := (− sinh(t)γ̇u(t), cosh(t)). Then (X(0), r(0)) = (0, 1) and

∇−1γ̇u(t)(X, r)

=
(
∇γ̇u(t)

(
− sinh(t)γ̇u(t)

)
+ cosh(t)γ̇u(t),

d

dt
cosh(t) + g(− sinh(t)γ̇u(t), γ̇u(t)

)
=
(
− cosh(t)γ̇u(t) + cosh(t)γ̇u(t), sinh(t)− sinh(t)g(u, u)

)
= (0, 0),

where at the last equality we used that ‖u‖g = 1. This proves that

(X(t), r(t)) = (P∇
−1

)t0(γu)(0, 1).

We prove the second claim. Let x ∈ N1 and u ∈ V M
2 |x, ‖u‖g = 1. Since V M

2 is
integrable and its integral manifolds are totally geodesic by Lemma 4.11, it follows
that γ̇u(t) ∈ V M

2 for all t. On the other hand, since (0, 1) ∈ V1|x by the definition of
the set N1, we have (P∇

−1
)t0(γu)(0, 1) ∈ V1 for all t i.e. (− sinh(t)γ̇u(t), cosh(t)) ∈ V1

for all t and this implies that − sinh(t)γ̇u(t) ∈ V M
1 for all t. Hence γ̇u(t) ∈ V M

1 if
t 6= 0. �

Lemma 4.13 (i) Let {α, β} = {1, 2}. Then if x /∈ M\Nβ, then there is an
integral manifold Oα of V M

α through x such that (Oα, g|Oα) is isometric to
(I × Mα, ds

2 ⊕fα(s) gα) where I ⊂ R is an open interval and fα ∈ C∞(I)
satisfies f ′′α − fα = 0.

(ii) If x ∈ N1 then there exists an integral manifold O2 of V M
2 through x and

(O2, g|O2) has constant curvature −1 if rank V M
2 ≥ 2.

Proof. (i) Without loss of generality, one may assume that α = 2, β = 1, since the
proof of the other case is completely symmetric. Assume that x /∈ N1 and let O2

be an integral manifold of V M
2 through x ∈ M such that O2 ∩ N1 = ∅. Clearly

one can assume that dimO2 ≥ 2. In this case, the 1-dimensional integral manifolds
of the distribution RW2 = V M

1 ∩ V M
2 spanned by W2 on O2 are geodesics since

they are (locally) the intersections of integral manifolds of V M
1 and V M

2 , which are
totally geodesic by Lemma 4.11. Moreover, integral manifolds of D2 are spherical
by Lemma 4.9 and T |yO2 = RW2|y ⊕D2|y for all y ∈ O2, so O2 is locally a warped
product (see Theorem 3.4) of the form (I×M2, ds

2⊕f2(s) g2) where I ⊂ R is an open
interval and f2 ∈ C∞(I). Moreover, for y ∈ O2 and X ∈ D2|y = T |yM2, we have

g(W2,W2)X = B(X,W2)W2 = −R(X,W2)W2 =
Hf2(W2,W2)

f2
X =

f ′′2
f2
g(W2,W2)X,

where the second equality follows from Lemma 4.7 and third equality follows from
[23], Proposition 42, case (2) (here Hf2 is the Hessian of f2). Taking any non-zero
X ∈ D2|y (there exist one since rank D2 ≥ 1) and noticing that W2|y 6= 0 since
y /∈ N1, we get the claimed equation f ′′2 = f2 for f2. This establishes the first part
of the lemma.

(ii) Assume that x ∈ N1. Let k := rank V M
2 = n − m and let ε > 0 be small

enough such that expx is a diffeomorphism from B := {X ∈ V M
2 |x | ‖X‖g < ε} onto

its image and so that B ∩ N1 = {x} (this is possible since N1 is embedded in M).
Since integral manifolds of V M

2 are totally geodesic, it follows that O2 := expxB is
an integral manifold of V M

2 .
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Suppose that u,X ∈ V M
2 |x are such that u ⊥ X and ‖u‖g = 1 and define for

t ∈ [0, ε[,

γu(t) := expx(tu),

Yu,X(t) := sinh(t)P t
0(γu)X.

We claim that Yu,X is the Jacobi field Y along γu such that Y (0) = 0, ∇uY (0) = X.
The claims about initial values being obviously true for Yu,X , it remains to show

that Yu,X satisfies the Jacobi-equation. Notice that γ̇u(t) ⊥ Yu,X(t) for all t and recall
that by Lemmas 4.8 and 4.12, γ̇u(t) ∈ V M

1 ∩ V M
2 = RW1 when t 6= 0. Therefore

Lemma 4.7 implies that

R(γ̇u(t), Yu,X(t))γ̇u(t) = −B(γ̇u(t), Yu,X(t))γ̇u(t) = g(γ̇u(t), γ̇u(t))Yu,X(t) = Yu,X(t),

while

∇γ̇u(t)∇γ̇uYu,X(t) = ∇γ̇u(t)(cosh(t)P t
0(γu)X) = sinh(t)P t

0(γu)X = Yu,X(t).

Hence the claim has been established.
Let Sk−1 be the (k−1)-dimensional unit sphere {X ∈ V M

2 |x | ‖X‖g = 1} of V M
2 |x

and define

F : (]0, ε[×Sk−1, ds2 ⊕sinh(s) g|Sk−1)→ (M, g); F (s,X) = expx(sX).

Then F is a diffeomorphism onto O2\{x} = expx(B\{0}) and

F∗|(s,u)(α∂s +X) = αγ̇u(s) + Yu,X(s),

whence ∥∥F∗|(s,u)(α∂s +X)
∥∥2
g

=α2 ‖u‖2g + ‖Yu,X(s)‖2g = α2 + sinh2(s) ‖X‖2g
= ‖α∂s +X‖2ds2⊕sinh(s)g|Sk−1

.

This means that the mapping F is an isometry from (]0, ε[×Sk−1, ds2⊕sinh(s) g|Sk−1)
onto (O2\{x}, g|O2\{x}). Since the former Riemannian manifold has constant curva-
ture −1, if k ≥ 2, it follows that (O2, g|O2) has constant curvature −1, if k ≥ 2. �

We now finish the proof of Proposition 4.3.

Proof of Proposition 4.3. First we consider the case where k := rank V M
2 ≥ 2. Let

x ∈ M be fixed. Since integral manifolds of the constant rank distribution D1 are
spherical and those of V M

2 = D⊥1 are totally geodesic, Theorem 3.4 implies that
there is a neighborhood U of x in M such that (U, g|U) is isometric to a warped
product (O2 ×M1, g|O2 ⊕f1 g1) where O2 is an integral manifold of V M

2 through x,
M1 is an integral manifold of D1 through x and f1 ∈ C∞(O2) (see Remark 3.5).

First consider the situation where x ∈M\N1. By Lemma 4.13, after shrinking U
if necessary around x, (O2, g|O2) is isometric to (I ×M2, ds

2 ⊕f2(s) g2) where I ⊂ R
is an open interval and f2 ∈ C∞(I) satisfying f ′′2 = f2. We may also assume that
U ∩N1 = ∅. Hence, (U, g|U) is isometric to

(I ×M2 ×M1, (ds
2 ⊕f2(s) g2)⊕f1 g1),

where f1 ∈ C∞(O2), f2 ∈ C∞(I) and f ′′2 − f2 = 0.
We show that f1 ∈ C∞(I) and f ′′1 − f1 = 0. Indeed, if X ∈ W⊥

1 , we have

X(f1) = g(∇f1, X) = − f1
w1

g(W1, X) = 0,(8)
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which shows that f1 ∈ C∞(I). Moreover, for y ∈ O2 and X ∈ W⊥
2 |y∩T |yO2 = D2|y,

we have (see Lemma 4.7 and [23], Proposition 42, case (2))

g(W2,W2)X = B(X,W2)W2 = −R(X,W2)W2 =
Hf1(W2,W2)

f1
X =

f ′′1
f1
g(W2,W2)X.

(9)

Because rank V M
2 ≥ 2, it follows that rank D2 ≥ 1 on U . Therefore, one may take

above X 6= 0, which implies that f ′′1 = f1 and proves the claim.
We also know that

w−1α Wα = −f
′
α

fα
∂s, α = 1, 2,

while

0 =w−11 w−12 h((W1, w1), (W2, w2)) = h((w−11 W1, 1), (w−12 W2, 1)) =
f ′1f

′
2

f1f2
− 1.

Writing fα(s) = Aα cosh(s) + Bα sinh(s), the above means that A1A2 − B1B2 = 0.
Since (Ai, Bi) 6= (0, 0), i = 1, 2, we may rescale, if necessary, the metrics of (M1, g1)
and (M2, g2) so as to guarantee that either a) A2

1−B2
1 = +1 and A2

2−B2
2 = −1 or b)

A2
1−B2

1 = −1 and A2
2−B2

2 = +1. But since h|V2 is positive definite, ‖(W2, w2)‖2h ≥ 0
and hence

0 ≤
∥∥(w−12 W2, 1)

∥∥2
h

=
(f ′2(s)
f2(s)

)2
− 1,

which implies that |A2| ≤ |B2|, so only Case a) is possible.
It then follows easily that on I,

f 2
1 − f 2

2 = 1.

Thus there is s0 ∈ R such that if one writes Ĩ = I − s0, then for all s̃ ∈ Ĩ,

f1(s̃+ s0) = cosh(s̃) =: f̃1(s̃),

f2(s̃+ s0) = sinh(s̃) =: f̃2(s̃).

Since (I ×M2 ×M1, ds
2 ⊕f2(s) g2 ⊕f1(s) g1) is isometric to (Ĩ ×M2 ×M1, ds

2 ⊕f̃2(s)
g2 ⊕f̃1(s) g1), we have proved (LW2) of Proposition 4.3 when rank V M

2 ≥ 2.
Next we consider the case where x ∈ N1. In this situation, Lemma 4.13 case (ii)

implies (after maybe shrinking U around x) that (O2, g|O2) is isometric to an open
subset of (Hk,gk−1). Moreover, by the proof of Lemma 4.13 case (ii), we may assume
that (O2\{x}, g|O2\{x}) is isometric to (]0, ε[×Sk−1, ds2 ⊕sinh(s) g|Sk−1) through the
map F introduced there.

We show that f̃1 := f1 ◦ F ∈ C∞(]0, ε[) and f̃ ′′1 − f̃1 = 0. Indeed, if X ∈ W⊥
1 ,

then X(f1) = 0 by (8). Hence, in particular, if X̃ ∈ T |F−1(y)S
k−1 for y ∈ U\{x},

then X̃ ⊥ ∂s i.e. F∗(X̃) ⊥ W1, and hence X̃(f̃1) = 0. This shows that f̃1 is constant
on each set {s} × Sk−1, s ∈]0, ε[, since Sk−1 is connected and thus f̃1 ∈ C∞(]0, ε[).
From Eq. (9) one then infers that f̃ ′′1 − f̃1 = 0.

Thus for some A1, B1 ∈ R, f̃1(s) = A1 cosh(s) +B1 sinh(s). Recall that −∇f1
f1
∂s =

w−11 W1 where

(0, 1) = (W1, w1) + (W2, w2),
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with (W1, w1) ∈ V1, (W2, w2) ∈ V2. Since ‖(W2, w2)‖2h ≥ 0, ‖(0, 1)‖2h = −1 and
∇f1 = f̃ ′1F∗(∂s), it follows that( f̃ ′1

f̃1

)2
− 1 =

∥∥(w−11 W1, 1)
∥∥2
h
< 0(10)

and hence |B1| < |A1|. Then, one can normalize A1, B1 such that A2
1−B2

1 = −1 and
by eventually replacing, as before, s by s + s0, for some s0 ∈ R (these operations
just rescale the metric g1 by a constant), one gets f̃1(s) = cosh(s).

If d(y) := d(x, y) is the distance function of (O2, g|O2) from x, then clearly s =
d(F (s, u)) for (s, u) ∈]0, ε[×Sk−1, which implies that f1(y) = cosh(d(y)) for all
y ∈ O2. Thus we have arrived at (LW3) when rank V M

2 ≥ 2.
It remains to provide an argument for the case rank V M

2 = 1. Let x ∈ M . By
Lemma 4.13 case (i) with α = 1, one gets that (O1, g|O1) is isomorphic to a warped
product (I×M1, ds

2⊕f1(s) g1) where f1 ∈ C∞(I) satisfies f ′′1 − f1 = 0. Then exactly
the same argument as above, replacing f̃1 by f1, leads to (10) and to the conclusion
that we may take f1(s) = cosh(s) (after scaling the metric g1 by a constant). Hence
we have (LW2) and the proof of Proposition 4.3 complete in this case.

�

Proof of Theorem 4.1. Let us now assume that (M, g) is complete and simply con-
nected and use the notation of the above proof of Proposition 4.3.

By Theorem 3.4 we have in the proof of Proposition 4.3 that (O2, g|O2) and
(M1, g1) are complete and simply connected. Since N1 6= ∅, we may further as-
sume that x ∈ N1 ∩O2.

Then if k := rank V M
2 ≥ 2, the argument leading to (LW3) shows, since one may

take ε = +∞ there, that (O2, g|O2) is isometric to (Hk,gk−1) and that f1 can be
chosen to be cosh(d(·)) where d is the distance function on (Hk,gk−1) from the point
corresponding to x. This proves (WP2).

If k = rank V M
2 = 1, then in the above argument leading to (LW2), one may take

I = R and hence we have (WP2) with k = 1. This completes the proof of Theorem
4.1. �

4.2.2. Case V1 ∩ V2 6= {0}. In this case, dim(V1 ∩ V2) = 1 and V1 ∩ V2 is lightlike
and invariant by H−1 since V1 and V2 are. Therefore, at every point x ∈ M there
is L|x ∈ T |xM such that V1|x ∩ V2|x = R(L|x, 1). In this way, we may choose L|x
locally such that L := (x 7→ L|x) becomes a smooth locally defined vector field on
M and if M is simply connected, L can be chosen to be globally defined.

Since (L, 1) is lightlike vector in T |xM ⊕R, we have 0 = ‖(L, 1)‖2h = ‖L‖2g − 1 i.e.
L is a unit vector field.

Lemma 4.14 For all X ∈ TM ,

∇XL = −X + g(X,L)L.

Proof. Since V1 ∩ V2 = R(L, 1) and because V1 ∩ V2 is invariant under H−1, we get
that V1 ∩ V2 is invariant under parallel transport w.r.t. ∇−1. This is equivalent to
the fact that for any X ∈ TM there is α(X) ∈ R such that

∇−1X (L, 1) = α(X)(L, 1),

i.e.,

(∇XL+X, g(X,L)) = α(X)(L, 1),
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from which one gets α(X) = g(X,L) and thus

�(11) ∇XL+X = g(X,L)L.

Lemma 4.15 The vector field L is geodesic, the distribution L⊥ is integrable and its
integral manifolds are spherical.

Proof. By Lemma 4.14 and the fact that ‖L‖g = 1, we get ∇LL = −L+ g(L,L)L =
−L+ L = 0 so L is a geodesic vector field.

Let us prove the integrability of L⊥. If X, Y ∈ L⊥, then
g([X, Y ], L) =g(∇XY −∇YX,L) = −g(Y,∇XL) + g(X,∇YL)

=− g(Y,−X + g(X,L)L) + g(X,−Y + g(Y, L)L)

=g(Y,X)− g(X, Y ) = 0,

i.e., [X, Y ] ∈ L⊥. This proves that L⊥ is involutive and hence integrable.
Let O be an integral manifold of L⊥. If X, Y ∈ VF(O), we get

g(∇XY, L) = −g(Y,∇XL) = −g(Y,−X + g(X,L)L) = g(X, Y ),

so the second fundamental form IIO of O is given by

IIO(X, Y ) = g(X, Y )L, X, Y ∈ T |xM, x ∈ O,
which means that O is umbilical.

To show that O is spherical, we need to show that ∇XL ∈ L⊥ for all X ∈ TO.
But this is clear since 0 = Xg(L,L) = 2g(∇XL,L). This completes the proof. �

We now finish the proof of Proposition 4.3 in this case. By the previous lemma
and Theorem 3.4, it follows that locally (M, g) is isometric to a warped product
(I ×M1, ds

2 ⊕f g1) for some interval I ⊂ R and f ∈ C∞(I). If (M, g) is complete
and simply connected, then I = R. Moreover, one has

f ′

f
X = ∇XL = −X + g(X,L)L = −X,

for any X ∈ L⊥. It follows that f(s) = Ce−s for some C 6= 0. By rescaling the
metric g1 by a constant, we may assume that C = 1. This leads us to the case
(LW1).

4.3. Proof of Proposition 4.4.

4.3.1. Case V1 ∩ V2 6= {0}: Suppose (M, g) = (I ×M1, ds
2 ⊕e−s g1). Let L := ∂s,

f(s) = e−s and compute that for all Y ∈ L⊥,

∇YL =
f ′

f
Y = −Y,

and ∇LL = 0, so for every X ∈ TM
∇XL = −X + g(X,L)L.

Define a one-dimensional subbundle of πTM⊕R whose fibers are V1 := R(L, 1). Then
V1 is light-like and for every X ∈ TM ,

∇−1X (L, 1) = (∇XL+X, g(X,L)) = g(X,L)(L, 1),

which shows that V1 is invariant by parallel transport with respect to ∇−1. In
particular, V1 is invariant with respect to H−1 and therefore H−1 is reducible. This
proves that H−1 is reducible if (M, g) is of the form (LW1).
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4.3.2. Case V1 ∩ V2 = {0}: Assume first that (M, g) = (I ×M2 ×M1, ds
2 ⊕sinh(s)

g2 ⊕cosh(s) g1). Here I ⊂ R is an interval not containing 0. Define for every x =
(s, x2, x1) ∈M ,

V1|x := R(W1|x, w1(x))⊕ (T |x1M1 × {0}) ⊂ T |xM ⊕ R,

where

(W1|x, w1(x)) := cosh(s)(− sinh(s)∂s, cosh(s)).

We prove that V1 is invariant under H−1.
Indeed, let X ∈ T |x1M1, Y ∈ VF(M1) and Z ∈ T |(s,x2)(I ×M2). Then

∇−1X (Y, 0) = (∇XY, g(X, Y )) =
(
∇g1
XY − g(X, Y ) tanh(s)∂s, g(X, Y )

)
= (∇g1

XY, 0) +
g(X, Y )

cosh2(s)
(W1|x, w1(x)) ∈ V1|x,

∇−1Z (Y, 0) = (∇ZY, g(Z, Y )) =
(
g(Z, ∂s) tanh(s)Y, 0

)
∈ V1|x,

and if U ∈ T |x2M2,

∇−1X (W1, w1) =(− sinh2(s)X + w1X, 0) = (X, 0) ∈ V1|x,
∇−1U (W1, w1) =(− cosh2(s)U + w1U, 0) = (0, 0) ∈ V1|x,
∇−1∂s (W1, w1) =

(
(− sinh2(s)− cosh2(s))∂s + w1∂s, 2 cosh(s) sinh(s)

− sinh(s) cosh(s)
)

= sinh(s)(− sinh(s)∂s, cosh(s)) = tanh(s)(W1, w1),

which impies that ∇−1X (W1, w1) ∈ V1|x. These formulas show that for all X ∈ TM
and Y ∈ Γ(πV1), one has ∇−1X Y ∈ Γ(πV1). Thus V1 is invariant under parallel
transport w.r.t. ∇−1 and therefore it is invariant under H−1. This proves that H−1
is reducible if (M, g) is of the form (LW2).

Consider then the case where (M, g) = (O ×M1,g
k
−1 ⊕cosh(d(·)) ⊕g1), where O is

a normal neighbourhood of a point x0 ∈ Hk and d(x) = d(x, x0) is the distance
function from x0 in Hk.

Observe that (O\{x0},gk−1) is isometric to (]0, ε[×Sk−1, ds2⊕sinh(s)g
k−1
1 ), for ε > 0

or ε = +∞ and d(x) = s if x 6= x0 corresponds to (s, y) ∈]0, ε[×Sk−1. Choosing
above (M2, g2) = (Sk−1,gk−11 ), we conclude that H−1|]0,ε[×M2×M1 is reducible and
hence by continuity, H−1 is reducible on (M, g). We conclude that if (M, g) is of the
form (LW3), then H−1 is reducible and hence completes the proof of Proposition
4.4.

The proof of sufficiency of Theorem 4.1 now follows immediately from the above,
since one could takeO = Hk, the exponential map ofHk at x0 being a diffeomorphism
of T |x0Hk onto Hk.
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