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In this brief, we present Lyapunov-based robust 1 and adaptive higher order sliding mode (HOSM) controllers 2 for the air-feed system of polymer electrolyte membrane fuel 3 cells, which is a nonlinear single-input, single-output system 4 with bounded uncertainty. The system consists of a motorized 5 compressor, which is driven at its optimal point in order to 6 minimize the internal energy consumption of the system. This 7 brief provides an experimental demonstration of the applicabil-8 ity of the recently developed fixed-gain robust controller and 9 adaptive controller for this problem. Third-order controllers 10 are developed in order to obtain a continuous profile for 11 the input current of the compressor motor. In this regard, a 12 complete adaptive arbitrary HOSM control has been presented 13 for the first time, with Lyapunov-based proof. A performance 14 comparison between the two controllers is presented in the 15 end. 16

power output [START_REF] Pukrushpan | Control of Fuel Cell Power Systems: Principles, Modeling, Analysis and Feedback Design[END_REF]. Therefore, the air-feed system requires precise control for running the compressor at its optimal operating point, thereby maximizing the net power output of the fuel cell while keeping the oxygen excess ratio high enough for proper operation [START_REF] Karnik | Water equilibria and management using a two-volume model of a polymer electrolyte fuel cell[END_REF], [START_REF] Vahidi | Constraint handling in a fuel cell system: A fast reference governor approach[END_REF].

Higher order sliding mode control (HOSMC) [START_REF] Emel'yanov | High-order sliding modes in control systems[END_REF] is a wellestablished control strategy for uncertain nonlinear systems, as it is insensitive to parametric uncertainty and external disturbance. Unlike classical sliding mode, HOSMC does not suffer from high-frequency chattering because the characteristic discontinuous control [START_REF] Utkin | Sliding Modes in Control and Optimization[END_REF] acts upon a higher derivative of the sliding variable. If the bounds of parametric uncertainty in the system are known, then fixed-gain HOSM controllers can be designed with relative ease. However, this is usually difficult in practical cases, as the estimation of uncertainty bounds requires rigorous experimentation in worst case conditions. In these cases, adaptive-gain (or simply adaptive) controllers provide a successful means of controlling the system through dynamically adapting gains. However, these controllers ensure practical convergence only, i.e., to a neighborhood of the origin. Many fixed-gain arbitrary robust HOSMC algorithms exist in contemporary literature, prominent examples being [START_REF] Levant | Universal single-input-single-output (SISO) sliding-mode 447 controllers with finite-time convergence[END_REF]- [START_REF] Dinuzzo | Higher order sliding mode controllers 455 with optimal reaching[END_REF]. Huang et al. [START_REF] Huang | Adaptive sliding-mode 458 control for nonlinearsystems with uncertain parameters[END_REF] were the first to use dynamic gain adaptation in SMC for the problem of unknown uncertainty bound, following [START_REF] Plestan | New methodolo-462 gies for adaptive sliding mode control[END_REF] and [START_REF] Plestan | Sliding mode 465 control with gain adaptation-Application to an electropneumatic 466 actuator[END_REF]. Other works in this domain include [START_REF] Shtessel | A novel adaptive-gain supertwist-468 ing sliding mode controller: Methodology and application[END_REF]- [START_REF] Glumineau | Impulsive-sliding mode 477 adaptive control of second order system[END_REF]. These contributions remain limited to first-and second-order sliding mode. Initial findings on Lyapunov-based robust and (partial) adaptive arbitrary HOSMC were recently presented in [START_REF] Harmouche | Robust and adaptive 480 higher order sliding mode controllers[END_REF].

Sliding mode controllers have been studied for PEMFC air-feed system control as well in [START_REF] Gracia-Gabin | Real-time implementation of a sliding mode controller for air supply on a PEM fuel cell[END_REF]- [START_REF] Matraji | Cascade control of the motocompressor of a PEM fuel cell via second order sliding mode[END_REF], and two important examples of second-order SMC (SOSMC) are [START_REF] Kunusch | Experimental results applying second order sliding mode control to a PEM fuel cell based system[END_REF] and [START_REF] Matraji | Robust control of the PEM fuel cell air-feed system via sub-optimal second order sliding mode[END_REF]. In the former, the oxygen excess ratio is assumed to have a static relationship with the compressor flow rate, and the compressor is controlled using SOSMC. In the latter, the authors have proposed a dual loop Cascade SOSMC controller, which address the compressor speed reference and current control individually. This approach is more practical as both AQ:1 the control loops are robust; however, its implementation requires different loop rates for controllers. Approaching this problem by third-order-sliding-mode-based oxygen excess ratio controllers appears to be a better approach in comparison with both these methods, as third-order extension results in continuous current control of the motocompressor. Adaptive third-order controllers would provide further ease in control design as precise parameters of the otherwise complex system need not be known.
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2 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY Fig. 1. Fuel cell air-feed system.

In this brief, the robust and adaptive approaches of [START_REF] Harmouche | Robust and adaptive 480 higher order sliding mode controllers[END_REF] are extended and applied to the HOSM control of the PEMFC air-feed systems. The objective is to operate the air-feed compressor at its optimal point with respect to the load current, thereby maintaining the required oxygen excess ratio while keeping the power consumption low. There are two major contributions in this brief. First, it is shown that if the bounds of parametric uncertainty are known, then the air-feed control problem can be practically solved with the third-order robust HOSMC controller of [START_REF] Harmouche | Robust and adaptive 480 higher order sliding mode controllers[END_REF]. The second main contribution in this brief is the extension of the partial adaptive controller presented in [START_REF] Harmouche | Robust and adaptive 480 higher order sliding mode controllers[END_REF] to develop, for the first time, a complete adaptive arbitrary order sliding mode controller. The adaptation dynamics use a saturation function that results in rapid increase as well as rapid decrease of gains when the sliding variable and its derivatives are, respectively, outside and inside of a defined neighborhood of zero. The advantages of this adaptive controller design are its arbitrary order and its fast adaptation rates in both directions. The Lyapunov function defines sufficient conditions for controller parameters in order to ensure convergence to a defined neighborhood.

The practical applicability of both the robust and adaptive controllers is demonstrated on a hardware-in-loop (HIL) airfeed test bench, using a real-time physical PEMFC emulator.

A comparative analysis of the performances of the robust and adaptive controller is also presented.

This brief is organized as follows. The PEMFC air-feed system is described in Section II. HOSM problem formulation and robust and adaptive control design are discussed in Section III.

Their implementation and experimental results are shown in Section IV. Finally, the conclusions are drawn in Section V.

II. PEMFC AIR-FEED SYSTEM

The PEMFC air-feed system (Fig. 1) feeds the fuel cell cathode with air (as the source of oxygen). It consists of a motocompressor and a manifold, in which a certain quantity of air (oxygen excess) is maintained such that the reaction between hydrogen and oxygen is continuous, without any interruption. Maintaining sufficient oxygen excess is critical for the PEMFC, as insufficient air leads to oxygen starvation during load transitions, where a sudden high load imposes a sudden increase in the rate of reaction. The dynamic model of a fuel cell air-feed system is as follows [START_REF] Matraji | Robust control of the PEM fuel cell air-feed system via sub-optimal second order sliding mode[END_REF]:

124 ẋ1 = c 1 (x 4 -x 1 -x 2 -c 2 ) 125 - c 3 x 1 c 4 x 1 + c 5 x 2 + c 6 c 17 √ x 1 + x 2 + c 2 -c 11 -c 7 ζ 126 ẋ2 = c 8 (x 4 -x 1 -x 2 -c 2 ) 127 - c 3 x 2 c 4 x 1 + c 5 x 2 + c 6 c 17 √ x 1 + x 2 + c 2 -c 11 128 ẋ3 = -c 9 x 3 -c 10 x 4 c 11 c 12 -1 + c 13 u 129 ẋ4 = c 14 1 + c 15 x 4 c 11 c 12 -1 130 [W cp -c 16 (x 4 -x 1 -x 2 -c 2 )] (1) 131 u = I q , ζ = I st , W cp = c 21 ω cp . (2) 132
The physical quantities that form the state vector x are

133 x = [x 1 x 2 x 3 x 4 ] T = [p O 2 p N 2 ω cp p sm ] T 134
where p O 2 and p N 2 represent the oxygen partial pressure and 135 the nitrogen partial pressure, respectively. The compressor 136 speed is denoted by ω cp and the supply manifold pressure 137 is denoted by p sm . The control input u is the motor current, 138 whereas the fuel cell stack current ζ is considered as measur-139 able input disturbance. The compressor airflow is denoted by 140 W cp and it is proportional to the compressor speed. The para-141 meters c i are considered as uncertain constants, decomposed 142 as c i = c 0i + δc i , where c 0i and δc i are the nominal value 143 and the uncertainty of c i , respectively. Complete details and 144 physical significance of these parameters can be found in [START_REF] Matraji | Robust control of the PEM fuel cell air-feed system via sub-optimal second order sliding mode[END_REF]. 145

A. Control Objective 146

The control problem in the PEMFC system is to ensure a 147 certain excess amount of air in the cathode while minimizing 148 the energy consumed by the air-feed compressor. The oxygen 149 excess ratio can be written as [START_REF] Matraji | Robust control of the PEM fuel cell air-feed system via sub-optimal second order sliding mode[END_REF] 150 

λ O 2 = c 19 c 20 ζ (x 4 -x 1 -x 2 -c 2 ) . ( 3 

III. HIGHER ORDER SLIDING MODE CONTROLLERS

In this section, we will first recall the preliminary formulation of the HOSM control problem and the robust HOSM controller of [START_REF] Harmouche | Robust and adaptive 480 higher order sliding mode controllers[END_REF]. Then, based on the initial findings of [START_REF] Harmouche | Robust and adaptive 480 higher order sliding mode controllers[END_REF],

the complete adaptive HOSM controller will be presented. Let us consider an uncertain nonlinear system

ẋ(t) = f (x, t) + g(x, t)u y(t) = s(x, t) (5) 
where x ∈ R n is the state vector and u ∈ R is the control input. The sliding variable s is a measured smooth outputfeedback function and f (x, t) and g(x, t) are uncertain smooth functions. It is assumed that the relative degree r of the system is globally well defined, uniform, and time-invariant, and the associated zero dynamics are asymptotically stable [START_REF] Dinuzzo | Higher order sliding mode controllers 455 with optimal reaching[END_REF].

Then, for suitable functions φ(x, t) and γ (x, t), (5) can be rewritten as

y (r) (t) = φ(x(t), t) + γ (x(t), t)u(t). ( 6 
)
The functions γ (x(t), t) and φ(x(t), t) are assumed to be bounded by positive constants γ m , γ M , and φ, such that

0 < γ m ≤ γ (x(t), t) ≤ γ M , | φ(x(t), t)| ≤ φ. (7) 
Defining s (i) := d i /dt i y, the goal of r th order SMC is to arrive at, and keep the following manifold in finite time:

s (0) (x, t) = s (1) (x, t) = • • • = s (r-1) (x, t) = 0. ( 8 
)
To be more precise, for z = [z 1 z 2 . . . z r ] T := [s ṡ . . . s (r-1) ] T , ( 8) is equivalent to z = 0. It is natural to replace (5) with a more general control system based on ( 7)

żi = z i+1 , i = 1, . . . , r -1 żr = ϕ(t) + γ (t)u ∈ I ϕ + u I γ (9)
where the new functions ϕ and γ are arbitrary measurable functions, bounded such that

ϕ(t) ∈ [-φ, φ] , γ(t) ∈ γ m , γ M ( 10 
)
where φ, γ m , and γ M are positive constants. This system represents a perturbed integrator chain. The objective of this brief is to design controllers that stabilize (9) to the origin, ideally in finite time. Since these controllers are to be discontinuous feedback laws u = U (z), solutions of (9) need to be understood here in Filippov sense [START_REF] Filippov | Differential Equations with Discontinuous Righthand Sides[END_REF].

A. Robust Higher Order Sliding Mode Controller

Let us first recall the robust controller [START_REF] Harmouche | Robust and adaptive 480 higher order sliding mode controllers[END_REF], which is designed to [START_REF] Dinuzzo | Higher order sliding mode controllers 455 with optimal reaching[END_REF], assuming that the bounds φ, γ m , and γ M are known. This controller has been derived from a class of Lyapunov-based controllers that guarantee finitetime stabilization of pure chain of integrators (ϕ ≡ 0 and γ ≡ 1) [START_REF] Bhat | Finite-time stability of continuous autonomous systems[END_REF], and satisfy certain additional geometric conditions. Let us consider that the initial states of the system are in a neighborhood of origin, Û ⊂ R r . Then, the main result of [START_REF] Harmouche | Robust and adaptive 480 higher order sliding mode controllers[END_REF] is given as follows.

Theorem 1: If there exists a controller u 0 (z) that stabilizes 206 a pure integrator chain in finite time and there exists a C 1

207 function V 1 defined on the neighborhood Û ⊂ R r , such that: 208 1) V1 + cV 1 α (z(t)) 0, if z(t) ∈ Û ; A Q : 2 209 2) ∂ V 1 ∂z r u 0 ≤ 0; 210 3) u 0 = 0 ⇒ ∂ V 1 ∂z r = 0.
211 Then, the following control law establishes HOSM on [START_REF] Dinuzzo | Higher order sliding mode controllers 455 with optimal reaching[END_REF] with 212 respect to s:

213 u = 1 γ m (u 0 + φsign(u 0 )) . ( 11 
) 214
The detailed proof of this theorem can be found in [START_REF] Harmouche | Robust and adaptive 480 higher order sliding mode controllers[END_REF]. 215 It can be verified that many controllers, such as those 216 of [START_REF] Hong | Finite-time stabilization and stabilizability of a class of controllable systems[END_REF] and [START_REF] Huang | Global finite-time stabilization of a class of uncertain nonlinear systems[END_REF], fulfill the conditions demanded in Theorem 2. 217 For the rest of this brief, we consider Hong's controller [START_REF] Hong | Finite-time stabilization and stabilizability of a class of controllable systems[END_REF], 218 which is defined as follows.

219

Let k < 0 and l 1 , . . . , l r positive real numbers and a θ := 220 |a| θ sign(a), ∀a ∈ R, θ > 0. For z = (z 1 , . . . , z r ), we define 221 for i = 0, . . . , r -1

222 p i = 1 + (i -1)k 223 v 0 = 0, v i+1 = -l i+1 z i+1 β i -v i β i (α i+1 /(β i ) (12) 224
where α i = p i+1 / p i , for i = 1, . . . , r , and, for k < 0 suffi-225 ciently small, we have

β 0 = p 2 , (β i + 1) p i+1 = β 0 + 1 > 0, 226 i = 1, . . . , r -1.

227

B. Adaptive Controller 228

Let us now consider the case where uncertainty bounds 229 γ m , γ M , and φ of (9) are unknown. In [START_REF] Harmouche | Robust and adaptive 480 higher order sliding mode controllers[END_REF], this problem 230 was partially solved and a controller was developed which 231 could function without any explicit knowledge of φ. We now 232 present a complete arbitrary HOSM controller that can be 233 designed without the knowledge of bounds of either uncertain 234 function. Let us first define σ (a) as the standard saturation 235 function, σ (a) = (a/max(1, |a|)), a ∈ R. For ε > 0, a ∈ R, 236 we define

237 ν ε (a) = 1 2 + 1 2 σ |a| -3 4 ε 1 4 ε . 238
We now propose the following controller:

239 u = γ u 0 (z) + φ sign (u 0 (z)) (13) 240
where u 0 is a homogeneous controller, as defined in Theorem 1. The adaptive function γ = κ + δ|u 0 (z)| and φ(t) is defined by the ordinary differential equation

φ(t) = kν ε (V 1 (z)) -(1 -ν ε (V 1 (z))) φ η
with the initial condition φ(0) = 0. The new terms are defined 241 as κ, δ > 0, η ∈ (0, 1), k > 0, and V 1 is a homogeneous 242 Lyapunov function which also satisfies Theorem 1. The 243 following theorem provides the main result for the adaptive 244 controller.

245

Theorem 2: Consider (9) under the feedback control 246 law [START_REF] Shtessel | A novel adaptive-gain supertwist-468 ing sliding mode controller: Methodology and application[END_REF]. Then, ∀ε, ∃c > 0 and 0 < α < 1 such that 247 the following conditions are satisfied for any initial condition 248 z 0 ∈ Û . 

1) lim inf

t →∞ V 1 (z(t)) ≤ ε, lim sup t →∞ V 1 (z(t)) ≤ . 250 2) lim sup t →∞ φ ≤ 2 ¯ + k( 1-α /(c(1 -α))) 251 where 252 ¯ := 1 γ m φ + (κγ m -1) 2 4γ m δ 253 := ε 1-α + c (1 -α )γ m 2k ¯ 2 1 1-α . such that V 1 (t) > ε
V1 = ∂ V 1 ∂z 1 z 2 + • • • + ∂ V 1 ∂z r (γ [ γ u 0 + φsign(u 0 )] + ϕ) 269 = ∂ V 1 ∂z 1 z 2 + • • • + ∂ V 1 ∂z r u 0 + ∂ V 1 ∂z r 270 × -u 0 +κγ u 0 + γ δ u 0 2 + γ φsign(u 0 )+ϕ 271 ≤ -cV α 1 - ∂ V 1 ∂z r (κγ m -1)|u 0 | + γ m δ|u 0 | 2 + γ m φ -φ 272 ≤ -cV α 1 -γ m ∂ V 1 ∂z r φ -¯ ≤ -cV α 1 ( 14 
)
273 then, V 1 (z) converges to zero in finite time, which contradicts 274 the hypothesis. The functions u 0 and V 1 are homogeneous, 275 which according to [START_REF] Bhat | Geometric homogeneity with applications to finite-time stability[END_REF], means that ∃ c , α > 0

: |∂ V 1 /∂z r | ≤ 276 c V 1 α , where c = max {z:V 1 (z)=1} |∂ V 1 /∂z r |, α = κ 2 /κ 1 .
The 277 terms κ 2 and κ 1 are the respective degrees of homogeneity

278 of ∂ V 1 /∂z r and V 1 . We suppose now that V 1 < ε. Let us 279
estimate the overshoot in the worst case condition with respect to uncertainty. For V 1 (z(0)) = ε and φ(0) = 0, we get

V1 ≤ -cV α 1 -γ m c V α 1 φ -¯ , φ = k. ( 15 
)
The overshoot of V 1 holds for V1 = 0 at t = T M . We get φ(T M ) = ¯c α-α /c γ m ≤ ¯ , and then T M ≤ ¯ /k. An upper bound of can be estimated as

= ε 1-α + c (1 -α )γ m 2k ¯ 2 1 1-α .
For an upper bound of lim sup t →∞ φ, consider the case V 1 (z(0)) = ε with V1 (z(0)) ≥ 0, in this case we have φ(0) < ¯ . For t = T M , i.e., V1 = 0, we get φ(T M ) ≤ ¯ + φ(0) ≤ 2 ¯ . φ will increase until time T f where φ(T f ) = 0 and V 1 (z(T f )) ≥ 0. The worst case is calculated with respect to the boundary of φ, using V1 ≤ -cV α 1 and φ = k. Here,

T f corresponds to V 1 (z(T f )) = 0, i.e., T f T m = (1-α) / (c(1 -α)), which implies that φ(T f ) ≤ φ(T M ) + k(T f T M ) = 2 ¯ + k (1-α) /c(1 -α).
Remark 1: The second inequality of 1) of Theorem 2 is equivalent to Levant's concept of real HOSM [START_REF] Levant | Sliding order and sliding accuracy in sliding mode control[END_REF], defined as

∃ t 1 > 0 : ∀t > t 1 , |z i (t)| ≤ μ i , i = 1, . . . , r -1
where μ i is an arbitrarily small positive number. This is equivalent to practical stability of z 1 , . . . , z r .

IV. DESIGN AND IMPLEMENTATION

Let us now turn toward design of the robust and adaptive controllers presented in Section III, for PEMFC air-feed system application. As mentioned previously, third-order controllers will be designed in order to obtain a smooth current profile. The test bench is described first in order to present a physical outlook of the system under consideration. Then, the designed controllers and experimental results are presented.

A. Test Bench Description

The experiments have been conducted on a HIL test bench, presented in Figs. 2 and3. This bench consists of a twinscrew compressor air-feed system coupled with a real time 3) and (4). The system parameters are given in [START_REF] Matraji | Robust control of the PEM fuel cell air-feed system via sub-optimal second order sliding mode[END_REF].
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331

The sliding variable is defined as

z 1 = s = λ O 2 -λ O 2 ,ref .
332

In our case, the sliding variable s depends on x 1 , x 2 , and x 4 . The first and second time derivative of s are

ṡ = z 2 = ∂ ∂ x 1 s(x 1 , x 2 , x 4 ). ẋ1 (x 1 , x 2 , x 4 ) + ∂ ∂ x 2 s(x 1 , x 2 , x 4 ). ẋ2 (x 1 , x 2 , x 4 ) + ∂ ∂ x 4 s(x 1 , x 2 , x 4 ). ẋ4 (x 1 , x 2 , x 3 , x 4 ) s = z 3 = ∂ ∂ x 1 ṡ(x 1 , x 2 , x 3 , x 4 ). ẋ1 (x 1 , x 2 , x 4 ) + ∂ ∂ x 2 ṡ(x 1 , x 2 , x 4 ). ẋ2 (x 1 , x 2 , x 4 ) + ∂ ∂ x 3 ṡ(x 1 , x 2 , x 3 , x 4 ). ẋ3 (x 3 , x 4 , u) + ∂ ∂ x 4 ṡ(x 1 , x 2 , x 3 , x 4 ). ẋ4 (x 1 , x 2 , x 3 , x 4 ).
The control input u appears for the first time in the second time derivative of s. To obtain a continuous control u, the discontinuous control is applied on the higher derivative u. We get

s (3) = ż3 = φ + γ u +γ v
where v = u, , and γ are uncertain bounded functions that satisfy

∈ [-φ, φ], γ ∈ [γ m , γ M ]. (16) 
For the PEMFC under consideration, the bounding values of the parameters were determined as percentage deviations through precise physical analyses. The numerical values of the uncertainty limits were obtained as φ = 0.03, γ m = 5, and γ M = 15.

From here, the control objective becomes equivalent to forcing s, and its first and second time derivatives to zero in finite time, through s (3) 

∈ [-φ, φ] + [γ m , γ M ]v.
We first develop a third-order SMC robust controller using [START_REF] Plestan | New methodolo-462 gies for adaptive sliding mode control[END_REF] and [START_REF] Plestan | Sliding mode 465 control with gain adaptation-Application to an electropneumatic 466 actuator[END_REF]. According to Theorem 1, the controller takes the following structure:

v 1 = -l 1 s α 1 v 2 = -l 2 ṡ β 1 -v 1 β 1 α 2 /β 1 v 3 = -l 3 s β 2 -v 2 β 2 α 3 /β 2 v = u = 1 γ m (v 3 + φsign(v 3 )) . ( 17 
)
In this test, the parameters have been tuned to the following values:

l 1 = 5, l 2 = 10, l 3 = 40, β 0 = 0.8, β 1 = 1.25, β 2 = 2, α 1 = 4/5, α 2 = 3/4, α 3 = 2/3, γ m = 5, φ = 0.03.
The load variations (Fig. 4) result in changes in λ O 2 ,ref , according to (4). The performance of the robust controller with respect to these changes is shown in Fig. 5. It can be seen in Fig. 5(a) that λ O 2 tracks λ O 2,ref successfully with a response time between 3 and 7 s practically. The control input (I q ) is shown in Fig. 5(b), it varies between 0 and 3 A. As the controller establishes third-order HOSM, the oscillations in I q are negligible and it has a smooth profile. We will now demonstrate the proposed adaptive controller 377 for the same problem, assuming that we have no knowledge 378 of the uncertainty bounds. The third-order SMC adaptive 379 controller is designed using ( 12) and [START_REF] Shtessel | A novel adaptive-gain supertwist-468 ing sliding mode controller: Methodology and application[END_REF]. According 380 to Theorem 3, the controller has the following structure:

381 v = u = γ v 3 + φsign(v 3 ) ( 18 
)
382 where v 3 is the same as in [START_REF] Harmouche | Robust and adaptive 480 higher order sliding mode controllers[END_REF]. The controller 

387

The results of the adaptive controller are shown in Fig. 6. respectively. It can be seen that φ increases at each stack current step, and then decreases rapidly after the convergence of the tracking error. As ideal sliding mode cannot be achieved in this case, small oscillations can be seen in γ . In general, these results show the effectiveness of both the robust and adaptive controllers for a wide range of stack current variation, i.e., external perturbation.

To demonstrate the robustness of our controllers in dealing with parametric uncertainty, another series of experiments was conducted, in which the parameters of the PEMFC emulator were varied to their extreme values [START_REF] Matraji | Robust control of the PEM fuel cell air-feed system via sub-optimal second order sliding mode[END_REF]. The designed controllers were again tested with the same controller parameters as determined before. The results of the robust controller in these tests are shown in Fig. 7. The system response in Fig. 7(a) and the control input in Fig. 7(b) show that this controller performs as well as in the previous tests with defined system parameter values. The results of the adaptive controller are shown in Fig. 8. We see again

The arbitrary order nature of controllers permitted to extend the air-feed system from second to third order, resulting in continuous input current profile. The proposed controllers showed good performance in simulation and in experiments conducted on a PEMFC air-feed test bench.
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Fig. 2 .

 2 Fig. 2. Test bench.

Fig. 3 .Fig. 4 .

 34 Fig. 3. HIL simulator.

Fig. 5 .Fig. 6 .

 56 Fig. 5. Robust controller. (a) λ O 2 . (b) I q .
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 3842 parameters used in adaptive case are as follows:l 1 = 5, 10, l 3 = 40, β 0 = 0.8, β 1 = 1.25, β 2 = 2,385 α 1 = 4/5, α 2 = 3/4, α 3 = 2/3, k = 5, η = 0.95, 386 ε = 0.001, κ = 0.25, δ = 0.001.

388Fig. 6 (

 6 Fig. 6(a) shows that λ O 2 converges and remains inside a small 389

Fig. 7 .Fig. 8 .

 78 Fig. 7. Robust controller (parametric shift). (a) λ O 2 . (b) I q .

  for every t ≥ t, then according to the 265 dynamics of φ, we get φ = k for t ≥ t. This implies that 266 for t ≥ t, φ is increasing and φ > ¯ . The derivative of the
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	268	Lyapunov function is
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Proof of Theorem 2:

We first demonstrate that the controller AQ:3 255 brings the system states from any domain V 1 > ε to the

258

for all consecutive time instances and φ is upper bounded after 259 a sufficiently large time.

260

Lemma 1 [START_REF] Harmouche | Robust and adaptive 480 higher order sliding mode controllers[END_REF]: The function φ is non-negative and is 261 defined as long as the trajectory of z is defined. The second controller is adaptive and its design does not 425 require any quantitative knowledge of the uncertainty bounds.