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Control of PEMFC Air-Feed System Using Lyapunov-Based Robust and
Adaptive Higher Order Sliding Mode Control

Salah Laghrouche, Mohamed Harmouche, Fayez Shakil Ahmed, and Yacine Chitour

Abstract— In this brief, we present Lyapunov-based robust1

and adaptive higher order sliding mode (HOSM) controllers2

for the air-feed system of polymer electrolyte membrane fuel3

cells, which is a nonlinear single-input, single-output system4

with bounded uncertainty. The system consists of a motorized5

compressor, which is driven at its optimal point in order to6

minimize the internal energy consumption of the system. This7

brief provides an experimental demonstration of the applicabil-8

ity of the recently developed fixed-gain robust controller and9

adaptive controller for this problem. Third-order controllers10

are developed in order to obtain a continuous profile for11

the input current of the compressor motor. In this regard, a12

complete adaptive arbitrary HOSM control has been presented13

for the first time, with Lyapunov-based proof. A performance14

comparison between the two controllers is presented in the15

end.16

Index Terms— Adaptive control, finite time stabilization,17

higher order sliding mode (HOSM), Lyapunov analysis, polymer18

electrolyte membrane fuel cell (PEMFC), robust control.19

I. INTRODUCTION20

FUEL cells and their auxiliary systems pose challenging21

control problems, as they are typically nonlinear and22

difficult to characterize. They require robust or adaptive23

control methods, as their physical parameters are uncertain,24

varying with operating conditions and environmental effects.25

One important control problem in polymer electrolyte26

membrane fuel cell (PEMFC) systems is the minimization27

of the power consumed internally by their air-feed systems,28

in order to maximize the net power output. In particular,29

a PEMFC needs a sufficient quantity of excess air (oxygen30

excess) in its cathode in order to respond to load variations31

and transitions without damaging itself [1]. On the other32

hand, it has been established that the power consumption33

of air-feed compressors is the highest among all auxiliary34

systems of the fuel cell, rising up to 20% of the total PEMFC35
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power output [1]. Therefore, the air-feed system requires 36

precise control for running the compressor at its optimal 37

operating point, thereby maximizing the net power output 38

of the fuel cell while keeping the oxygen excess ratio high 39

enough for proper operation [2], [3]. 40

Higher order sliding mode control (HOSMC) [4] is a well- 41

established control strategy for uncertain nonlinear systems, 42

as it is insensitive to parametric uncertainty and external 43

disturbance. Unlike classical sliding mode, HOSMC does not 44

suffer from high-frequency chattering because the characteris- 45

tic discontinuous control [5] acts upon a higher derivative of 46

the sliding variable. If the bounds of parametric uncertainty 47

in the system are known, then fixed-gain HOSM controllers 48

can be designed with relative ease. However, this is usually 49

difficult in practical cases, as the estimation of uncertainty 50

bounds requires rigorous experimentation in worst case 51

conditions. In these cases, adaptive-gain (or simply adaptive) 52

controllers provide a successful means of controlling the 53

system through dynamically adapting gains. However, 54

these controllers ensure practical convergence only, i.e., to 55

a neighborhood of the origin. Many fixed-gain arbitrary 56

robust HOSMC algorithms exist in contemporary literature, 57

prominent examples being [6]–[9]. Huang et al. [10] were the 58

first to use dynamic gain adaptation in SMC for the problem 59

of unknown uncertainty bound, following [11] and [12]. Other 60

works in this domain include [13]–[16]. These contributions 61

remain limited to first- and second-order sliding mode. Initial 62

findings on Lyapunov-based robust and (partial) adaptive 63

arbitrary HOSMC were recently presented in [17]. 64

Sliding mode controllers have been studied for PEMFC 65

air-feed system control as well in [18]–[20], and two important 66

examples of second-order SMC (SOSMC) are [21] and [22]. 67

In the former, the oxygen excess ratio is assumed to have 68

a static relationship with the compressor flow rate, and the 69

compressor is controlled using SOSMC. In the latter, the 70

authors have proposed a dual loop Cascade SOSMC controller, 71

which address the compressor speed reference and current 72

control individually. This approach is more practical as both AQ:173

the control loops are robust; however, its implementation 74

requires different loop rates for controllers. Approaching this 75

problem by third-order-sliding-mode-based oxygen excess 76

ratio controllers appears to be a better approach in comparison 77

with both these methods, as third-order extension results in 78

continuous current control of the motocompressor. Adaptive 79

third-order controllers would provide further ease in control 80

design as precise parameters of the otherwise complex system 81

need not be known. 82

1063-6536 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Fig. 1. Fuel cell air-feed system.

In this brief, the robust and adaptive approaches of [17] are83

extended and applied to the HOSM control of the PEMFC84

air-feed systems. The objective is to operate the air-feed85

compressor at its optimal point with respect to the load current,86

thereby maintaining the required oxygen excess ratio while87

keeping the power consumption low. There are two major88

contributions in this brief. First, it is shown that if the bounds89

of parametric uncertainty are known, then the air-feed control90

problem can be practically solved with the third-order robust91

HOSMC controller of [17]. The second main contribution in92

this brief is the extension of the partial adaptive controller93

presented in [17] to develop, for the first time, a complete94

adaptive arbitrary order sliding mode controller. The95

adaptation dynamics use a saturation function that results in96

rapid increase as well as rapid decrease of gains when the97

sliding variable and its derivatives are, respectively, outside98

and inside of a defined neighborhood of zero. The advantages99

of this adaptive controller design are its arbitrary order and100

its fast adaptation rates in both directions. The Lyapunov101

function defines sufficient conditions for controller parameters102

in order to ensure convergence to a defined neighborhood.103

The practical applicability of both the robust and adaptive104

controllers is demonstrated on a hardware-in-loop (HIL) air-105

feed test bench, using a real-time physical PEMFC emulator.106

A comparative analysis of the performances of the robust and107

adaptive controller is also presented.108

This brief is organized as follows. The PEMFC air-feed sys-109

tem is described in Section II. HOSM problem formulation and110

robust and adaptive control design are discussed in Section III.111

Their implementation and experimental results are shown in112

Section IV. Finally, the conclusions are drawn in Section V.113

II. PEMFC AIR-FEED SYSTEM114

The PEMFC air-feed system (Fig. 1) feeds the fuel cell115

cathode with air (as the source of oxygen). It consists of a116

motocompressor and a manifold, in which a certain quantity117

of air (oxygen excess) is maintained such that the reaction118

between hydrogen and oxygen is continuous, without any119

interruption. Maintaining sufficient oxygen excess is critical120

for the PEMFC, as insufficient air leads to oxygen starvation121

during load transitions, where a sudden high load imposes a122

sudden increase in the rate of reaction. The dynamic model of123

a fuel cell air-feed system is as follows [22]: 124

ẋ1 = c1(x4 − x1 − x2 − c2) 125

− c3x1

c4x1 + c5x2 + c6
c17

√
x1 + x2 + c2 − c11 − c7ζ 126

ẋ2 = c8(x4 − x1 − x2 − c2) 127

− c3x2

c4x1 + c5x2 + c6
c17

√
x1 + x2 + c2 − c11 128

ẋ3 = −c9x3 − c10

[(
x4

c11

)c12

− 1

]
+ c13u 129

ẋ4 = c14

[
1 + c15

[(
x4

c11

)c12

− 1

]]
130

[Wcp − c16(x4 − x1 − x2 − c2)] (1) 131

u = Iq , ζ = Ist, Wcp = c21ωcp. (2) 132

The physical quantities that form the state vector x are 133

x = [x1 x2 x3 x4]T = [pO2 pN2 ωcp psm]T
134

where pO2 and pN2 represent the oxygen partial pressure and 135

the nitrogen partial pressure, respectively. The compressor 136

speed is denoted by ωcp and the supply manifold pressure 137

is denoted by psm. The control input u is the motor current, 138

whereas the fuel cell stack current ζ is considered as measur- 139

able input disturbance. The compressor airflow is denoted by 140

Wcp and it is proportional to the compressor speed. The para- 141

meters ci are considered as uncertain constants, decomposed 142

as ci = c0i + δci , where c0i and δci are the nominal value 143

and the uncertainty of ci , respectively. Complete details and 144

physical significance of these parameters can be found in [22]. 145

A. Control Objective 146

The control problem in the PEMFC system is to ensure a 147

certain excess amount of air in the cathode while minimizing 148

the energy consumed by the air-feed compressor. The oxygen 149

excess ratio can be written as [22] 150

λO2 = c19

c20ζ
(x4 − x1 − x2 − c2) . (3) 151

The net electrical power is optimized by reducing the 152

consumption of the compressor, i.e., maintaining the oxygen 153

excess ratio λO2 at its reference optimal value λO2,ref , which 154

is determined as a function of the stack current ζ [22] 155

λO2,ref = 5 × 10−8ζ 3 − 2.87 × 10−5ζ 2 + 2.23 156

×10−3ζ + 2.5. (4) 157
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Our objective is to force λO2 to follow λO2,ref in finite158

time.159

III. HIGHER ORDER SLIDING MODE CONTROLLERS160

In this section, we will first recall the preliminary formu-161

lation of the HOSM control problem and the robust HOSM162

controller of [17]. Then, based on the initial findings of [17],163

the complete adaptive HOSM controller will be presented. Let164

us consider an uncertain nonlinear system165 {
ẋ(t) = f (x, t) + g(x, t)u
y(t) = s(x, t) (5)166

where x ∈ R
n is the state vector and u ∈ R is the control167

input. The sliding variable s is a measured smooth output-168

feedback function and f (x, t) and g(x, t) are uncertain smooth169

functions. It is assumed that the relative degree r of the170

system is globally well defined, uniform, and time-invariant,171

and the associated zero dynamics are asymptotically stable [9].172

Then, for suitable functions ϕ̃(x, t) and γ̃ (x, t), (5) can be173

rewritten as174

y(r)(t) = ϕ̃(x(t), t) + γ̃ (x(t), t)u(t). (6)175

The functions γ̃ (x(t), t) and ϕ̃(x(t), t) are assumed to be176

bounded by positive constants γm , γM , and ϕ̄, such that177

0 < γm ≤ γ̃ (x(t), t) ≤ γM , |ϕ̃(x(t), t)| ≤ ϕ̄. (7)178

Defining s(i) := di/dti y, the goal of r th order SMC is to179

arrive at, and keep the following manifold in finite time:180

s(0)(x, t) = s(1)(x, t) = · · · = s(r−1)(x, t) = 0. (8)181

To be more precise, for z = [z1 z2 . . . zr ]T := [s ṡ . . . s(r−1)]T ,182

(8) is equivalent to z = 0. It is natural to replace (5) with a183

more general control system based on (7)184

żi = zi+1, i = 1, . . . , r − 1185

żr = ϕ(t) + γ (t)u ∈ Iϕ + u Iγ (9)186

where the new functions ϕ and γ are arbitrary measurable187

functions, bounded such that188

ϕ(t) ∈ [−ϕ̄, ϕ̄] , γ (t) ∈ [
γm, γM

]
(10)189

where ϕ̄, γm , and γM are positive constants. This system190

represents a perturbed integrator chain. The objective of this191

brief is to design controllers that stabilize (9) to the origin,192

ideally in finite time. Since these controllers are to be discon-193

tinuous feedback laws u = U(z), solutions of (9) need to be194

understood here in Filippov sense [23].195

A. Robust Higher Order Sliding Mode Controller196

Let us first recall the robust controller [17], which is197

designed to (9), assuming that the bounds ϕ̄, γm , and198

γM are known. This controller has been derived from a199

class of Lyapunov-based controllers that guarantee finite-200

time stabilization of pure chain of integrators (ϕ ≡ 0201

and γ ≡ 1) [24], and satisfy certain additional geometric202

conditions. Let us consider that the initial states of the system203

are in a neighborhood of origin, Û ⊂ R
r . Then, the main204

result of [17] is given as follows.205

Theorem 1: If there exists a controller u0(z) that stabilizes 206

a pure integrator chain in finite time and there exists a C1
207

function V1 defined on the neighborhood Û ⊂ R
r , such that: 208

1) V̇1 + cV1
α(z(t)) � 0, if z(t) ∈ Û ; AQ:2209

2) ∂V1
∂zr

u0 ≤ 0; 210

3) u0 = 0 ⇒ ∂V1
∂zr

= 0. 211

Then, the following control law establishes HOSM on (9) with 212

respect to s: 213

u = 1

γm
(u0 + ϕ̄sign(u0)) . (11) 214

The detailed proof of this theorem can be found in [17]. 215

It can be verified that many controllers, such as those 216

of [25] and [26], fulfill the conditions demanded in Theorem 2. 217

For the rest of this brief, we consider Hong’s controller [25], 218

which is defined as follows. 219

Let k < 0 and l1, . . . , lr positive real numbers and �a	θ := 220

|a|θ sign(a), ∀a ∈ R, θ > 0. For z = (z1, . . . , zr ), we define 221

for i = 0, . . . , r − 1 222

pi = 1 + (i − 1)k 223

v0 = 0, vi+1 =−li+1��zi+1	βi −�vi	βi 	(αi+1/(βi ) (12) 224

where αi = pi+1/pi , for i = 1, . . . , r , and, for k < 0 suffi- 225

ciently small, we have β0 = p2, (βi + 1)pi+1 = β0 + 1 > 0, 226

i = 1, . . . , r − 1. 227

B. Adaptive Controller 228

Let us now consider the case where uncertainty bounds 229

γm , γM , and ϕ̄ of (9) are unknown. In [17], this problem 230

was partially solved and a controller was developed which 231

could function without any explicit knowledge of ϕ̄. We now 232

present a complete arbitrary HOSM controller that can be 233

designed without the knowledge of bounds of either uncertain 234

function. Let us first define σ(a) as the standard saturation 235

function, σ(a) = (a/max(1, |a|)), a ∈ R. For ε > 0, a ∈ R, 236

we define 237

νε(a) = 1

2
+ 1

2
σ

(
|a| − 3

4ε
1
4ε

)
. 238

We now propose the following controller: 239

u = γ̂ u0(z) + ϕ̂ sign (u0(z)) (13) 240

where u0 is a homogeneous controller, as defined
in Theorem 1. The adaptive function γ̂ = κ + δ|u0(z)|
and ϕ̂(t) is defined by the ordinary differential
equation

˙̂ϕ(t) = kνε(V1(z)) − (1 − νε(V1(z)))
⌊
ϕ̂
⌉η

with the initial condition ϕ̂(0) = 0. The new terms are defined 241

as κ, δ > 0, η ∈ (0, 1), k > 0, and V1 is a homogeneous 242

Lyapunov function which also satisfies Theorem 1. The 243

following theorem provides the main result for the adaptive 244

controller. 245

Theorem 2: Consider (9) under the feedback control 246

law (13). Then, ∀ε, ∃c′ > 0 and 0 < α′ < 1 such that 247

the following conditions are satisfied for any initial condition 248

z0 ∈ Û . 249
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Fig. 2. Test bench.

1) lim inf
t→∞ V1(z(t)) ≤ ε, lim supt→∞ V1(z(t)) ≤ �.250

2) lim sup
t→∞

∣∣ϕ̂∣∣ ≤ 2�̄ + k(�1−α/(c(1 − α)))251

where252

�̄ := 1

γm

(
ϕ̄ + (κγm − 1)2

4γmδ

)
253

� :=
(

ε1−α′ + c′(1 − α′)γm

2k
�̄2

) 1
1−α′

.254

Proof of Theorem 2: We first demonstrate that the controller

AQ:3

255

brings the system states from any domain V1 > ε to the256

domain V1 ≤ ε in finite time. Then, it is proved that once257

z reaches the domain V1 ≤ ε, it stays in the domain V1 ≤ �258

for all consecutive time instances and ϕ̂ is upper bounded after259

a sufficiently large time.260

Lemma 1 [17]: The function ϕ̂ is non-negative and is261

defined as long as the trajectory of z is defined.262

Now, let us use contradiction again, to show263

lim inf t→∞ V1(z(t)) ≤ ε. Supposing that there exists t̄264

such that V1(t) > ε for every t ≥ t̄ , then according to the265

dynamics of ϕ̂, we get ˙̂ϕ = k for t ≥ t̄ . This implies that266

for t ≥ t̄ , ϕ̂ is increasing and ϕ̂ > �̄. The derivative of the267

Lyapunov function is268

V̇1 = ∂V1

∂z1
z2 + · · · + ∂V1

∂zr
(γ [γ̂ u0 + ϕ̂sign(u0)] + ϕ)269

= ∂V1

∂z1
z2 + · · · + ∂V1

∂zr
u0 + ∂V1

∂zr
270

×( − u0+κγ u0 + γ δ �u0	2 + γ ϕ̂sign(u0)+ϕ
)

271

≤ −cV α
1 −

∣∣∣∣∂V1

∂zr

∣∣∣∣((κγm −1)|u0| + γmδ|u0|2 + γm ϕ̂−ϕ̄
)

272

≤ −cV α
1 − γm

∣∣∣∣∂V1

∂zr

∣∣∣∣ (ϕ̂ − �̄
) ≤ −cV α

1 (14)273

then, V1(z) converges to zero in finite time, which contradicts274

the hypothesis. The functions u0 and V1 are homogeneous,275

which according to [27], means that ∃ c′, α′ > 0 : |∂V1/∂zr | ≤276

c′V1
α′

, where c′ = max{z:V1(z)=1} |∂V1/∂zr |, α′ = κ2/κ1. The277

terms κ2 and κ1 are the respective degrees of homogeneity278

of ∂V1/∂zr and V1. We suppose now that V1 < ε. Let us279

estimate the overshoot in the worst case condition with respect 280

to uncertainty. For V1(z(0)) = ε and ϕ̂(0) = 0, we get 281

V̇1 ≤ −cV α
1 − γmc′V α′

1

(
ϕ̂ − �̄

)
, ˙̂ϕ = k. (15) 282

The overshoot � of V1 holds for V̇1 = 0 at t = TM . We get 283

ϕ̂(TM ) = �̄ − c�α−α′
/c′γm ≤ �̄, and then TM ≤ �̄/k. 284

An upper bound of � can be estimated as 285

�=
(

ε1−α′ + c′(1 − α′)γm

2k
�̄2

) 1
1−α′

. 286

For an upper bound of lim supt→∞ ϕ̂, consider the case 287

V1(z(0)) = ε with V̇1(z(0)) ≥ 0, in this case we have 288

ϕ̂(0) < �̄. For t = TM , i.e., V̇1 = 0, we get ϕ̂(TM ) ≤ 289

�̄ + ϕ̂(0) ≤ 2�̄. ϕ̂ will increase until time T f where 290

˙̂ϕ(T f ) = 0 and V1(z(T f )) ≥ 0. The worst case is calculated 291

with respect to the boundary of ϕ̂, using V̇1 ≤ −cV α
1 292

and ˙̂ϕ = k. Here, T f corresponds to V1(z(T f )) = 0, 293

i.e., T f Tm = (
�(1−α)

)
/ (c(1 − α)), which implies that 294

ϕ̂(T f ) ≤ ϕ̂(TM ) + k(T f TM ) = 2�̄ + k�(1−α)/c(1 − α). � 295

Remark 1: The second inequality of 1) of Theorem 2 is 296

equivalent to Levant’s concept of real HOSM [28], defined as 297

∃ t1 > 0 : ∀t > t1, |zi (t)| ≤ μi , i = 1, . . . , r − 1 298

where μi is an arbitrarily small positive number. This is 299

equivalent to practical stability of z1, . . . , zr . 300

IV. DESIGN AND IMPLEMENTATION 301

Let us now turn toward design of the robust and adaptive 302

controllers presented in Section III, for PEMFC air-feed 303

system application. As mentioned previously, third-order 304

controllers will be designed in order to obtain a smooth 305

current profile. The test bench is described first in order to 306

present a physical outlook of the system under consideration. 307

Then, the designed controllers and experimental results are 308

presented. 309

A. Test Bench Description 310

The experiments have been conducted on a HIL test bench, 311

presented in Figs. 2 and 3. This bench consists of a twin- 312

screw compressor air-feed system coupled with a real time 313
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Fig. 3. HIL simulator.

Fig. 4. Stack current (A).

33-kW fuel cell emulator. The twin-screw compressor is driven314

by a permanent magnet synchronous motor (PMSM). The315

three-phase currents of PMSM are calculated from dq coor-316

dinates and supplied by an inverter. The control input Iq is317

generated by the proposed controllers installed in a real-time318

controller and fed to the inverter. The measured compressor319

airflow Wcp is fed to the real-time fuel cell emulation system.320

The PEMFC emulator receives the flow rate Wcp, in order321

to generate the states x1, x2, x4, and λO2 (see Section II322

for physical description of the states). Its physical parameters323

can be varied to emulate the effect of external operating324

conditions on the fuel cell. The output load is simulated as325

variable stack current steps between 150 and 400 A, in steps.326

The load profile used in the tests for this brief is shown327

in Fig. 4.328

B. Controller Design and Experimental Results329

Let us consider (1) and the equations of λO2 and λO2,ref ,330

i.e., (3) and (4). The system parameters are given in [22].331

The sliding variable is defined as z1 = s = λO2 − λO2,ref.332

In our case, the sliding variable s depends on x1, x2, and x4. 333

The first and second time derivative of s are 334

ṡ = z2 = ∂

∂x1
s(x1, x2, x4).ẋ1(x1, x2, x4) 335

+ ∂

∂x2
s(x1, x2, x4).ẋ2(x1, x2, x4) 336

+ ∂

∂x4
s(x1, x2, x4).ẋ4(x1, x2, x3, x4) 337

s̈ = z3 = ∂

∂x1
ṡ(x1, x2, x3, x4).ẋ1(x1, x2, x4) 338

+ ∂

∂x2
ṡ(x1, x2, x4).ẋ2(x1, x2, x4) 339

+ ∂

∂x3
ṡ(x1, x2, x3, x4).ẋ3(x3, x4, u) 340

+ ∂

∂x4
ṡ(x1, x2, x3, x4).ẋ4(x1, x2, x3, x4). 341

The control input u appears for the first time in the second 342

time derivative of s. To obtain a continuous control u, the 343

discontinuous control is applied on the higher derivative u̇. 344

We get 345

s(3) = ż3 = ϕ̇ + γ̇ u︸ ︷︷ ︸
�

+γ v 346

where v = u̇, �, and γ are uncertain bounded functions that 347

satisfy 348

� ∈ [−ϕ̄, ϕ̄], γ ∈ [γm, γM ]. (16) 349

For the PEMFC under consideration, the bounding values 350

of the parameters were determined as percentage deviations 351

through precise physical analyses. The numerical values of 352

the uncertainty limits were obtained as ϕ̄ = 0.03, γm = 5, 353

and γM = 15. 354

From here, the control objective becomes equivalent to 355

forcing s, and its first and second time derivatives to 356

zero in finite time, through s(3) ∈ [−ϕ̄, ϕ̄] + [γm, γM ]v. 357

We first develop a third-order SMC robust controller 358

using (11) and (12). According to Theorem 1, the controller 359

takes the following structure: 360

v1 = −l1�s	α1
361

v2 = −l2��ṡ	β1 − �v1	β1	α2/β1
362

v3 = −l3��s̈	β2 − �v2	β2	α3/β2
363

v = u̇ = 1

γm
(v3 + ϕ̄sign(v3)) . (17) 364

In this test, the parameters have been tuned to the following 365

values: l1 = 5, l2 = 10, l3 = 40, β0 = 0.8, β1 = 1.25, 366

β2 = 2, α1 = 4/5, α2 = 3/4, α3 = 2/3, γm = 5, ϕ̄ = 0.03. 367

The load variations (Fig. 4) result in changes in λO2,ref , 368

according to (4). The performance of the robust controller 369

with respect to these changes is shown in Fig. 5. It can 370

be seen in Fig. 5(a) that λO2 tracks λO2,ref successfully 371

with a response time between 3 and 7 s practically. 372

The control input (Iq ) is shown in Fig. 5(b), it varies 373

between 0 and 3 A. As the controller establishes third-order 374

HOSM, the oscillations in Iq are negligible and it has a smooth 375

profile. 376
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Fig. 5. Robust controller. (a) λO2 . (b) Iq.

Fig. 6. Adaptive controller. (a) λO2 . (b) Iq . (c) ϕ̂. (d) γ̂ .

We will now demonstrate the proposed adaptive controller377

for the same problem, assuming that we have no knowledge378

of the uncertainty bounds. The third-order SMC adaptive379

controller is designed using (12) and (13). According380

to Theorem 3, the controller has the following structure:381

v = u̇ = γ̂ v3 + ϕ̂sign(v3) (18)382

where v3 is the same as in (17). The controller383

parameters used in adaptive case are as follows: l1 = 5,384

l2 = 10, l3 = 40, β0 = 0.8, β1 = 1.25, β2 = 2,385

α1 = 4/5, α2 = 3/4, α3 = 2/3, k = 5, η = 0.95,386

ε = 0.001, κ = 0.25, δ = 0.001.387

The results of the adaptive controller are shown in Fig. 6.388

Fig. 6(a) shows that λO2 converges and remains inside a small389

and acceptable neighborhood around the desired value λO2,ref .390

The control input, Iq is shown in Fig. 6(b) and the behaviors of391

the adaptive parameters ϕ̂ and γ̂ are shown in Fig. 6(c) and (d),392

respectively. It can be seen that ϕ̂ increases at each stack 393

current step, and then decreases rapidly after the convergence 394

of the tracking error. As ideal sliding mode cannot be achieved 395

in this case, small oscillations can be seen in γ̂ . In general, 396

these results show the effectiveness of both the robust and 397

adaptive controllers for a wide range of stack current variation, 398

i.e., external perturbation. 399

To demonstrate the robustness of our controllers in dealing 400

with parametric uncertainty, another series of experiments was 401

conducted, in which the parameters of the PEMFC emulator 402

were varied to their extreme values [22]. The designed 403

controllers were again tested with the same controller 404

parameters as determined before. The results of the robust 405

controller in these tests are shown in Fig. 7. The system 406

response in Fig. 7(a) and the control input in Fig. 7(b) 407

show that this controller performs as well as in the previous 408

tests with defined system parameter values. The results of 409
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Fig. 7. Robust controller (parametric shift). (a) λO2 . (b) Iq.

Fig. 8. Adaptive controller (parametric shift). (a) λO2 . (b) Iq . (c) ϕ̂. (d) γ̂ .

the adaptive controller are shown in Fig. 8. We see again410

in Fig. 8(a) a similar behavior of tracking error as compared411

with the previous tests. However, the static value of the412

quadratic current [Fig. 8(b)] changes in order to accommodate413

the emulated parametric drift. The adaptive gains ϕ̂ and γ̂414

adapt to counteract the uncertainty, ensuring convergence,415

as seen in Fig. 8(c) and (d). These tests demonstrate that both416

the robust and adaptive controllers are capable of handling417

parametric uncertainty, albeit with different mechanisms.418

V. CONCLUSION419

In this brief, the control problem of PEMFC air-feed system420

was addressed using two arbitrary HOSM controllers associ-421

ated with the finite-time stabilization of a perturbed chain of422

integrators with bounded uncertainty. The design of the first423

controller requires the knowledge of the uncertainty bounds.424

The second controller is adaptive and its design does not425

require any quantitative knowledge of the uncertainty bounds.426

The arbitrary order nature of controllers permitted to extend 427

the air-feed system from second to third order, resulting in 428

continuous input current profile. The proposed controllers 429

showed good performance in simulation and in experiments 430

conducted on a PEMFC air-feed test bench. 431
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