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Amina MORTADA∗ Petri KOKKONEN† Yacine CHITOUR‡
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Abstract

If (M,g) and (M̂, ĝ) are two smooth connected complete oriented Riemannian man-
ifolds of dimensions n and n̂ respectively, we model the rolling of (M,g) onto (M̂ , ĝ) as
a driftless control affine systems describing two possible constraints of motion: the first
rolling motion ΣNS captures the no-spinning condition only and the second rolling motion
ΣR corresponds to rolling without spinning nor slipping. Two distributions of dimensions
(n + n̂) and n, respectively, are then associated to the rolling motions ΣNS and ΣR re-
spectively. This generalizes the rolling problems considered in [9] where both manifolds
had the same dimension. The controllability issue is then addressed for both ΣNS and ΣR

and completely solved for ΣNS . As regards to ΣR, basic properties for the reachable sets
are provided as well as the complete study of the case (n, n̂) = (3, 2) and some sufficient
conditions for non-controllability.
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1 Introduction

In this paper, we continue the study initiated in [9]

of the rolling of two smooth connected complete oriented Riemannian manifolds (M, g) and
(M̂, ĝ) of dimensions n and n̂ respectively, where the integers n and n̂ are now not necessarily
equal. Two sets of constraints are usually considered, namely the rolling without spinning on
the one hand and the rolling without spinning nor spinning on the other hand. Most of the
existing work on the subject concerns the case where both manifolds have the same dimension,
i.e., n = n̂, cf. [1, 4, 6, 7, 8, 12, 13, 16, 14, 18] and references therein. In particular, the state
space Q for both types of rolling models is a fiber bundle over M × M̂ where the typical fiber
consists of all the partial isometries A : TxM → Tx̂M̂ (orientation preserving, if applicable).

The kinematic constraints of rolling without spinning simply says geometrically that parallel
vector fields along a curves on M are mapped to parallel vector fields along curves on M̂ . Thus
the smooth no-spinning distribution DNS on Q is defined by making use of the derivative of
the parallel transport of the pair of vector fields (X, X̂) along curves on (M, M̂).

Then the distribution DR satisfying additionally the kinematic constraint of no-slipping is
obtained as a sub-distribution of DNS by imposing X̂ = AX . Two driftless control systems
ΣNS and ΣR are therefore defined on Q, associated respectively with DNS and to DR, (see
[2, 10] for more details on control systems).

The main issue consists in addressing the problem of complete controllability of ΣNS and ΣR

in terms of the geometries of M and M̂ . That means to provide necessary and/or sufficient
conditions so that, for every pair of points (qinit, qfinal) in Q, there exists a curve γ steering
qinit to qfinal and tangent to DNS (respectively to DR). The attention is then focused on the
details of the “rolling” orbits, which are the reachable sets associated to the distributions DNS

and DR. One is able to provide a complete answer for ΣNS (cf. [6, 7]) by directly describing
the corresponding rolling orbits in terms of the holonomy groups of (M, g) and (M̂, ĝ). As
for ΣR, the situation is far more complicated. The standard strategy consists in computing
the iterated Lie brackets of sections of DR and in verifying whether they span the tangent
space of Q at each point. By calculating the first Lie bracket, one comes to the definition of a
tensor Rol called the rolling curvature, cf. [9], which can be seen as the difference between the
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curvature tensor of M and that of M̂ . Hence, in the two dimensional case, the rolling curvature
essentially reduces to the difference between Gaussian curvatures. The higher order Lie brackets
involve linear combinations of (higher order) covariant derivatives of the rolling curvature Rol

and it seems impossible to calculate in general the dimension of the evaluation at each point
of the Lie algebra of these iterated Lie brackets. However, satisfactory answers for complete
controllability of ΣR were given in the case where both manifolds are three dimensional (cf. [9])
or if one of them is of constant curvature (cf. Section 6 in [8]). Moreover, one is even able in
the two dimensional case to provide motion algorithms for ΣR, cf. [3, 5, 15].

In the present paper, we extend the constructions and basic results of [9] to the case where
(M, g) and (M̂, ĝ) do not have necessarily the same dimension, i.e., n is not necessarily equal
to n̂. The first modification consists in generalizing the definition of the state space Q to the
following
(i) if n ≤ n̂, Q(M, M̂) := {A ∈ T ∗M ⊗ TM̂ | ĝ(AX,AY ) = g(X, Y ), X, Y ∈ TxM,x ∈ M},

(ii) if n ≥ n̂, Q(M, M̂) := {A ∈ T ∗M ⊗ TM̂ | ĝ(AX,AY ) = g(X, Y ), X, Y ∈ (kerA)⊥,

A is onto the tangent space of M̂},

(in other words, Q(M, M̂) is the set of partial isometries of maximal rank), and in defining
rigorously the distributions DNS, DR as well as the rolling curvature Rol. We then provide
basic properties of the rolling orbits associated to DNS and DR respectively. In the case where
n 6= n̂, some non controllability results will be given, namely in the presence of totally geodesic
submanifolds in M̂ as well as results in the case |n− n̂| = 1 (Proposition 4.10 and Proposition
4.13 below). Finally, we will completely solve the issue of complete controllability associated to
(Σ)NS in the spirit of what has been done in [8], and we will study the case where (n, n̂)=(3, 2)
by using results of [9]. Parts of the results of this paper have already appeared in the preprint [8].

Acknowledgements. The first author would like to thank the Lebanese National Council for
Scientific Research (CNRS) and Lebanese University for their financial support to this work.

2 Notations

Unless otherwise stated, all manifolds considered in this paper are finite dimensional, smooth
and connected. If in addition a manifold M is endowed a Riemannian metric g, then (M, g) is
assumed to be complete and oriented and we use ‖v‖g to denote g(v, v)1/2 for every v ∈ TxM ,
where x is an arbitrary point of M . Let L : V → W be a R-linear map where V and W are
two R-linear spaces with dimensions n and n′ respectively. Taking F = (vi)

n
i=1 and G = (wi)

n′

i=1

two bases of V and W respectively, the (n′ × n)- real matrix of L w.r.t. F and G is denoted
by MF,G(L) and given by L(vi) =

∑
j MF,G(L)

j
iwj. Furthermore, T ∗

xM ⊗ Tx̂M̂ is canonically

identified with the linear space of the R-linear map A : TxM → Tx̂M̂ .

If E,M, F are manifolds, a smooth bundle πE,M : E → M is a smooth map such that for every
x ∈ M there exists a neighbourhood U of x in M and a smooth diffeomorphism τ : π−1

E,M(U) →
U ×F so that pr1 ◦ τ = (πE,M |π(U))

−1, where pr1 stands for the projection onto the first factor.
Then, F is called the typical fiber of πE,M and τ is a (smooth) local trivialization of πE,M . In
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the case where F is a finite dimensional R-linear space, we get a (smooth) vector bundle.

The set E|x = π−1
E,M(x) := π−1

E,M(x) is called the πE,M -fiber over x. A smooth section of a bundle
πE,M is a smooth map s : M → E that satisfies πE,M ◦ s = idM . When the context is clear, we
simply write π for πE,M .

A distribution D over a manifold M is a smooth assignment x 7→ D |x where D |x ⊂ TxM . An
absolutely continuous curve c : I → M defined on an interval I ⊂ R is D-admissible curve if it
is tangent to D almost everywhere (a.e.), i.e., for almost every t ∈ I, ċ(t) ∈ D |c(t). For x0 ∈ M ,
the subset OD(x0) of M formed by the endpoints of all D-admissible curves of M starting at
x0 is called the D-orbit through x0. By the Orbit Theorem (see [?]), it follows that OD(x0)
is an immersed smooth submanifold of M containing x0, and that one can restrict the class
of curves defining the orbit to the piecewise smooth ones. We call a distribution D ′ on M a
subdistribution of D if D ′ ⊂ D . An immediate consequence of the definition of the orbit shows
that OD ′(x0) ⊂ OD(x0) for all x0 ∈ M .

For a smooth map π : E → M and y ∈ E, let V |y(π) be the set of all Y ∈ T |yE such that
π∗(Y ) = 0. If π is a bundle then the collection of spaces V |y(π), y ∈ E, defines a smooth
vertical distribution V (π) on E.

When π : E → M and η : F → M are vector bundles over a manifold M , let C∞(π, η) be the
set of smooth maps g : E → F such that η ◦ g = π. Given f ∈ C∞(π, η) and u, w ∈ π−1(x),
the vertical derivative of f at u in the direction w is defined as

ν(w)|u(f) :=
d

dt
|0f(u+ tw) ∈ ν−1(x).

A smooth map f : M → M̂ is a local isometry between two Riemannian manifolds (M, g) and
(M̂, ĝ) if, for all x ∈ M , f∗|x : TxM → Tf(x)M̂ is an isometric linear map. If moreover f is

bijective, it is called an isometry, and (M, g), (M̂, ĝ) are said to be isometric.

We use Iso(M, g) to denote the smooth Lie group of isometries of (M, g).
We use (M, g) to denote (M, g) × (M̂, ĝ), the Riemannian product manifold of M and M̂ ,
endowed with the product metric g := g⊕ ĝ. Similarly, ∇, ∇̂, ∇ (resp. R, R̂, R) represent the
Levi-Civita connections (resp. the Riemannian curvature tensors) of (M, g), (M̂, ĝ), (M, g),
respectively.

If γ : I → M is an absolutely continuous curve defined on real interval I ∋ 0 and T0 is any
tensor at γ(0) , we use (P∇g

)t0(γ)T0 to denote the parallel transport of T0 along γ from γ(0) to
γ(t) w.r.t. the Levi-Civita connection of (M, g).
Furthermore, if s, t ∈ I and F ∈ Iso(M, g), then one has (see [17], page 41, Eq. (3.5)) that

F∗|γ(t) ◦ (P
∇g

)ts(γ) = (P∇g

)ts(F ◦ γ) ◦ F∗|γ(s). (1)

For every point x of a Riemannian manifold M and k ∈ N, let Lk(M)|x be the space of linear
maps Rk → TxM and set Lk(M) :=

⋃
x∈M Lk(M)|x.

Definition 2.1. We define the subset Ok(M) of Lk(M) of all elements B ∈ Lk(M)|x, x ∈ M ,
such that

(i) if 1 ≤ k ≤ dimM , ‖Bu‖g = ‖u‖Rk for all u ∈ Rk;
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(ii) if k ≥ dimM , then B is surjective and ‖Bu‖g = ‖u‖Rk for all u ∈ (kerB)⊥ (where ⊥ is
taken with respect to the Euclidean inner product in Rk).

In other terms, Ok(M) is composed of the partial isometries Rk → TxM of maximal rank.

Consider the map πLk(M) : Lk(M) → M defined by B 7→ x for B ∈ Lk(M)|x and πOk(M) :=
πLk(M)|Ok(M) : Ok(M) → M . We have the following standard results.

Proposition 2.2. For every k ∈ N, πLk(M) is a vector bundle overM , isomorphic to
⊕k

i=1 TM →
M ; πOk(M) defines a subbundle of πLk(M) whose typical fiber is Ok(R

n), where Rn is equipped with
the Euclidean metric. Moreover, Ok(M) is connected for any k 6= n and On(M) is connected
whenever M is not orientable.

If n, n̂ are two positive integers, let (Rn)∗ ⊗ Rn̂ is the set of n̂× n real matrices. We denote

SO(n, n̂) :=





{A ∈ (Rn)∗ ⊗ Rn̂ | ATA = idRn}, if n < n̂,

{A ∈ (Rn)∗ ⊗ Rn̂ | AAT = idRn̂}, if n > n̂,

SO(n), if n = n̂,

(2)

where AT is used to denote the usual transpose with respect to the inner product of the
appropriate vector space. We give the following matrix form In,n̂ ∈ SO(n, n̂),

In,n̂ =





(
idRn

0

)
, if n ≤ n̂,

(idRn̂ 0) , if n ≥ n̂.

(3)

If (M, g) is an n-dimensional Riemannian manifold and x ∈ M , the identification of the tangent
space TxM with the Euclidean space Rn allows one to write SO(TxM) = SO(n) and so(TxM) =
so(n). We also denote so(M) :=

⋃
x∈M so(TxM) as the set {B ∈ T ∗M ⊗ TM | BT +B = 0}.

Let N be a manifold. A loop γ : [a, b] → N based at y ∈ N is a curve verifying γ(a) = γ(b) = y

and let Ωy(N) be the set of all piecewise C1-loops [0, 1] → N of N based at y. On the other

hand, if (N, h) is a Riemannian manifold, then the holonomy group H∇h

|y of N at y is defined
by

H∇h

|y = {(P∇)10(γ) | γ ∈ Ωy(N)},

and it is a subgroup of O(TyN) made of all h-orthogonal transformations of TyN . If N is

oriented, then H∇h

|y is a subgroup of SO(TyN). If n = dimN and F is an orthonormal frame
of N at y, we write

H∇h

|F = {MF,F (A) | A ∈ H∇h

|y}.

This is a subgroup of SO(n), isomorphic (as Lie group) to H∇h

|y. The Lie algebra of the

holonomy group H∇h

|y (resp. H∇h

|F ) will be denoted by h∇
h

|y (resp. h∇
h

|F ). Then h∇
h

|y is a
Lie subalgebra of the Lie algebra so(TyN) of h-antisymmetric linear maps TyN → TyN while

h∇
h

|F is a Lie subalgebra of so(n).
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3 Rolling Motions

3.1 The State Space Q

Definition 3.1. Let (M, g) and (M̂, ĝ) be two Riemannian manifolds of dimensions n and
n̂ respectively. The state space Q = Q(M, M̂) for the problem of rolling of M against M̂

considered below is defined as follows:

(i) if n ≤ n̂,

Q(M, M̂) := {A ∈ T ∗M ⊗ TM̂ | ĝ(AX,AY ) = g(X, Y ), X, Y ∈ TxM,x ∈ M}.

(ii) if n ≥ n̂,

Q(M, M̂) := {A ∈ T ∗M ⊗ TM̂ | ĝ(AX,AY ) = g(X, Y ), X, Y ∈ (kerA)⊥,

A is onto a tangent space of M̂}.

Writing AT : Tx̂M̂ → TxM the (g, ĝ)-transpose of A, we have that (kerA)⊥ = im(AT ), and
evidently ATA = idTxM if n ≤ n̂ and AAT = idTx̂M̂

if n ≥ n̂. Also, define

πQ(M,M̂),M := πT ∗M⊗TM̂,M |Q(M,M̂) : Q(M, M̂) → M,

πQ(M,M̂),M̂ := πT ∗M⊗TM̂,M̂ |Q(M,M̂) : Q(M, M̂) → M̂.
(4)

If q ∈ Q(M, M̂), we use the notation q = (x, x̂;A) where x = πQ(M,M̂),M(q) and x̂ = πQ(M,M̂),M̂ (q).

Proposition 3.2. (i) The space Q(M, M̂) is a smooth closed submanifold of T ∗M ⊗ TM̂ of
dimension:

dim(Q) = n+ n̂ + nn̂−
N(N + 1)

2
, where N := min{n, n̂},

and πQ(M,M̂),M is a smooth subbundle of πT ∗M⊗TM̂,M with typical fiber On(M̂).

(ii) The map
τM,M̂ : T ∗M ⊗ TM̂ → T ∗M̂ ⊗ TM ; (x, x̂;A) 7→ (x̂, x;AT ),

is a diffeomorphism and its restriction to Q(M, M̂)gives the diffeomorphism

T : Q(M, M̂) → Q(M̂,M) =: Q̂; T (x, x̂;A) = τM,M̂ |Q(x, x̂;A) = (x̂, x;AT ). (5)

(iii) If n 6= n̂ or if one of M and M̂ is not orientable, then the space Q(M, M̂) is connected.

Proof. (i) It is clearly enough to prove the result only for n ≤ n̂. In that case, the (vertical) fiber
of Q is isomorphic to the grasmannian of n-dimensional planes in an n̂-dimensional euclidean
space, hence the result.
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(ii) First at all, we see that τM̂,M is the inverse map of τM,M̂ , thus τM,M̂ is a diffeomorphism.

Moreover, one has (x̂, x;AT ) ∈ Q̂ for every (x, x̂;A) ∈ Q. Indeed, according to (i), one
may assume that n ≤ n̂. Let X̂, Ŷ ∈ (kerAT )⊥. Since (kerAT )⊥ = im(A), there are
X, Y ∈ TxM such that AX = X̂, AY = Ŷ , and because ATA = idTxM , we get that
g(AT X̂, AT Ŷ ) = g(X, Y ) = ĝ(AX,AY ) = ĝ(X̂, Ŷ ). Now, take the map

S : Q̂ → Q; S(x̂, x;B) = (x, x̂;BT ),

which is well-defined because (kerB)⊥ = im(BT ) and BBT = idTxM . Thus, for all
X, Y ∈ TxM , one obtains ĝ(BTX,BTY ) = g(BBTX,BBTY ) = g(X, Y ). Therefore, T
and S are smooth inverse maps to each other.

(iii) This follows from Proposition 2.2.

�

Corollary 3.3. The map πQ(M,M̂) : Q(M, M̂) → M × M̂ is a bundle whose typical fiber is

diffeomorphic to On(R
n̂).

Proof. For a given point (x0, x̂0) ∈ M × M̂ , take any g-orthonormal (resp. ĝ-orthonormal)
frame F = (X1, ..., Xn) (resp. F̂ = (X̂1, ..., X̂n̂)) defined on some open neighbourhood U of x0

(resp. Û of x̂0). Fix a q = (x, x̂;A) ∈ (πQ(M,M̂))
−1(U×Û ), define GF,F̂ (A) to be the n̂×n-matrix

whose element on the i-th row, j-th column is ĝ(X̂i|x̂, AXj|x) and set

τF,F̂ : (πQ(M,M̂))
−1(U × Û) → (U × Û)× (Rn)∗ ⊗ Rn̂; τF,F̂ (x, x̂;A) = ((x, x̂), GF,F̂ (A)).

Using Proposition 3.2, it is easy to see that τF,F̂ is smooth, injective and its image is (U × Û)×

On(R
n̂). Moreover, its inverse map τ−1

F,F̂
: (U × Û)×On(R

n̂) → (πQ(M,M̂))
−1(U × Û) is given by

τ−1

F,F̂
((x, x̂), B) = (x, x̂;

n∑

j=1

n̂∑

i=1

Bijg(·, Xj|x)X̂i),

where Bij is the element on i-th row, j-th column of B. The fact that τF,F̂ and τ−1

F,F̂
are smooth

is easily established. �

Proposition 3.4. Let q = (x, x̂;A) ∈ Q and B ∈ T ∗
xM ⊗ Tx̂M̂ . Then ν(B)|q is tangent to Q

(i.e. is an element of V |q(πQ)) if and only if

(i) ATB ∈ so(TxM), if n ≤ n̂.

(ii) BAT ∈ so(Tx̂M̂), if n ≥ n̂.

Proof. Note that the set of B ∈ T ∗
xM ⊗ Tx̂M̂ such that ATB ∈ so(TxM) and the set of

B ∈ T ∗
xM ⊗ Tx̂M̂ such that BAT ∈ so(Tx̂M̂) both have dimension equal to dim π−1

Q (x, x̂).

Therefore, it is sufficient to show that V |q(πQ) ⊆ so(TxM) when n ≤ n̂ and V |q(πQ) ⊆ so(Tx̂M̂)
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when n ≥ n̂. We only prove Item (i) since the other follows by using Eq. (5). If n ≤ n̂ and
X ∈ TxM , then ATAX = X . For any B ∈ T ∗

xM ⊗ Tx̂M̂ tangent to Q, we have ν(B)|qX = 0.
Then, 0 = ν(B)|q(.)

T (.)X = BTAX + ATBX and hence BTA + ATB = 0 because X was

arbitrary. Same analysis as (i): if n ≥ n̂ and X̂ ∈ Tx̂M̂ , then we have AAT X̂ = X̂ . For
any B ∈ T ∗

xM ⊗ Tx̂M̂ tangent to Q, we have ν(B)|qX̂ = 0. Then, 0 = ν(B)|q(.)(.)
T X̂ =

BAT X̂ + ABT X̂ and hence the conclusion.

3.2 The Rolling Lifts and Distributions

Since we are interested in the rolling motion without spinning nor slipping, we formulate these
conditions by taking an absolutely continuous curve on Q, q : [a, b] → Q; t 7→ (γ(t), γ̂(t);A(t))
and making the following definitions.

Definition 3.5. The curve q(·) is said to describe:

(i) A rolling motion without spinning of M against M̂ if:

∇(γ̇(t), ˙̂γ(t))A(t) = 0 for a.e. t ∈ [a, b]. (6)

(ii) A rolling motion without slipping of M against M̂ if we have:

A(t)γ̇(t) = ˙̂γ(t) for a.e. t ∈ [a, b]. (7)

(iii) A rolling motion without slipping nor spinning of M against M̂ if both conditions (i) and
(ii) hold true.

By Item (iii) above, we get that the curves q of Q describing the rolling motion without slipping
and spinning of M against M̂ are exactly the integral curves of the following driftless control
affine system

ΣR :





γ̇(t) = u(t),
˙̂γ(t) = A(t)u(t), for a.e. t ∈ [a, b],
∇(u(t),A(t)u(t))A(t) = 0,

(8)

where the control u is a measurable TM-valued function defined on some finite interval I ⊂ R.
(In Appendix 6, we provide an expression in (local) coordinates of (Σ)R as well as the control
system describing the rolling motion without spinning only of M against M̂ .)

Proposition 3.6. Let A0 be a (1,1)-tensor on M × M̂ (i.e. ∈ T 1
1 (x0,x̂0)

(M × M̂) for (x0, x̂0) ∈

M × M̂) and t 7→ q(t) = (γ(t), γ̂(t);A(t)) be an absolutely continuous curve in T ∗M ⊗ TM̂

defined on some real interval I ∋ 0 and satisfying (6). Then we have, for all t ∈ I,

A(t) = P t
0(γ̂) ◦ A(0) ◦ P

0
t (γ),

A(0) ∈ Q =⇒ A(t) ∈ Q.
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Proof. For the first implication, define B(t) := P t
0(γ̂) ◦ A(0) ◦ P

0
t (γ). Evidently B(0) = A(0),

and if X(t) is an arbitrary vector field along γ(t), we have that B(t)X(t) is a vector field along
γ̂(t), and

(
∇(γ̇(t), ˙̂γ(t))B(t)

)
X(t) +B(t)∇γ̇(t)X(t) = ∇̂ ˙̂γ(t)(B(t)X(t)) = ∇̂ ˙̂γ(t)

(
P t
0(γ̂)

(
A(0)P 0

t (γ)X(t)
))

=P t
0(γ̂)

d

dt

(
A(0)P 0

t (γ)X(t)
)
= (P t

0(γ̂) ◦ A(0) ◦ P
0
t (γ))

(
∇γ̇(t)X(t)

)
= B(t)∇γ̇(t)X(t),

which, since X(t) was arbitrary, would mean that ∇(γ̇(t), ˙̂γ(t))B(t) = 0. By the basic uniqueness
result for the first order ODEs, we thus have A(t) = B(t) for all t ∈ I.

For the second implication, let Y ∈ Tγ(0)M , Ŷ ∈ Tγ̂(0)M̂ and set Y (·), Ŷ (·) the parallel

transports of Y, Ŷ along γ(.) and γ̂(.) respectively. Next, suppose that A(0) ∈ Q|(γ(0),γ̂(0)) and

denote A(t) = P t
0(γ̂) ◦ A(0) ◦ P

0
t (γ). Then A(0) ∈ T ∗M ⊗ TM̂ , but from the first implication

we obtain A(t) ∈ T ∗M ⊗ TM̂ for all t ∈ I. So A(t)Y (t) ∈ Tγ̂(t)M̂ and thus,

d

dt
‖A(t)Y (t)‖2ĝ = 2ĝ((∇(γ̇(t), ˙̂γ(t))A(.))Y (t) + A(t)(∇γ̇(t)Y (.)), A(t)Y (t)) = 0.

If n ≤ n̂, the initial condition for the preceding term is ‖A(0)Y (0)‖2ĝ = ‖A(0)Y ‖2ĝ = ‖Y ‖2g. On

the other hand, d
dt
‖Y (t)‖2g = 0 and the initial condition is ‖Y (0)‖2g = ‖Y ‖2g. So, ‖A(t)Y (t)‖2ĝ =

‖Y (t)‖2g. Since the parallel transport P
t
0(γ) : Tγ(0)M → Tγ(t)M is a linear isometric isomorphism

for every t, this proves ĝ(A(t)X,A(t)Y ) = g(X, Y ) for every X , Y ∈ Tγ(t)M . If n ≥ n̂, we
are able to repeat the previous method due to the fact Y (t) ∈ (kerA(t))⊥ if and only if
Y ∈ (kerA(0))⊥.

Definition 3.7. (i) Given q = (x, x̂;A) ∈ T ∗M⊗TM̂ and X ∈ TxM , X̂ ∈ Tx̂M̂ , one defines
the no-spinning lift of (X, X̂) to be the unique vector LNS(X, X̂)|q of T ∗

xM ⊗ Tx̂M̂ at q
given by

LNS(X, X̂)|q =
d

dt

∣∣
0
P t
0(γ̂) ◦ A ◦ P 0

t (γ)
(
∈ Tq(T

∗M ⊗ TM̂)
)
,

where γ (resp. γ̂) is any smooth curves on M (resp. M̂) such that γ(0) = x, γ̇(0) = X

(resp. γ̂(0) = x̂, ˙̂γ(0) = X̂).

Moreover, if X, X̂ are (locally defined) vector fields on M, M̂ , respectively, one writes
LNS(X, X̂) for the (locally defined) vector field on T ∗M ⊗ TM̂ whose value at q is
LNS(X, X̂)|q.

(ii) No-Spinning distribution DNS on T ∗M ⊗TM̂ is an (n+ n̂)-dimensional smooth distribu-
tion, whose plane at q = (x, x̂;A) ∈ T ∗M ⊗ TM̂ is defined by

DNS|q = LNS(T(x,x̂)(M × M̂))|q.

By Proposition 3.6, LNS can be restricted to Q so that

LNS(X, X̂)|q ∈ TqQ, DNS|q ⊂ TqQ,

9



for any q ∈ Q and X ∈ TxM , X̂ ∈ Tx̂M̂ as in the definition above.

Hence, we have DNS|Q is an (n + n̂)-dimensional (smooth) distribution on Q, which we also
write as DNS in the sequel. The next proposition gathers basic properties of DNS.

Proposition 3.8. 1. (πT ∗M⊗TM̂)∗ (resp. (πQ)∗) maps DNS|q isomorphically onto T(x,x̂)(M×

M̂) for every q = (x, x̂;A) ∈ T ∗M ⊗ TM̂ (resp. ∈ Q).

2. If X ∈ T(x,x̂)(M × M̂), A is a local section of πT ∗M⊗TM̂ and A∗ its push-forward, then we
have:

LNS(X)|A(x,x̂) = A∗(X)− ν(∇XA)|A(x,x̂). (9)

3. An absolutely continuous curve t 7→ q(t) = (γ(t), γ̂(t);A(t)) on T ∗M ⊗ TM̂ or Q is
tangent to DNS for a.e. t if and only if ∇(γ̇(t), ˙̂γ(t))A = 0 for a.e. t.

Recall that ∇ is the product (Levi-Civita) connection on M = M × M̂ .

Proof. The proofs of parts 1. and 2. follow that of Proposition 3.20 and Proposition 3.22 of
Section 3 in [8]. Part 3. is a consequence of Eq. (9) so that

LNS(γ̇(t), ˙̂γ(t))|q(t) = Ȧ(t)− ν(∇(γ̇(t), ˙̂γ(t))A)|q(t).

Remark 3.9. In the previous proposition, the two terms on the right side of Eq. (9) are sepa-
rately elements of Tq(T

∗M⊗TM̂), but their difference belongs to TqQ. Moreover, this equation
indicates the decomposition of the map A∗ with respect to the two direct sum decompositions:

T (T ∗M ⊗ TM̂) =DNS ⊕T ∗M⊗TM̂ V (πT ∗M⊗TM̂),

TQ =DNS ⊕Q V (πQ).

We shall now define a subdistribution DR of DNS which has the property that tangent curves
to DR are exactly those curves in Q (or T ∗M ⊗ TM̂) that verify both the no-slipping and
no-spinning conditions, i.e., are the curves modelled by the system Σ(R).

Definition 3.10. (i) For any q = (x, x̂;A) ∈ T ∗M ⊗ TM̂ , the rolling lift of X ∈ TxM is the
vector LR(X)|q of T

∗M ⊗ TM̂ at q defined by

LR(X)|q := LNS(X,AX)|q. (10)

Moreover, if X is a (locally defined) vector field on M , one writes LNS(X) for the (locally
defined) vector field on T ∗M ⊗ TM̂ whose value at q is LNS(X)|q.

(ii) The Rolling distribution DR on T ∗M ⊗ TM̂ is the n-dimensional smooth distribution
whose plane at every q = (x, x̂;A) ∈ T ∗M ⊗ TM̂ is given by

DR|q := LR(TxM)|q. (11)

10



Like right below the definition 3.7, one can restrict LR to Q such that

LR(X)|q ∈ TqQ, DR|q ⊂ TqQ,

for all q = (x, x̂;A) ∈ Q and X ∈ TxM .

Corollary 3.11. (i) (πQ,M)∗ maps DR|q isomorphically onto TxM for for every q = (x, x̂;A) ∈

T ∗M ⊗ TM̂ (resp. q ∈ Q).

(ii) An absolutely continuous curve t 7→ q(t) = (γ(t), γ̂(t);A(t)) on T ∗M ⊗ TM̂ (resp. on
Q) is a rolling curve if and only if it is tangent to DR for a.e. t i.e. if and only if
q̇(t) = LR(γ̇(t))|q(t) for a.e. t.

While some of the results that follow hold true in both spaces Q and T ∗M ⊗ TM̂ , we mainly
focus on Q, which is the state space of primary interest for the purposes of rolling. The
generalization of such a result to T ∗M ⊗ TM̂ , if it makes sense there, is usually transparent,
and, if need be, we will use such generalizations without further mention for convenience in
some of the forthcoming proof.

We have the following fundamental result whose proof follows the same lines as that of Propo-
sition 3.27 of Section 3 in [8].

Proposition 3.12. (i) For every q0 = (x0, x̂0;A0) ∈ Q and every absolutely continuous
γ : [0, a] → M , a > 0, such that γ(0) = x0, there exists a unique absolutely continuous
q : [0, a′] → Q, q(t) = (γ(t), γ̂(t);A(t)), with 0 < a′ ≤ a

which is tangent to DR a.e. and q(0) = q0. We denote this unique curve q by

t 7→ qDR
(γ, q0)(t) = (γ(t), γ̂DR

(γ, q0)(t);ADR
(γ, q0)(t)), (12)

and refer to it as the rolling curve with initial conditions (γ, q0), or along γ with initial
position q0.

(ii) Moreover, if (M̂, ĝ) is a complete manifold, one can choose a′ = a above.

(iii) Conversely, any absolutely continuous curve q : [0, a] 7→ Q tangent to DR a.e. has the
form qDR

(γ, q(0)) where γ = πQ,M ◦ q.

Remark 3.13. Let (N, h) be a Riemannian manifold and y0 ∈ N , we define a bijection Λ∇h

y0
(·)

from the set of absolutely continuous curves γ : [0, 1] → N starting at y0 onto an open subset
of the Banach space of absolutely continuous curves [0, 1] → Ty0N starting at 0, by

Λ∇h

y0 (γ)(t) =

∫ t

0

(P∇h

)0s(γ)γ̇(s)ds ∈ Ty0N, ∀t ∈ [0, 1].

It follows from Proposition 3.12 that the rolling curve with initial conditions (γ, q0) is given by:

qDR
(γ, q0)(t) = (γ(t), Λ̂−1

x̂0
(A0 ◦ Λx0(γ))(t);P

t
0(Λ̂

−1
x̂0
(A0 ◦ Λx0(γ))) ◦ A0 ◦ P

0
t (γ)).
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Moreover, if the curve γ is the geodesic on M given by γ(t) = expx0(tX) with γ(0) = x0 and
γ̇(0) = X ∈ Tx0M , then, for q0 = (x0, x̂0;A0) ∈ Q, the rolling curve qDR

(γ, q0) : [0, a′] → Q,
0 < a′ ≤ a, is given by

qDR
(γ, q0)(t) = (γ(t), γ̂DR

(γ, q0)(t) = êxpx̂0
(tA0X), ADR

(γ, q0)(t) = P t
0(γ̂DR

(γ, q0)) ◦A0 ◦P
0
t (γ)).

We also have that if M̂ is complete then a = a′.

Let L̂NS and L̂R (resp. D̂NS and D̂R) be the no-spinning and rolling lifts (resp. the no-spinning

and rolling distributions), respectively, on Q̂ := Q(M̂,M). Thus, dim D̂NS = n+ n̂ = dimDNS

but, in contrary, dim D̂R = n̂, dimDR = n. This shows that the model of rolling of manifolds
of different dimensions against each other is not symmetric with respect to M and M̂ .

Proposition 3.14. Let T the mapping defined by (5), we have the followings results:

1. T ∗DNS = D̂NS,

2. T ∗V (πQ) = V (πQ̂),

3. when n ≤ n̂, we have T ∗DR ⊂ D̂R.

Proof. We can assume, without loss of generality, that n ≤ n̂.

1. For q0 = (x0, x̂0;A0) ∈ Q(M, M̂), let γ, γ̂ be a smooth paths in M , M̂ starting at x0,
x̂0, respectively, at t = 0. We have that (P t

0(γ̂) ◦ A0 ◦ P
0
t (γ))

T = P t
0(γ) ◦ A

T
0 ◦ P 0

t (γ̂), then

T (γ(t), γ̂(t);P t
0(γ̂) ◦ A0 ◦ P

0
t (γ)) = (γ̂(t), γ(t);P t

0(γ) ◦ T (x0, x̂0;A0) ◦ P
0
t (γ̂)).

This immediately shows, by differentiating it with respect to d
dt
|0 and using the definition of

LNS, that

T ∗|q0LNS(X, X̂)|q0 = L̂NS(X̂,X)|T (q0)
,

where X = γ̇(0), X̂ = ˙̂γ(0). In particular, T ∗ maps DNS isomorphically onto D̂NS.

2. Let ν(B)|q=(x,x̂;A) ∈ V |q(πQ), B verifies ATB ∈ so(TxM) then ν(BT )|T (q) ∈ V |T (q)(πQ̂).

Then, T ∗V (πQ) = V (πQ̂) because we have, for any f̂ ∈ C∞(Q̂),

(T ∗ν(B)|q)f̂ = ν(B)|q(f̂ ◦ T ) =
d

ds
|0f̂(T (x, x̂;A+ sB)) =

d

ds
|0f̂(x̂, x;A

T + sBT ) = ν(BT )|T (q).

3. For q0 = (x0, x̂0;A0) and X ∈ Tx0M , one has

T ∗|q0LR(X)|q0 = T ∗|q0LNS(X,A0X)|q0 = L̂NS(A0X,AT
0A0X)|T (q0)

= L̂R(A0X)|T (q0)
,

since X = AT
0 (A0X) = T (q0)(A0X). Hence T maps DR of Q(M, M̂) into D̂R of Q(M̂,M).
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3.3 The Lie Brackets on Q

Let O be an immersed submanifold of T ∗M ⊗ TM̂ and write πO := πT ∗M⊗TM̂ |O. If T : O →

T k
m(M × M̂) with πT k

m(M×M̂) ◦ T = πO (i.e. T ∈ C∞(πO, πT k
m(M×M̂))) and if q = (x, x̂;A) ∈ O

and X ∈ T(x,x̂)(M × M̂) such that LNS(X)|q ∈ TqO, then we want to define what it means
to take the derivative LNS(X)|qT . Our main interest will be the case where k = 1, m = 0

i.e. T (M × M̂), but some arguments below require a general setting. As a first step, we take
O = T ∗M ⊗ TM̂ . We can inspire, from Eq. (9), the following definition

LNS(X)|qT := ∇X(T (Ã))− ν(∇XÃ)|qT ∈ T k
m(M × M̂).

Here, T (A) = T ◦ A is a locally defined (k,m)-tensor field on M × M̂ . On the other hand, if
ω ∈ Γ(πTm

k
(M×M̂)) and if we write (Tω)(q) := T (q)ω|(x,x̂) as a full contraction for q = (x, x̂;A) ∈

T ∗M ⊗ TM̂ , then we may compute

(LNS(X)|qT )ω = (∇X(T (A)))ω − ( d
dt
|0T (A+ t∇XA))ω

= ∇X(T (A)ω)− T (q)∇Xω − d
dt
|0(T (A+ t∇XA)ω)

= ∇X((Tω)(A))−
d
dt
|0(Tω)(A+ t∇XA)− T (q)∇Xω.

Hence,
(LNS(X)|qT )ω = LNS(X)|q(Tω)− T (q)∇Xω. (13)

Alternatively, Eq. (13) represents an intrinsic definition of LNS(X)|qT .

Now, if O ⊂ T ∗M ⊗ TM̂ is an immersed submanifold, we could take Eq. (13) as the definition
of LNS(X)|qT for q ∈ O.

Definition 3.15. Let O ⊂ T ∗M ⊗ TM̂ be an immersed submanifold, q = (x, x̂;A) ∈ O and
X ∈ T(x,x̂)(M × M̂) be such that LNS(X)|q ∈ TqO. Then for T : O → T k

m(M × M̂) such that

πT k
m(M×M̂ ) ◦ T = πO, we define LNS(X)|qT to be the unique element in T k

m|(x,x̂)(M × M̂) such

that Eq. (13) holds for every ω ∈ Γ(πTm
k

(M×M̂)) and call it the derivative of T with respect to

LNS(X)|q.

We next present the main Lie brackets formulas obtained as in Proposition 3.45, Proposition
3.46, Proposition 3.47 of Section 3 in [8].

Proposition 3.16. Let O ⊂ T ∗M⊗TM̂ be an immersed submanifold, T = (T, T̂ ), S = (S, Ŝ) ∈
C∞(πO, πT (M×M̂)) be such that for all q = (x, x̂;A) ∈ O, LNS(T (q))|q, LNS(S(q))|q ∈ TqO and
U , V ∈ C∞(πO, πT ∗M⊗TM̂), be such that for all q = (x, x̂;A) ∈ O, ν(U(q))|q, ν(V (q))|q ∈ TqO.
Then, one has

1.
[LNS(T (.)),LNS(S(.))]|q = LNS(LNS(T (q))|qS − LNS(S(q))|qT )|q

+ν(AR(T (q), S(q))− R̂(T̂ (q), Ŝ(q))A)|q,

13



[LNS(T (.)), ν(U(.))]|q = −LNS(ν(U(q))|qT )|q + ν(LNS(T (q))|qU)|q,

3. [ν(U(.)), ν(V (.))]|q = ν(ν(U(q))|qV − ν(V (q))|qU)|q.

Both sides of the equalities in 1. , 2. and 3. are tangent to O.

4 Rolling Orbits and Rolling Distributions

In this section, we first characterize the rolling orbits corresponding to the (NS) and (R)
problems and the we provide specific results on DR-orbits in the case |n− n̂| = 1.

4.1 General Properties of Rolling Orbits

We collect here some basic results on the structure of the orbits and the distributions of the
two rolling systems. To begin with, we completely describe the reachable sets of (NS) to the
holonomy groups of the Riemannian manifolds (M, g) and (M̂, ĝ), which are Lie subgroups of
SO(n) and SO(n̂).

In this setting, H|x and Ĥ|x̂ denote H∇|x and H∇̂|x̂ respectively(for the notations, see the
section 2).

The corresponding Lie algebras will be written as h|x, ĥ|x̂. Following the arguments of Theorem
4.1, Corollaries 4.2 and 4.3 and Proposition 4.5 of Section 4 as well as Property 5.2 of Section
5 in [8], one gets the subsequent result.

Theorem 4.1. Let q0 = (x0, x̂0;A0) ∈ Q. Then the part of the orbit ODNS
(q0) of DNS through

q0 that lies in the πQ-fiber over (x0, x̂0) is given by

ODNS
(q0) ∩ π−1

Q (x0, x̂0) = {ĥ ◦A0 ◦ h | ĥ ∈ Ĥ|x̂0, h ∈ H|x0} =: Ĥ|x̂0 ◦ A0 ◦H|x0, (14)

In addition, at the tangent space level, we have

Tq0ODNS
(q0) ∩ V |q0(πQ) = ν({k̂ ◦ A0 − A0 ◦ k | k ∈ h|x0, k̂ ∈ ĥ|x̂0})|q0

=: ν(ĥ|x̂0 ◦ A0 − A0 ◦ h|x0)|q0.
(15)

Proposition 4.2. If M̂ is complete, then for every q0 ∈ Q, the map πODR
(q0),M := πQ,M |ODR

(q0) :
ODR

(q0) → M defines a smooth subbundle of πQ,M .

We next compute the first commutators of LR(X) where X ∈ VF(M). The resulting formulas
are obtained as in Proposition 5.9 of Section 5 in [8].

Theorem 4.3. If X, Y ∈ VF(M), q = (x, x̂;A) ∈ Q, then

[LR(X),LR(Y )]|q = LR([X, Y ])|q + ν(AR(X, Y )− R̂(AX,AY )A)|q. (16)
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Definition 4.4. For q = (x, x̂;A) ∈ Q, we define the rolling curvature Rolq at q by

Rolq(X, Y ) := AR(X, Y )− R̂(AX,AY )A, X, Y ∈ TxM.

If X, Y ∈ VF(M), we write Rol(X, Y ) for the map Q → T ∗M ⊗ TM̂ ; q 7→ Rolq(X, Y ).

Similarly, for k ≥ 0, we define the k-th covariant derivative of Rol at q by

(∇
k
Rol)q(X, Y, Z1, ..., Zk) := A(∇kR)(X, Y, (.), Z1, ..., Zk)− (∇̂kR̂)(AX,AY,A(.), AZ1, ..., AZk).

Clearly, for all (x, x̂;A) ∈ Q,

AT
Rolq(X, Y ), AT (∇

k
Rol)q(X, Y, Z1, ..., Zk) ∈ so(TxM) if n ≤ n̂,

and
Rolq(X, Y )AT , (∇

k
Rol)q(X, Y, Z1, ..., Zk)A

T ∈ so(Tx̂M̂) if n ≥ n̂,

and therefore, ν(Rolq(X, Y )), (∇
k
Rol)q(X, Y, Z1, ..., Zk) are well defined as elements of V |q(πQ).

Remark 4.5. With this notation, Eq. (16) can be written as

[LR(X),LR(Y )]|q = LR([X, Y ])|q + ν(Rolq(X, Y ))|q. (17)

Proposition 4.6. Let X, Y , Z ∈ VF(M). Then, for q = (x, x̂;A) ∈ T ∗M ⊗ TM̂ , one has

[LR(Z), ν(Rol(X, Y ))]|q =− LNS(Rol(X, Y )Z)|q + ν
(
(∇

1
Rol)q(X, Y, Z)

)
|q

+ ν
(
Rolq(∇ZX, Y )

)
|q + ν

(
Rolq(X,∇ZY )

)
|q.

We recall the following notation we define

[A,B]so := A ◦B − B ◦ A ∈ so(TxM).

Proposition 4.7. Let q = (x, x̂;A) ∈ Q and X, Y , Z, W ∈ VF(M). We have

[
ν(Rol(X, Y )), ν(Rol(Z,W ))

]
|q

=ν
(
A[R(X, Y ), R(Z,W )]so − [R̂(AX,AY ), R̂(AZ,AW )]soA− R̂(Rolq(X, Y )Z,AW )(A)

− R̂(AZ,Rolq(X, Y )W )(A) + R̂(AX,Rolq(Z,W )Y )(A) + R̂(Rolq(Z,W )X,AY )
)
|q.

Proof. Cf. the proof of Proposition 5.18 and Corollary 5.19 of Section 5 in [8].

Proposition 4.8. Consider the following smooth right and left actions of Iso(M, g) and Iso(M̂, ĝ)
on Q given by

q0 · F := (F−1(x0), x̂0;A0 ◦ F∗|F−1(x0)), F̂ · q0 := (x0, F̂ (x̂0); F̂∗|x̂0 ◦ A0),

where q0 = (x0, x̂0;A0) ∈ Q, F ∈ Iso(M, g) and F̂ ∈ Iso(M̂, ĝ). We also set

F̂ · q0 · F := (F̂ · q0) · F = F̂ · (q0 · F ).

15



Then for any q0 = (x0, x̂0;A0) ∈ Q, absolutely continuous γ : [0, 1] → M such that γ(0) = x0,
F ∈ Iso(M, g) and F̂ ∈ Iso(M̂, ĝ), we have

F̂ · qDR
(γ, q0)(t) · F = qDR

(F−1 ◦ γ, F̂ · q0 · F )(t), (18)

for all t ∈ [0, 1]. In particular, F̂ · ODR
(q0) · F = ODR

(F̂ · q0 · F ).

Proof. Cf. the proof of Proposition 5.5 of Section 5 in [8].

Remark 4.9. When n ≤ n̂, the right action of Iso(M, g) on Q is free. Indeed, given F ,
F ′ ∈ Iso(M, g), the existence of an q = (x, x̂;A) ∈ Q such that q · F = q · F ′ implies that
F−1(x) = F ′−1(x) := y and A ◦ F∗|y = A ◦ F ′

∗|y. Since ATA = id, we obtain F∗|y = F ′
∗|y,

which implies, because M is connected, that F = F ′ (see [17], page 43). The same argument
proves the freeness of the left Iso(M̂, ĝ)-action when n ≥ n̂.

4.2 Elementary Constructions when | n− n̂ |= 1

Proposition 4.10. Let (M, g) and (M̂, ĝ) be Riemannian manifolds of dimensions n and n̂ =
n − 1 respectively, with n ≥ 2. We use (M̂ (1), ĝ(1)) to denote the Riemannian product (R ×
M̂, dr2 ⊕ ĝ), where dr2 denotes the canonical Riemannian metric on R.

Set Q(1) := Q(M, M̂ (1)) and let L
(1)
R , D

(1)
R to be the rolling lift and the rolling distribution on

Q(1). We define, for every a ∈ R,

ιa : Q → Q(1); ιa(x, x̂;A) = (x, (a, x̂);A(1)),

where A(1) : TxM → T(a,x̂)(R× M̂) is defined as follows: A(1) ∈ Q(1),

A(1)|(kerA)⊥ = (0, A|(kerA)⊥), A(1)(kerA) = R∂r|(a,x̂) × {0},

where ∂r is the canonical vector field on R in the positive direction, also seen as a vector field
on M̂ (1) in the usual way.
Then for every a ∈ R, the map ιa is an embedding and for every q0 = (x0, x̂0;A0) ∈ Q, a0 ∈ R

and X ∈ TxM , one has
LR(X)|q0 = Π∗L

(1)
R (X)|ιa0(q0),

ODR
(q0) = Π(O

D
(1)
R

(ιa0(q0))),

where
Π : Q(1) → Q;

(x, (a, x̂);A(1)) 7→ (x, x̂; (pr2)∗ ◦ A
(1)),

is a surjective submersion and pr2 : R× M̂ → M̂ is the projection onto the second factor.

Proof. Let γ be a path in M starting at x0 and q(t) = (γ(t), γ̂(t);A(t)) := qDR
(γ, q0)(t). We

define a path q(1)(t) = (γ(t), γ̂(1)(t);A(1)(t)) on Q(1) as follows:

γ̂(1)(t) :=
(
a0 +

∫ t

0

ιa0(A0)p
T (A0)P

0
s (γ)γ̇(s)ds, γ̂(t)

)
, A(1) := P t

0(γ̂
(1)) ◦ ιa0(A0) ◦ P

0
t (γ),
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where, for every q = (x, x̂;A) ∈ Q, we define the g-orthogonal projections as

p⊥(A) : TxM → (kerA)⊥, pT (A) : TxM → kerA.

We will show that q(1) is the rolling curve on Q(1) starting from ιa0(q0). Indeed, clearly q(1)(0) =
(γ(0), (a0, γ̂(0)); ιa0(A0)) = ιa0(q0) and A(1)(t) ∈ Q(1) for every time t and ιa0(A0) ∈ Q(1). We
also have

˙̂γ(1)(t) = (b(t)∂r|γ̂(1)(t),
˙̂γ(t)),

where b(t) is defined by ιa0(A0)p
T (A0)P

0
t (γ)γ̇(t) := (b(t)∂r|(a0,x̂0), 0). On the other hand,

A(1)(t)γ̇(t) = P t
0(γ̂

(1))ιa0(A0)P
0
t (γ)γ̇(t)

= P t
0(γ̂

(1))ιa0(A0)(p
T (A0) + p⊥(A0))P

0
t (γ)γ̇(t).

Since M̂ (1) is a Riemannian product, then, for every X̂ ∈ Tx̂0M̂ ⊂ T(a0,x̂0)(R× M̂), we have

P t
0(γ̂

(1))(0, X̂) = (0, P t
0(γ̂)X̂), P t

0(γ̂
(1))(∂r|(a0,x̂0), 0) = (∂r|γ̂(1)(t), 0).

However ιa0(A0)p
⊥(A0)X = (0, A0p

⊥(A0)X) = (0, A0X) for every X ∈ Tx0M , we get that

P t
0(γ̂

(1))ιa0(A0)p
⊥(A0)P

0
t (γ)γ̇(t) = P t

0(γ̂
(1))(0, A0P

0
t (γ)γ̇(t)) = (0, P t

0(γ̂)A0P
0
t (γ)γ̇(t)),

and P t
0(γ̂

(1))ιa0(A0)p
T (A0)P

0
t (γ)γ̇(t) = P t

0(γ̂
(1))(b(t)∂r|(a0,x̂0), 0) = (b(t)∂r|γ̂(1)(t), 0). Therefore,

A(1)(t)γ̇(t) = P t
0(γ̂

(1))ιa0(A0)(p
T (A0) + p⊥(A0))P

0
t (γ)γ̇(t)

= (b(t)∂r|γ̂(1)(t), 0) + (0, P t
0(γ̂)A0P

0
t (γ)γ̇(t))

= (b(t)∂r|γ̂(1)(t), A(t)γ̇(t))

= (b(t)∂r|γ̂(1)(t),
˙̂γ(t)) = ˙̂γ(1)(t).

This and the definition of A(1)(t) show that q(1)(t) = q
D

(1)
R

(γ, ιa0(q0))(t) for all t.

Furthermore, since A(1)(t)γ̇(t) = P t
0(γ̂

(1))ιa0(A0)(p
T (A0) + p⊥(A0))P

0
t (γ)γ̇(t) and by the basic

properties of parallel transport, it follows that

Π(q
D

(1)
R

(γ, ιa0(q0))(t)) = Π(γ(t), γ̂(1);A(1)) = (γ(t), γ̂(t); (pr2)∗ ◦ A
(1))

= (γ(t), γ̂(t); (pr2)∗(P
t
0(γ̂

(1)) ◦ ιa0(A0) ◦ P
0
t (γ)))

= (γ(t), γ̂(t);P t
0(γ̂)A0P

0
t (γ)) = qDR

(γ, q0)(t).

Hence ODR
(q0) ⊂ Π(O

D
(1)
R

(ιa0(q0))) as well as

Π∗(L
(1)
R (γ̇(0))|ιa0(q0)) = Π∗(q̇D

(1)
R

(γ, ιa0(q0))(0)) = q̇DR
(γ, q0)(0) = LR(γ̇(0))|q0.

Finally, if q(1) = (x, (a, x̂);A(1)) ∈ O
D

(1)
R

(ιa0(q0)), take a path γ in M starting from x0 such

that q(1) = q
D

(1)
R

(γ, ιa0(q0))(1). By what was done above, it follows that Π(q
D

(1)
R

(γ, ιa0(q0))(t)) =

qDR
(γ, q0)(t) and thus, evaluating this at t = 1 gives Π(q(1)) ∈ ODR

(q0), whence Π(OD
(1)
R

(ιa0(q0)))

⊂ ODR
(q0). The claim that ιa is an embedding for every a ∈ R and Π is a surjective submersion

are obvious from the fact Π ◦ ιa = idQ.
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Corollary 4.11. With the same notations of the previous proposition, if the orbit ODR
(q0) is

not open in Q for some q0 ∈ Q, then O
D

(1)
R

(ιa0(q0)) is not open in Q(1).

Proof. Suppose O
D

(1)
R

(ιa0(q0)) were open in Q(1), then since Π : Q(1) → Q is a smooth submer-

sion, it is an open map and hence its image Π(O
D

(1)
R

(ιa0(q0))) = ODR
(q0) is open.

With the assumption and the notations of Proposition 4.10, we have the following remark.

Remark 4.12. Keeping the same notations as before, recall that Q = Q(M, M̂) is connected
and thus, as a consequence of Corollary 4.11, if the system associated to the rolling of M and
M̂ (1) is controllable then the system associated to the rolling of M and M̂ is also controllable.

Proposition 4.13. Let (M, g) and (M̂, ĝ) be Riemannian manifolds of dimensions n = n̂− 1
and n̂, with n̂ ≥ 2 respectively. Let (M (1), g(1)) be the Riemannian product (R ×M, dr2 ⊕ g),

with the obvious orientation. Write Q(1) = Q(M (1), M̂) and let L
(1)
R , D

(1)
R be the rolling lift

and the rolling distribution on Q(1). We define for every a ∈ R,

ιa : Q → Q(1); ιa(x, x̂;A) = ((a, x), x̂;A(1)),

where A(1) : T(a,x)(R×M) → Tx̂M̂ is defined as follows: A(1) ∈ Q(1),

A(1)|TxM = A, A(1)∂r|(a,x) ∈ (imA)⊥.

Then for every a ∈ R, the map ιa is an embedding and for every q0 = (x0, x̂0;A0) ∈ Q, a0 ∈ R

and X ∈ TxM ⊂ T(a,x)(R×M), one has

(ιa0)∗LR(X)|q0 = L
(1)
R (X)|ιa0(q0).

Moreover, if one defines

Π : Q(1) → Q;
((a, x), x̂;A(1)) 7→ (x, x̂;A(1) ◦ (ia)∗),

where ia : M → R×M ; x 7→ (a, x) and if ∆R is the subdistribution of D
(1)
R defined by

∆R|q(1) = (ιa)∗DR|Π(q(1)), ∀q(1) = ((a, x), x̂;A(1)) ∈ Q(1),

then ιa0(ODR
(q0)) = O∆R

(ιa0(q0)) ⊂ O
D

(1)
R

(ιa0(q0)).

Proof. The facts that ιa is an embedding and Π is submersion simply follow from the fact
Π ◦ ιa = idQ. Let now γ be a path in M starting from x0 and q(t) = (γ(t), γ̂(t);A(t)) =
qDR

(γ, q0)(t). We define a path q(1)(t) = (γ(1)(t), γ̂(t);A(1)(t)) on Q(1) by

γ(1)(t) := (a0, γ(t)), A(1) := P t
0(γ̂) ◦ ιa0(A0) ◦ P

0
t (γ

(1)),
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We will show that q(1) is the rolling curve on Q(1) starting from ιa0(q0). Indeed, clearly q(1)(0) =
((a0, γ(0)), γ̂(0); ιa0(A0)) = ιa0(q0) and for ιa0(A0) ∈ Q(1) we have A(1)(t) ∈ Q(1) for all t. We
also have γ̇(1)(t) = (0, γ̇(t)). On the other hand,

A(1)(t)γ̇(1)(t) = P t
0(γ̂)ιa0(A0)P

0
t (γ

(1))γ̇(1)(t)
= P t

0(γ̂)ιa0(A0)P
0
t (γ

(1))(0, γ̇(t)).

Since M (1) is a Riemannian product, then P 0
t (γ

(1))(0, X) = (0, P 0
t (γ)X) for every X ∈ Tx0M ⊂

T(a0,x0)(R×M). Therefore,

A(1)(t)γ̇(1)(t) = P t
0(γ̂)ιa0(A0)(0, P

0
t (γ)γ̇(t))

= P t
0(γ̂)A0P

0
t (γ)γ̇(t)

= A(t)γ̇(t) = ˙̂γ(t).

This proves that q(1)(t) = q
D

(1)
R

(γ(1), ιa0(q0))(t) for all t. Furthermore, notice that πQ(1)(ιa0(q(t))) =

((a0, γ(t)), γ̂(t)) = (γ(1)(t), γ̂(t)) = πQ(1)(q(1)(t)) and A(1)(t)(0, X) = A(t)X = ιa0(A(t))X

for every X ∈ TxM ⊂ T(a0,x)(R × M). However A(1)(t)Tγ(t)M ⊥ A(1)(t)∂r|γ(1)(t) and (ιa0 ◦

A(t))TxM ⊥ (ιa0◦A(t))∂r|γ(1)(t), we must have, by orientation, A(1)(t)∂r|γ(1)(t) = (ιa0◦A(t))∂r|γ(1)(t).

This proves that ιa0(q(t)) = q(1)(t) and hence

(ιa0)∗LR(γ̇(0))|q0 = (ιa0)∗q̇(0) = q̇(1)(0) = L
(1)
R (γ̇(1)(0))|ιa0(q0) = L

(1)
R ((0, γ̇(0)))|ιa0(q0).

So, (ιa0)∗LR(X)|q0 = L
(1)
R (X)|ιa0(q0) for every X ∈ Tx0M ⊂ T(a0,x0)(R×M), then,

ιa0(ODR
(q0)) ⊂ O

D
(1)
R

(ιa0(q0)).

Finally, recall that Π ◦ ιa = idQ, then, for every q ∈ ODR
(q0), we have

∆R|ιa0(q) = (ιa0)∗DR|q ⊂ Tιa0(q0)
(ιa0(ODR

(q0))).

Thus, one can write ∆R|ιa0(ODR
(q0)) = (ιa0)∗DR|ODR

(q0). Then, ιa0(ODR
(q0)) ⊆ O∆R

(ιa0(q0)).
Since ιa0 |ODR

(q0) is an immersion, we get the equality ιa0(ODR
(q0)) = O∆R

(ιa0(q0)).

Corollary 4.14. With the assumptions of the previous proposition, if the orbit ODR
(q0) is open

in Q for some q0 ∈ Q, then the codimension of O
D

(1)
R

(ιa0(q0)) in Q(1) is at most 1.

Proof. The relation between the dimension of Q and that of Q(1) is

dimQ = 2n̂− 1 +
n̂(n̂− 1)

2
= dimQ(1) − 1.

On the other hand, if ODR
(q0) is open in Q then one has dimODR

(q0) = dimQ. Thus,

dimO
D

(1)
R

(ιa0(q0)) ≥ dimO∆R
(ιa0(q0)) = dim ιa0(ODR

(q0)) = dimQ = dimQ(1) − 1.
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Theorem 4.15. Let M and M̂ be Riemannian manifolds of dimension n = 3 and n̂ = 2
respectively. If, for some q0 = (x0, x̂0;A0) ∈ Q, the orbit ODR

(q0) is not open in Q, then there
exists an open dense subset O of ODR

(q0) such that for every q1 = (x1, x̂1;A1) ∈ O there is an
open neighbourhood U of x1 for which it holds that (U, g |U) is isometric to some warped product
(I ×N, hf), where I ⊂ R is an open interval and the warping function f satisfying f ′′ = 0.

Proof. We will proceed by using Proposition 4.10. Let (M (1), g(1)) be the Riemannian product
(R × M̂, dr2 ⊕ ĝ) and let a0 ∈ R. Since the orbit ODR

(q0) is not open in Q, it follows from
Corollary 4.11 that O

D
(1)
R

(ιa0(q0)) is not open in Q(1). Theorem 7.1 of Section 7 in [8] provides

an open subset O(1) of O
D

(1)
R

(ιa0(q0)) such that one of (a) − (c) of this theorem holds. So,

O := Π(O(1)) is a dense open of ODR
(q0) and letq1 = (x1, x̂1;A1) ∈ O, then choose q

(1)
1 ∈ O(1)

such that Π(q
(1)
1 ) = q1, whence q

(1)
1 = ιa1(q1) for some a1 ∈ R. Moreover, if U and Û (1) are the

neighborhoods of x1 and (a1, x̂1), respectively, as in Theorem 7.1 mentioned before, then we
can choose Û (1) to be of the form I × Û for some open interval I ⊂ R and open neighborhood
Û ⊂ M̂ of x̂1. We consider the possible subcases.
If (a) holds, then (U, g |U) is (locally) isometric to the Riemannian product I × Û , hence we
have f = 1. If (b) holds, then (U, g |U) and (Û (1), g(1) |Û (1)) are both of class Mβ for some

β > 0, but (Û (1), g(1) |Û (1)) is as a Riemannian product, so it cannot be of such class Mβ, thus

this case cannot occur. If (c) holds, let F : (I × N, hf) → U and F̂ : (Î × N̂, ĥf̂ ) → Û be the

isomorphisms, it means that (Î × N̂, ĥf̂) is isomorphic to a Riemannian product which implies

f̂ must satisfy f̂ ′′ = 0 thus also f ′′ = 0.

5 Controllability Results

5.1 The Rolling Problem ΣNS

We start by the following remark about the non-compatibility of the (NS) system in the space
T ∗M ⊗ TM̂ .

Remark 5.1. The result of Theorem (4.1) can obviously be formulated in the space T ∗M⊗TM̂

instead ofQ. Thus, it implies that each orbitODNS
(q0) of DNS in T ∗M⊗TM̂ , q0 = (x0, x̂0;A0) ∈

T ∗M ⊗TM̂ , has dimension at most n+ n̂+dimH|x0 +dim Ĥ|x̂0 ≤ n+ n̂+ n(n−1)
2

+ n̂(n̂−1)
2

. Let

N = max{n, n̂} and r =| n̂− n |. Since the dimension of T ∗M ⊗ TM̂ is n+ n̂+ nn̂, then

codimODNS
(q0) ≥ nn̂−

n(n− 1)

2
−

n̂(n̂− 1)

2
=

N − r2

2
> ⌈

N − r2

2
⌉,

where ⌈k⌉ stands for the integer part of a real number k, which means that codimODNS
(q0) ≥

⌈N−r2

2
⌉+ 1, i.e., DNS in never completely controllable in T ∗M ⊗ TM̂ .

Theorem 4.1 states that the controllability of DNS is completely determined by the holonomy
groups of M and M̂ . The next theorem highlights that fact at the Lie algebraic level.
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Theorem 5.2. Fix some orthonormal frames F , F̂ of M , M̂ at x and x̂ respectively. Let
h := h|F ⊂ so(n) and ĥ := ĥ|F̂ ⊂ so(n̂) be the holonomy Lie algebras of M and M̂ with respect
to these frames. Then the control system (

∑
)NS is completely controllable if and only if for

every A ∈ SO(n, n̂) (defined in (2)),

ĥA−Ah =

{
{B ∈ (Rn)∗ ⊗ Rn̂ | ATB ∈ so(n)}, if n < n̂,

{B ∈ (Rn)∗ ⊗ Rn̂ | BAT ∈ so(n̂)}, if n > n̂.
(19)

Proof. By connectedness of Q, we get that DNS is controllable if and only if every ODNS
(q),

q = (x, x̂;A) ∈ Q, is open in Q. Clearly, an orbit ODNS
(q0) = Q, q0 = (x0, x̂0;A0) ∈ Q, is an

open subset of Q if and only if TqODNS
(q0) = TqQ for some (and hence every) q ∈ ODNS

(q0).
Thus the decomposition given by Remark 3.9 implies that an orbit ODNS

(q0) is open in Q if
and only if V |q(πQ) ⊂ TqODNS

(q0) for some q ∈ ODNS
(q0).

Fix (x0, x̂0) ∈ M × M̂ . Theorem 4.1 implies that every DNS-orbit intersects every πQ-fiber.
Hence DNS is controllable if and only if V |q(πQ) ⊂ TqODNS

(q0) for every q = (x0, x̂0;A) ∈
Q|(x0,x̂0). By (15), this condition is equivalent to the condition that, for every q = (x0, x̂0;A) ∈
Q|(x0,x̂0),

ν(ĥ|x̂0 ◦ A− A ◦ h|x0)|q0 = V |q(πQ).

By Proposition 3.4, one can deduces that, for every q ∈ Q,

V |q(πQ) =

{
ν({B ∈ T ∗

x0
M ⊗ Tx̂0M̂ | ATB ∈ so(Tx0M)})|q, if n ≤ n̂,

ν({B ∈ T ∗
x0
M ⊗ Tx̂0M̂ | BAT ∈ so(Tx̂0M̂)})|q, if n ≥ n̂.

Thus, we conclude that DNS is controllable if and only if, for all q = (x0, x̂0;A) ∈ Q|(x0,x̂0)

ĥ|x̂0 ◦ A−A ◦ h|x0 =

{
{B ∈ T ∗

x0
M ⊗ Tx̂0M̂ | ATB ∈ so(Tx0M)}, if n ≤ n̂,

{B ∈ T ∗
x0
M ⊗ Tx̂0M̂ | BAT ∈ so(Tx̂0M̂)}, if n ≥ n̂.

Choosing arbitrary orthonormal local frames F and F̂ of M and M̂ at x0 and x̂0, respectively,
we see that the above condition is equivalent to

ĥ|F̂MF,F̂ (A)−MF,F̂ (A)h|F =

{
{B ∈ (Rn)∗ ⊗ Rn̂ | MF,F̂ (A)

TB ∈ so(n)}, if n ≤ n̂,

{B ∈ (Rn)∗ ⊗ Rn̂ | BMF,F̂ (A)
T ∈ so(n̂)}, if n ≥ n̂.

Since we have {MF,F̂ (A) | A ∈ Q|(x0,x̂0)} = SO(n, n̂), T ∗M ⊗ TM̂ ∼= (Rn)∗ ⊗Rn̂ and F, F̂ were
arbitrary chosen, the claim follows.

Theorem 5.3. Suppose that M , M̂ are simply connected. Then (Σ)NS is completely controllable
if and only if

ĥIn,n̂ − In,n̂h =

{
{B ∈ (Rn)∗ ⊗ Rn̂ | ITn,n̂B ∈ so(n)}, if n ≤ n̂,

{B ∈ (Rn)∗ ⊗ Rn̂ | BITn,n̂ ∈ so(n̂)}, if n ≥ n̂.
(20)

Proof. Notice that In,n̂ ∈ SO(n, n̂), then the previous theorem give the necessary condition.
Conversely, suppose that the condition (20) holds. This condition implies that for (x0, x̂0) ∈
M × M̂ , there is an q0 = (x0, x̂0;A0) ∈ Q|(x0,x̂0) such that

ĥA0 −A0h =

{
{B ∈ (Rn)∗ ⊗ Rn̂ | AT

0B ∈ so(n)}, if n ≤ n̂,

{B ∈ (Rn)∗ ⊗ Rn̂ | BAT
0 ∈ so(n̂)}, if n ≥ n̂.
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By Proposition 3.4 and the equality 15, this means that Tq0ODNS
(q0) ∩ V |q0(πQ) = V |q0(πQ)

and hence Tq0ODNS
(q0) = Tq0Q due to Remark 3.9. Thus ODNS

(q0) is open in Q. By the
connectedness of Q, we have that ODNS

(q0) = Q. Therefore, (Σ)NS is completely controllable.

Remark 5.4. The proofs of Theorems 5.2 and 5.3 are similar to that of Theorems 4.8 and 4.9
of Section 4 in [8].

5.2 The Rolling Problem ΣR

From Proposition 3.16, we get the subsequent proposition and corollary whose proofs follow
those of Proposition 5.20 and Corollary 5.21 of Section 5 in [8].

Proposition 5.5. Let q0 = (x0, x̂0;A0) ∈ Q. Suppose that, for some X ∈ VF(M) and a real
sequence (tn)

∞
n=1 such that tn 6= 0 for all n, limn→∞ tn = 0, we have

V |ΦLR(X)(tn,q0)(πQ) ⊂ T (ODR
(q0)), ∀n. (21)

Then LNS(Y, Ŷ )|q0 ∈ Tq0(ODR
(q0)) for every Y g-orthogonal to X|x0 in Tx0M and every Ŷ

ĝ-orthogonal to A0X|x0, ∈ A0(X|x0)
⊥ in Tx̂0M̂ . Hence the orbit ODR

(q0) has codimension at
most |n̂− n|+ 1 inside Q.

Corollary 5.6. Suppose there is a point q0 = (x0, x̂0;A0) ∈ Q and ǫ > 0 such that for every
X ∈ VF(M) with ‖X‖g < ǫ on M , one has

V |ΦLR(X)(t,q0)(πQ) ⊂ TODR
(q0), |t| < ǫ.

Then the orbit ODR
(q0) is open in Q. As a consequence, (Σ)R is completely controllable if and

only if
∀q ∈ Q, V |q(πQ) ⊂ TqODR

(q). (22)

Remark 5.7. We will use in the next corollary the fact that we have DR|q is involutive if

and only if Rolq is vanish for all q = (x, x̂;A) ∈ Q, i.e. if and only if R̂(AX,AY )(AZ) =
A(R(X, Y )Z), for all X, Y, Z ∈ TxM . This is an immediate result from the equality (16) and
the decomposition of Remark 3.9.

Corollary 5.8. Assume that n ≤ n̂. Then the following two cases are equivalent,

(i) DR is involutive,

(ii) (M, g) and (M̂, ĝ) have constant and equal curvature.

Moreover, if n < n̂ strictly, then the following two cases are equivalent,

(a) D̂R is involutive,

(b) (M, g) and (M̂, ĝ) are both flat.
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Proof. The proof of (i) ⇔ (ii) is similar to that of Corollary 5.23 of Section 5 in [8]. We next

turn to the proof of (a) ⇒ (b). Assume that D̂R is involutive i.e., for every q̂ = (x̂, x;B) ∈
Q̂, X̂, Ŷ , Ẑ ∈ Tx̂M̂ ,

R̂olq̂(X̂, Ŷ )Ẑ = B(R̂(X̂, Ŷ )Ẑ)− R(BX̂,BŶ )(BẐ) = 0.

Thus, we have, for any X, Y ∈ TxM ,

σ(X,Y ) = g(R(X, Y )Y,X) = g(R(BBTX,BBTY )(BBTY ), X) = g(B(R̂(BTX,BTY )(BTY )), X).

Since g(B(R̂(BTX,BTY )(BTY )), X) = ĝ(R̂(BTX,BTY )(BTY ), BTX), one deduces that σ(X,Y )

is equal to σ̂(BTX,BT Y ). Given any x ∈ M , x̂ ∈ M̂ , X , Y ∈ TxM and X̂ , Ŷ ∈ Tx̂M̂ , choose some

vectors X3, ..., Xn ∈ TxM and X̂3, ..., X̂n̂ ∈ Tx̂M̂ such that X, Y,X3, ..., Xn and X̂, Ŷ , X̂3, ..., X̂n̂

are positively oriented orthonormal frames. We define

BX̂ = X,BŶ = Y, BX̂i = 0; i = 3, ..., n, BX̂i = 0; i = n+ 1, ..., n̂.

Clearly, q̂ = (x̂, x;B) ∈ Q̂ and σ(X,Y ) = σ̂(X̂,Ŷ ) for BTX = X̂ , BTY = Ŷ . Thus (M, g) and

(M̂, ĝ) have equal and constant curvature k ∈ R. We need to show that k = 0. Choose any
(x̂, x;B) ∈ Q̂, since n < n̂, choose non-zero vectors X̂ ∈ kerB and Ŷ ∈ (kerB)⊥ and compute

0 = R̂ol(X̂, Ŷ )(B)X̂ = k(ĝ(Ŷ , X̂)BX̂ − ĝ(X̂, X̂)BŶ )− R(BX̂,BŶ )(BX̂) = −k‖X̂‖2ĝBŶ .

However ‖X̂‖ĝ 6= 0 and BŶ 6= 0, it follows that k = 0.

We now prove that (b) ⇒ (a). In the case where (M, g) and (M̂, ĝ) are flat, we have R = 0

and R̂ = 0 so that clearly R̂ol(X̂, Ŷ )(B)Ẑ = B(R̂(X̂, Ŷ )Ẑ) − R(BX̂,BŶ )(BẐ) = 0 for all

(x̂, x;B) ∈ Q̂ and X̂ , Ŷ , Ẑ ∈ Tx̂M̂ . This proves that D̂R is involutive.

We have another equivalence relation similar to Corollary 5.24 of Section 5 in [8].

Proposition 5.9. Suppose that (M, g) and (M̂, ĝ) are complete. The following cases are equiv-
alent:

(i) There exists a q0 = (x0, x̂0;A0) ∈ Q such that ODR
(q0) is an integral manifold of DR.

(ii) There exists a q0 = (x0, x̂0;A0) ∈ Q such that,

Rolq(X, Y ) = 0, ∀q = (x, x̂;A) ∈ ODR
(q0), X, Y ∈ TxM.

(iii) There is a complete Riemannian manifold (N, h), a Riemannian covering map F : N →
M and a smooth map G : N → M̂ such that

(1) If n ≤ n̂, G is a Riemannian immersion that maps h-geodesics to ĝ-geodesics.

(2) If n ≥ n̂, G a Riemannian submersion such that the co-kernel distribution (kerG∗)
⊥ ⊂

TN is involutive and the fibers G−1(x̂), x̂ ∈ M̂ , are totally geodesic submanifolds of
(N, h).
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Proof. We will first establish the equivalence (i) ⇐⇒ (ii) and to complete the proof, we proceed
to show that (i) ⇒ (iii) and (iii) ⇒ (ii).

We prove (i) ⇒ (ii). Notice that the restrictions of vector fields LR(X), with X ∈ VF(M), to
the orbit ODR

(q0) are smooth vector fields of that orbit. Thus [LR(X),LR(Y )] is tangent to
this orbit for any X , Y ∈ VF(M) and hence (16) implies the claim.

We next prove (ii) ⇒ (i). From (16), it also follows that DR|ODR
(q0), the restriction of DR

to the manifold ODR
(q0), is involutive. Since the maximal connected integral manifolds of an

involutive distribution are exactly its orbits, we get that ODR
(q0) is an integral manifold of DR.

We now prove (i) ⇒ (iii). Let N := ODR
(q0) and h := (πQ,M |N)

∗(g) i.e. for q = (x, x̂;A) ∈ N

and X , Y ∈ TxM , define
h(LR(X)|q,LR(Y )|q) = g(X, Y ).

If F := πQ,M |N and G := πQ,M̂ |N , we immediately see that F is a local isometry (note that

dim(N) = n). The completeness of (N, h) follows from the completeness of M and M̂ with
Remark 3.13. Hence F is a surjective Riemannian covering. Moreover, if Γ : [0, 1] → N is a
h-geodesic, it is tangent to DR and since it projects by F to a g-geodesic γ, it follows again by
Remark 3.13 that G ◦ Γ = γ̂DR

(γ,Γ(0)) is a ĝ-geodesic. Therefore we have proven that G is a

totally geodesic mapping N → M̂ .

If n ≤ n̂, then for q = (x, x̂;A) ∈ N , X , Y ∈ TxM , one has

ĝ(G∗(LR(X)|q), G∗(LR(Y )|q)) = ĝ(AX,AY ) = g(X, Y ) = h∗(LR(X)|q,LR(Y )|q),

i.e. G is a Riemannian immersion. Item (1) is proved.

If n ≥ n̂, for q = (x, x̂;A) ∈ N and X ∈ TxM such that LR(X)|q ∈ (kerG∗|q)
⊥ and Z ∈

kerA, we have G∗(LR(Z)|q) = AZ = 0 i.e. LR(Z)|q ∈ ker(G∗|q) from which g(X,Z) =
h(LR(X)|q,LR(Z)|q) = 0 for all Z ∈ kerA. This shows thatX ∈ (kerA)⊥. Therefore, for allX ,
Y ∈ TxM such that LR(X)|q, LR(Y )|q ∈ (kerG∗|q)

⊥, we get ĝ(G∗(LR(X)|q), G∗(LR(Y )|q)) =

h(LR(X)|q,LR(Y )|q) as above. This proves that G : N → M̂ is a Riemannian submersion,
which is also totally geodesic. It then follows from Theorem 3.3 in [20], that the fibers of G
are totally geodesic submanifolds of N and that the co-kernel (i.e. horizontal) distribution
(kerG∗)

⊥ is involutive. Item (2), and hence the implication (i) ⇒ (iii) has been proved.

We next prove (iii) ⇒ (ii). Let x0 ∈ M and choose z0 ∈ N such that F (z0) = x0. Define x̂0 =
G(z0) ∈ M̂ and A0 := G∗|z0 ◦ (F∗|z0)

−1 : Tx0M → Tx̂0M̂ . The fact that q0 = (x0, x̂0;A0) ∈ Q

can be seen as follows: if (iii)− (1) holds, we have

ĝ(A0X,A0Y ) = ĝ(G∗|z0((F∗|z0)
−1X), G∗|z0((F∗|z0)

−1Y )) = h((F∗|z0)
−1X, (F∗|z0)

−1Y ) = g(X, Y ),

where we used that G is a Riemannian immersion. If (iii)− (2) holds, take X , Y ∈ (kerA0)
⊥,

clearly (F∗|z0)
−1X , (F∗|z0)

−1Y ∈ (kerG∗|z0)
⊥ and hence ĝ(A0X,A0Y ) = g(X, Y ) because G is

a Riemannian submersion.

Let γ : [0, 1] → M be a smooth curve with γ(0) = x0. Since F is a smooth covering map, there
is a unique smooth curve Γ : [0, 1] → N with γ = F ◦ Γ and Γ(0) = z0. Define γ̂ = G ◦ Γ and
A(t) = G∗|Γ(t) ◦ (F∗|Γ(t))

−1, t ∈ [0, 1]. As before, it follows that q(t) = (γ(t), γ̂(t);A(t)) ∈ Q for
all t ∈ [0, 1] and

˙̂γ(t) = G∗|Γ(t)Γ̇(t) = A(t)γ̇(t). (23)
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According to Theorem 3.3 in [20], the subcases (1) and (2) mean, respectively, that G is a
totally geodesic map, which is moreover a Riemannian (1) immersion, (2) submersion. By
Corollary 1.6 in [20], G is then affine map i.e. preserves parallel transport. But F , being
a Riemannian covering map, also preserves parallel transport, i.e. is affine. It follows that
A(t) = G∗|Γ(t) ◦ (F∗|Γ(t))

−1 also preserves parallel transport, which combined with (23) means
that A(t) is the rolling curve along γ with A(0) = A0.

Since the affinity of F (resp. G) simply means that

∇F∗X
(F∗(Y )) = F∗(∇

h
X
Y )( resp. ∇̂G∗X

(G∗(Y )) = G∗(∇
h
X
Y )),

for all vector fields X, Y on N , we easily see that

R(F∗X,F∗Y )F∗Z = F∗(R
h(X, Y )Z)

R̂(G∗X,G∗Y )G∗Z = G∗(R
h(X, Y )Z),

for all vector fields X, Y , Z on N . It thus follows that for all vector fields X, Y, Z on M ,

A(t)(R(X, Y )Z) =A(t)(R(F∗X,F∗Y )F∗Z) = A(t)(F∗(R
h(X, Y )Z))

=G∗|Γ(t)(R
h(X, Y )Z)) = R̂(G∗|Γ(t)X,G∗|Γ(t)Y )G∗|Γ(t)Z

=R̂(A(t)X,A(t)Y )(A(t)Z),

where X, Y , Z are any (local) F -lifts of X, Y, Z on N . This proves that

Rolq(t) = 0. (24)

Thus we have shown that t 7→ (γ(t), γ̂(t);A(t)) is the unique rolling curve along γ starting at
q0 = (x0, x̂0;A0) and defined on [0, 1] and therefore curves of Q formed in this manner fill up the
orbit ODR

(q0). Moreover, by Eq. (24) we have shown also that Rol vanishes on ODR
(q0).

Remark 5.10. As pointed out in the course of the above proof, according to [20] the subcases
(1)-(2) of (iii) in the previous proposition can be replaced by simply saying that G is a totally
geodesic map which is a Riemannian (1) immersion, (2) submersion, respectively.

The next proposition is a sufficient condition of non-controllability for the rolling system Σ(R)

when n < n̂.

Proposition 5.11. Let M , M̂ be two Riemannian manifolds of dimensions n, n̂ with n < n̂.
Assume that there exists a complete totally geodesic submanifold N̂ of M̂ of dimension m such
that n ≤ m < n̂. Then, the rolling system Σ(R) of Q(M, M̂) is not completely controllable.

Proof. Since n ≤ m, we can find q0 = (x0, x̂0;A0) ∈ Q such that x̂0 ∈ N̂ and im(A0) ⊂ Tx̂0N̂ .
We proceed to prove that πQ,M̂(ODR

(q0)) ⊂ N̂ . To this end, we will first prove that for

every geodesic curve γ on M starting at any point q = (x, x̂;A), with x ∈ M , x̂ ∈ N̂ and
im(A) ⊂ Tx̂N̂ , the resulting geodesic curve γ̂DR

:= γ̂DR
(γ, q) = πQ,M̂(qDR

(γ, q)) stays in N̂ and

that if qDR
(γ, q) = (γ, γ̂;ADR

(γ, q)), then imADR
(γ, q)(·) ⊂ Tγ̂(·)N̂ .
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Once this proved, it is clearly obvious that the previous statement extends verbatim to the case
where γ is any broken geodesic curve. By a standard density argument, we conclude that the
above statement is again true for any absolutely continuous curve γ on M . We then prove the
claim.

Let then consider a point q = (x, x̂;A), with x ∈ M , x̂ ∈ N̂ and im(A) ⊂ Tx̂N̂ and a geodesic
curve γ : [0, 1] → M starting at x ∈ M . Then, qDR

(γ, q) is a geodesic curve and so that

γ̂DR
(γ, q) is a geodesic curve on M̂ and for all t ∈ [0, 1], we have,

˙̂γDR
(t) = ˙̂γDR

(γ, q)(t) = ADR
(γ, q)(t)γ̇(t) = (P t

0(γ̂DR
) ◦ A ◦ P 0

t (γ))γ̇(t)

=P t
0(γ̂DR

)(Aγ̇(0)).

By assumption im(A) ⊂ Tx̂N̂ , and therefore Aγ̇(0) ∈ Tx̂N̂ , which implies that ˙̂γDR
(0) ∈ Tx̂N̂ .

Since N̂ is a complete totally geodesic submanifold of M̂ , we therefore have that the geodesic
γ̂DR

(t) stays in N for all t ∈ [0, 1].

Using the same reasoning, for a given t ∈ [0, 1], if X ∈ Tγ(t)M , we have A(P 0
t (γ)X) ∈ Tx̂N̂ ,

and hence, since N̂ is totally geodesic, ADR
(γ, q)(t)X ∈ Tγ̂(t)N̂ . This combined with the fact

that ADR
(γ, q)(t) preserves the inner product ĝ of M̂ , and therefore that induced on N̂ , means

that qDR
(γ, q)(t) ∈ Q(M, N̂) for all t ∈ [0, 1], which completes the proof.

Since Riemannian manifolds (M̂, ĝ) of constant curvature contain complete totally geodesic sub-
manifolds of any lower dimension, we get the following non-controllability result as consequence
of the previous proposition.

Corollary 5.12. Consider a Riemannian manifold (M, g) of dimension n and a Riemannian
manifold (M̂, ĝ) of constant curvature and of dimension n̂ > n. Then the rolling problem of
(M, g) onto (M̂, ĝ) without spinning nor slipping is not controllable.

6 Appendix

In this section we briefly show how one writes the control system Σ(R) in local orthonormal
frames.

Let (Fi)1≤i≤n and (F̂j)1≤j≤n̂ be local oriented orthonormal frames on M and M̂ respectively

and let q0 = (x0, x̂0;A0) ∈ Q such that x0, x̂0 belong to the domains of definition V and V̂ of
the frames. Let q(t) = (γ(t), γ̂(t);A(t)), t ∈ [0, 1], be a curve in Q so that γ ⊂ V and γ̂ ⊂ V̂ .
For every t ∈ [0, 1], define the unique element R(t) in SO(n, n̂) verifying

(
A(t)F1|γ(t), . . . , A(t)Fn|γ(t)

)
=

(
F̂1|γ̂(t), . . . , F̂n̂|γ̂(t)

)
R(t)

Define Christoffel symbols Γ ∈ T ∗
xM ⊗ so(n) and Γ̂ ∈ T ∗

x̂M̂ ⊗ so(n̂) by

Γ(X)li = g(∇XFi, Fl), Γ̂(X̂)kj = ĝ(∇̂X̂ F̂j, F̂k),

with 1 ≤ i, k ≤ n, 1 ≤ j, k ≤ n̂ and X ∈ TxM , X̂ ∈ Tx̂M̂ .
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There are unique measurable functions ui : [0, 1] → R, 1 ≤ i ≤ n, such that, for a.e. t ∈ [0, 1],

γ̇(t) =
(
F1|γ(t), . . . , Fn|γ(t)

)


u1(t)
...

un(t)


 .

As one can easily verify, the conditions of no-slip (7) and no-spin (6) translate for (γ̂(t),R(t)) ∈
M̂ × SO(n) precisely to

(no-slip) ˙̂γ(t) =
(
F̂1|γ̂(t), . . . , F̂n̂|γ̂(t)

)
R(t)



u1(t)
...

un(t)


 ,

(no-spin) Ṙ(t) = R(t)Γ(γ̇(t))− Γ̂( ˙̂γ(t))R(t),

for a.e. t ∈ [0, 1]. Moreover, the latter no-spin condition can also be written as

Ṙ(t) =
n∑

i=1

ui(t)
(
R(t)Γ(Fi|γ(t))−

n̂∑

j=1

Rji(t)Γ̂(F̂j|γ̂(t))R(t)
)
,

for a.e. t ∈ [0, 1], where Rji(t) is the element at j-th row, i-th column of R(t). From this local
form, one clearly sees that the rolling system ΣR is a driftless control affine system (see [2, 10]
for more details on control systems).
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