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Abstract

DACCOSIM is a multi-simulation environment for continuous time sys-
tems, relying on FMI-CS standard and making easy the design of a multi-
simulation graph. Moreover, DACCOSIM has been specially developed to
run on multi-core PC clusters, in order to achieve speedup and size up on
large scale multi-simulations. However, the distribution of the multi-simulation
graph remains complex and is still under responsibility of the simulation de-
veloper.

This paper introduces DACCOSIM parallel and distributed architecture,
and our strategies to achieve efficient distribution of multi-simulation graph
on multi-core clusters. Some performance experiments on two clusters, run-
ning up to 81 active components (FMU) and using up to 16 multi-core com-
puting nodes, are shown. Performances measured on our faster cluster exhibit
a good scalability, but some limitations of current DACCOSIM implementa-
tion are discussed.
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1 Introduction

Complex systems are characterized by the interconnection of numerous and hetero-
geneous cyber components (e.g. controllers) and physical components (e.g. power
grids). For EDF (the major French utility company), the smart power grids will ex-
tensively rely on new control functions (i) to increase the grid efficiency, reliability,
and safety, (ii) to enable better integration of new assets (e.g. distributed generation
and alternative energy sources), (iii) to support market dynamics and manage new
interactions between established and new energy players. Cyber-Physical Systems
(CPS) design involves multiple teams working simultaneously on different aspects
of the system. Especially, the development of a smarter electrical grid requires to
reuse models and tools often based on separate areas of expertise.

This heterogeneity led EDF to investigate coupling standards such as the Func-
tional Mock-up Interface (FMI1) initiated by Daimler AG within the ITEA2 MOD-
ELISAR project and now maintained by the Modelica Association2. More pre-
cisely, EDF chose its FMI-CS (FMI for co-simulation) part because this opera-
tion mode allows to export models as active components called FMUs (Functional
Mock-up Units), each FMU being a self-contained archive file including a model
and a numerical solver. As an additional benefit, the model IP is readily protected
when models are exported as FMUs from FMI-CS compliant modelling tools.

For EDF, it is vital to develop agile modelling and simulation in order to design
and validate distributed operating functions a long time before performing tests on
experimental sites. The Distributed Architecture for Controlled CO-SIMulation
(DACCOSIM software [8]) developed by EDF and CentraleSupelec is a part of
the answer to this problematic. It is aimed at simulating large and complex multi-
physics systems on multi-core PC clusters (the standard scalable computing archi-
tecture), despite some load unbalance and important communications inherent in
our multi-simulations. This paper introduces the parallel and distributed architec-
ture of DACCOSIM, and some scaling experiments on PC clusters (running up to
81 FMUs and using up to 16 multi-core cluster nodes). Finally we list some issues
and future works to achieve better speedup and size up.

These researches are carried out by the RISEGrid3 institute, founded by EDF
and CentraleSupelec with the ultimate goal to design the smart electric grids of the
future.

2 Context and related works

A FMI based multi-simulation is defined by a FMU graph, where all inputs and
outputs need to be correctly initialized during a mainly iterative phase called co-
initialization. EDF has achieved the co-initialization phase of DACCOSIM reusing

1https://www.fmi-standard.org/downloads
2https://www.modelica.org/
3http://www.supelec.fr/342_p_36889/risegrid.html
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its expertise in the famous Newton-Raphson algorithm (very popular for power
flow calculations) in conjunction with recent works done at UC Berkeley on de-
pendency cycles analysis [2] (which are now possible with the latest version 2.0 of
the FMI standard). The global dependencies graph automatically deduced from the
FMU graph is valuable to solve algebraic loops with a parallel Newton-Raphson
algorithm staged at the initialization mode of the multi-simulation. Then, the FMU
graph enters a loop of parallel multi-simulation time steps, concurrently running
each FMU at each time step, without the need for additional power flow calcula-
tions between two consecutive steps. From this point of view, the current version
2.0 of the FMI standard seems sufficient for EDF as its current use cases do not
report non convergence examples due to algebraic loops in the step mode.

So, our problematic is to distribute a FMU graph on a multi-core PC cluster.
This looks like a task graph distribution problem, which is an important research
field. For example, [5] proposes a scheduling algorithm on heterogeneous dis-
tributed architectures for static tasks modeled by Directed Acyclic Graph (DAG),
and [6] introduces mapping strategies of hierarchically structured multiprocessor
tasks on multi-core clusters, which is our target architecture. However, our DAC-
COSIM FMU graph is not hierarchically structured, and is a DAG with very few
task dependencies. All FMU tasks can run in parallel when starting a new time
step, and when all computations are finished all inter-FMU communications can
start and occur in parallel [8]. Then, when all communications are achieved, all
FMUs can enter a new time step. There are no dependencies between our FMU task
computations, and usual solutions of task graph distribution are not really adapted
to our problem. The basic version of our FMU graph working is closer a classi-
cal Bulk Synchronous Parallel (BSP) model [12], which is well known in parallel
computing, but our FMU tasks are heterogeneous and load unbalanced. Moreover,
a computationally big FMU can not be split into smaller ones as it would require
to design new mathematical models. So, our problem is not a classical Simple Pro-
gram Multiple Data (SPMD) scheme following a BSP model. Our FMU graph has
heterogeneity and load unbalance typical of generic task graphs. It is also possible
to consider our FMU graph like a kind of time stepped Multiple Program Multiple
Data application running on a computing cluster and aiming to reach high per-
formances [3]. Identification of an efficient distribution of our FMU graph thus
requires to design a specific algorithmic solution.

Some others multi-simulation environments interconnect some continuous time
based simulators, like EPOCHS [10] and INSPIRE [9], or even some FMUs, like
C2WT [1], through a HLA logical event bus [11]. This bus relies on a Run-Time In-
frastructure (RTI), ensuring event routage and right synchronization between sim-
ulators. Many RTI implementations are distributed, and can activate concurrently
simulators on different computing nodes. However, parallelism of the system de-
pends on the abundance of safe events concentrated in a lookahead time interval
[7, 13], and our time stepped FMU graph contains more potential parallelism.
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Figure 1: DACCOSIM GUI: FMU graph definition and configuration

3 DACCOSIM environment

3.1 DACCOSIM software suite

DACCOSIM has been designed to achieve multi-simulations of continuous time
systems, discretized with time steps, and running solvers using constant or variable
time steps (to maintain the requested accuracy with the minimal amount of com-
putations, whatever the dynamic of the system). It consists in two complementary
parts: a Graphic User-friendly Interface (GUI) and a dedicated computation pack-
age.

The GUI developed in Java facilitates the complex systems studies by design-
ing the multi-simulation graph (Figure 1), i.e. the FMUs involved and the vari-
ables exchanged in-between, defining the resources used by the simulation (lo-
cal machine or cluster), configuring the simulation case (duration, co-initialization
method, time step control strategy. . . ) and implementing the graph into DAC-
COSIM master tasks managing the simulation.

The dedicated computation package controls all task execution issues relative
to the multi-simulation: co-initialization, local or distributed computation steps,
fixed or variable time step control strategies, detection of state events generated
inside FMUs, inter-FMU communications, distributed and hierarchical decision
process. . . The Java version of DACCOSIM relies on JavaFMI4 and is available for
both Windows and Linux operating systems, whether 32-bit or 64-bit.
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Figure 2: Distributed DACCOSIM architecture, with a hierarchical master

3.2 Parallel and distributed runtime architecture

The dedicated computation package of DACCOSIM includes a parallel and dis-
tributed runtime architecture, designed to take maximal advantage of any cluster of
multi-core nodes. A DACCOSIM simulation executes a series of time steps com-
posed of three stages: the time step computations of the FMUs (independent com-
putations), the communication of the FMU outputs to the connected inputs (many
small communications), and the simulation control by the hierarchical control mas-
ter (information gathering, next operations decision and order broadcasting). All
these operations include potential parallelism exploited by DACCOSIM runtime.

As inside one computing step all FMUs can achieve their computation concur-
rently, DACCOSIM architecture distributes FMUs on cluster nodes, encapsulates
FMUs of a same node with different threads and implements a hierarchical (and
distributed) control master to manage all threads and FMU operations. Figure 2 il-
lustrates this architecture. The hierarchical control master is composed of a unique
global master located on one cluster node, in charge of aggregating the control data
coming from the local masters located on the different nodes, and taking decisions
based on these information. The global master also assumes the role of the local
master on its node. Every local master aggregates control data from the FMUs on
its node, and sends synthesized control information to the global master. All master
tasks run concurrently.

DACCOSIM uses FMUs in co-simulation mode (FMI-CS, see 1): they embed
their solvers and are implemented as dynamic libraries (enhanced with meta-data
XML files). A FMU wrapper thread encapsulates each FMU, calls its computation
function to achieve a time step progress, and sends each of its outputs to the con-
nected inputs. Three others threads are associated to each FMU, as illustrated on
Figure 3: one receipts the output values coming from other computing nodes (cur-

4SIANI, University of Las Palmas, Spain: JavaFMI (2016),
https://bitbucket.org/siani/javafmi/wiki/Home
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Figure 3: Multithreaded implementation of a virtual node

Figure 4: Two orchestration modes of a multi-simulation step

rently across ZeroMQ5 middleware), one achieves similar receipt but from FMUs
located on the same node (not going through the middleware to run faster), and
one stores simulation results on disk (asynchronously and per block). Received
input values are stored into buffers and distributed to the real FMU inputs before
the start of each FMU computation step, so that the inputs remain stable during the
computations.

When using variable time steps, the control master gathers and analyses some
time step results. It decides if they are valid and if the simulation can enter the next
step with the same or a larger time step, or if the simulation has to roll back and con-
tinue with a smaller time step (to reach the required accuracy). Two orchestration
modes are available in DACCOSIM (see Figure 4). The ordered mode executes the
three phases of each time step in order: (1) FMU computations, (2) communica-
tion and control with the hierarchical master, and (3) inter-FMU communications
if the master has validated the time step results. The overlapped mode overlaps
the inter-FMU communications with the control master operations (phases 2 and
3). If the control master requires a rollback, the received input values are forgotten
and the FMU states at the beginning of the time step are restored. But when the
dynamic of the simulated system is limited (no turbulence), there are few rollbacks
and the overlapped mode reduces the simulation time. When the dynamic is high,
many rollbacks can appear and a lot of inter-FMU communication phases can be

5http://zeromq.org/
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Figure 5: Best distribution (4 nodes) of cl5 benchmark with 1 building

Figure 6: Scaling on 16 nodes of heat transfer cl5 benchmark with 4 buildings

achieved needlessly. Currently the orchestration mode has to be set by the user
when running the multi-simulation. In the future it could switch dynamically and
automatically depending on the frequency of the appearing rollbacks.

A deployment tool (dacrun) completes the DACCOSIM software suite, and
makes easy the deployment of a multi-simulation on a set of cluster nodes. It
is compliant with the OAR6 environment, allowing to allocate nodes and run in-
teractive or batch jobs on a PC cluster, but can be easily adapted to any similar
cluster management environment. However, design of a multi-simulation graph
distribution on different cluster nodes is the responsibility of the multi-simulation
developer. An automatic distribution of the FMUs is under investigation, according
to the lessons learnt from our experiments (see next sections).

4 Testbeds description

This section introduces our scalable benchmark applications and technical features
of our two PC clusters.

6https://oar.imag.fr/
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Walls Zones
Complexity level 1 5 482
Complexity level 2 10 582
Complexity level 3 25 882
Complexity level 4 50 1382
Complexity level 5 500 10382

Table 1: Number of state variables function of the complexity level

4.1 Benchmark application

Our test case is a simplified industrial case provided by EDF R&D, representing
heat transfers in a set of n three-floor buildings, with two zones per floor separated
by an indoor wall. The entire multi-simulation includes 1 + 10 × n FMUs, in-
terconnected as illustrated in Figures 5 and 6. The unique FMU BC is in charge
of the thermal boundary conditions (e.g. actual temperatures recorded in a French
suburb) which are supposed identical for all the floors in every building. A com-
plementary FMU CS models the crawl space temperature for the lower floor of a
building, and each building having a specific FMU CS. The FMUs ZNx (resp. ZSx)
represent the Northern (resp. Southern) part of every floor, each being designed
with Modelica differential equations modeling physical phenomena such as con-
duction, convection and solar radiation. The FMUs IWx detail the behavior of the
wall between the floor zones depending on different insulating properties.

All these FMUs are equation-based only, and modeled by encapsulated arrays
of records with changeable size to propose 5 levels of complexity (size/weight) for
each FMU (see table 1). No control or temperature regulation is considered in this
benchmark, the data exchanged between these FMUs are temperatures and thermal
flows. We designed two benchmarks running 1 + 10× n FMUs.

The cl5 benchmark includes high complexity level FMUs, and exhibits negli-
gible communication times compared to the computation ones. The cl3 benchmark
includes medium complexity level FMUs and has significant communications.

4.2 Experimental PC clusters

Two PC clusters of CentraleSupelec have been used for our experiments. The first
one has a 10 Gigabit/s Ethernet interconnect, and each node includes one Intel
Sandy Bridge processor with 6 hyperthreaded physical cores (6 Cores/12 Threads)
at 3.2 GHz, and 8 GByte of RAM. The second one has a 1 Gigabit/s Ethernet inter-
connect, and each node includes one Intel Nehalem processor with 4 hyperthreaded
physical cores (4 Cores/8 Threads) at 2.6 GHz, and 6 GByte of RAM.
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Sandy Bridge cluster - 10Gbit/s - 1x Sandy Bridge 6C/12T
FMU Id ZNT ZST ZN1 ZND ZS1 ZSD IWD IWT IW1 BC CS
Tcalc(s) 52.5 51.9 28.1 28.0 27.9 27.8 0.04 0.04 0.03 0.02 0.01
Tctrl+sync(s) 0.14 0.61 24.8 24.9 25.1 25.1 53.9 53.9 53.9 54.0 54.1
Tcomm(s) 0.11 0.17 0.10 0.12 0.11 0.11 0.11 0.11 0.07 0.08 0.03

Table 2: Execution of cl5 benchmark with one FMU per node

5 Parallelization and distribution methodology

To efficiently distribute our multi-simulations on a cluster of multi-core nodes,
our approach has consisted in (1) pointing out the technical locks through experi-
ments of a realistic use case, and (2) in designing a methodology to improve our
experimental performances and to identify some efficient distribution patterns of
elementary multi-simulations. Then, we will reuse these distribution patterns to
quickly build larger scale multi-simulations and to conduct scaling experiments
(see section 6).

5.1 FMU characterizations

FMUs are seen as black boxes during a DACCOSIM execution. However, we
need to evaluate their computation times, inter-FMU communication times, and
control times (communications with their master and re-synchronization) in order
to establish the best deployment of k FMUs on n multi-core nodes. Moreover, to
provide a realistic assessment, we measure these execution times when FMUs are
connected and submitted to real input data at each time step, since the computations
might change otherwise. So, we deployed the FMU graph of our cl5 benchmark
on our PC cluster, setting only one FMU per node so that they do not disturb
each other. Of course, we use the ordered orchestration mode of DACCOSIM, not
overlapping the control and inter-FMU communication steps, in order to measure
accurately this communication time.

The Tcalc line of Table 2 shows the computation time consumed by each FMU
during these multi-simulation trials: the benchmark appears to run 2 big, 4 medium
and 5 very small tasks. Almost each of these FMUs implements an energy model
of a building zone, function of its size, location in the building, building materi-
als. . . To split a big FMU into two medium ones would require to redesign some
models instead of reusing already existing and validated components. So, a smart
load balancing strategy is required to efficiently run this multi-simulation on a PC
cluster without any change.

The Tctrl+sync time seems as significant as the Tcalc time (54.1s on the smallest
FMU). But the global master resynchronize all FMUs at the end of each control and
synchronize sub-step, making the small FMUs spend their time waiting for the big
ones. In fact, the control part of Tctrl+sync is petty in this benchmark with constant
time steps.
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Figure 7: One node comput. times of cl5 benchmark for different mix of FMUs

Finally, Tcomm line of Table 2 shows the communications of this first bench-
mark are negligible. But we will see at section 5.4 this is not true for all bench-
marks.

5.2 Multi-core node experiments

Our final objective remains to get a maximal performance on our clusters of multi-
core nodes, achieving an optimal distribution of our FMUs on the cluster nodes.
To reach this goal we have to take into account the very different computing loads
of our FMUs, as characterized at section 5.1, but also to study the total computing
time of a subset of FMUs and multithreaded FMU wrappers sharing a multi-core
node. So, we have run from one to four medium FMUs on one node of our clusters,
and then one big, two big and up to two big and four medium FMUs on one node
to study their parallelization efficiency on the different cores. Figure 7 summarizes
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nb of nodes FMU distribution on cluster
1 2 big (b) + 4 medium (m) + 5 small (s)
2 2b 4m + 5s
3 1b 1b 4m + 5s
4 1b 1b 2m + 2s 2m + 3s
6 1b 1b 1m + 1s 1m + 1s 1m + 1s 1m + 2s

Table 3: Load balanced FMU distributions of a 1-building cl5 benchmark.

the computation times of our cl5 benchmark elapsed on one node of our Nehalem
cluster (top) and on one node of our Sandy Bridge cluster (bottom). We observe the
parallelization on the different cores is not perfect. Horizontal lines are the ideal
computation time when running up to 4 medium load FMUs on 4 physical cores (it
is the execution time of the longer medium FMU). But the thick curves show the
computation time increases significantly when running concurrently four medium
load FMUs on a 4C/8T Nehalem processor, and increases regularly on a 6C/12T
Sandy Bridge processor. When running 2 big FMUs and adding 1 to 4 medium
ones, the horizontal lines show the expected execution times up to 4 FMUs on a
4C/8T Nehalem, and up to 6 FMUs on a 6C/12T Sandy Bridge. But the thick
curves exhibit serious increase of the computation times, specially when running
more FMUs than the number of physical cores on the Nehalem.

It appears we can run only 2 or 3 FMUs (with their associated threads) on
a 4C/8T Nehalem, and 3 or 4 FMUs on a 6C/12T Sandy Bridge, to achieve a
good parallelization with limited computation time overhead. Considering only
the computing load, ideal solution seems to run a number of FMUs close to half of
the number of physical cores.

5.3 Multi-core PC cluster experiments

Our heat transfer cl5 benchmark includes only 11 FMUs, and 5 have very short
computation times. So, deployment optimization consists in efficiently distributing
6 FMUs (2 big and 4 medium) on a set of multi-core nodes, taking into account
the parallelization of several FMUs on one node is imperfect. Considering the
multithreaded execution times measured at section 5.2, we computed the FMU
distributions ensuring better load balancing from 2 up to 6 nodes (see table 3) and
conducted experiments on our clusters.

Figure 8 bottom shows the times measured on our Sandy Bridge cluster are
close to the expected ones. All nodes synchronize at each simulation step, and
inter-FMU communication and control operations are negligible in this benchmark
(see section 5.1). So, we computed the planned computation time of the multi-
simulation as the longest computation time of all nodes, and we estimated the
computation time of one node from the measures introduced at section 5.2. The
experimental maximum computation time (among all nodes) appears to be close to
the planned computation time on Figure 8 bottom, and the total execution time is
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Figure 8: Execution and computation times of cl5 benchmark on clusters.

a little bit longer due to the execution of the remaining 5 small FMUs and to the
communication and control times. So we can allocate only 2 nodes and achieve
a speedup of 1.45, or up to 6 nodes and achieve a speedup close to 1.57 (beyond
6 nodes the speedup remains unchanged). Using 3 or 4 nodes and the associated
distribution described in table 3 seem the better compromise for this 1-building cl5
benchmark running on our Sandy Bridge cluster.

On our Nehalem cluster (Figure 8 top), there are differences between the planned
computation time and the measured one on 2 and 3 node configurations. Running
the 5 remaining small FMUs on these old 4C/8T nodes seems to disturb the com-
putations. We saw at section 5.2 these Nehalem nodes are more sensitive to con-
current executions of FMUs than the Sandy Bridge nodes. Using 4 nodes and the
associated distribution appears to be the best compromise for our 1-building cl5
benchmark running on our Nehalem cluster.

Finally, we consider the distribution on 4 nodes introduced in table 3 is the
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Figure 9: Exec. time of cl3 benchmark on our Nehalem cluster

strategy 1: "load"
load: 26.0s; 26.0s; 23.0s
nb intra-node comm.: 14

strategy 2: "load+comm"
load: 29.8s; 26.0s; 24.0s
nb intra-node comm.: 16

Table 4: Load balancing and number of intra-node communications on 3 nodes
function of the FMU distribution strategy

right distribution pattern for this 1-building cl5 benchmark.

5.4 Multi-criteria distribution strategy on PC clusters

Our cl3 benchmark implements the same multi-simulation graph as the cl5 one,
but with less computations. So, communications become more frequent and cl3
benchmark is harder to speedup. We followed the 3-step methodology established
in previous sections:

1. We characterize the load of the different FMUs, running one FMU per node.
We identified 4 kinds of FMUs: 2 big ones, 4 medium ones (75% of the
big FMU load), 3 small ones (17% of the big FMU load) and 2 FMUs with
insignificant loads. Moreover, we observed the inter-FMU communication
time could reach half of the computation time.

2. We measured the real computation time on one node running several FMUs,
and parallelization appeared imperfect again.

3. Considering the real computation times of different sets of FMUs per node,
we computed and experimented different distributions of our multi-simulation
graph. We achieved our experiments on our Nehalem cluster, that does not
efficiently parallelize more than 2 or 3 FMUs per node, and seemed our best
testbed to evaluate how our (only) 11-FMU benchmark could scale.

14



Figure 10: Best identified FMU distribution for 1-building cl3 benchmark (3 nodes
have to be used)

Figure 9 shows the execution time achieved on our Nehalem cluster by our cl3
benchmark, function of the orchestration mode (ordered or overlapped) and the
distribution strategy. s1 strategy focuses on the load balancing of the FMUs across
the cluster, while s2 strategy tracks a compromise between the load balancing and
the maximization of the number of intra-node communications (the inter-FMU
communications achieved inside a same node).

When using three nodes, table 4 shows s2 strategy sacrifices a little bit the load
balancing of FMU computations to increase the intra-node FMU communications.
Finally, the s2 strategy reaches better performance and the overlapped orchestra-
tion mode leads to significantly decrease the execution time. Both they allow to
achieve a speedup close to 1.38 on three nodes for this cl3 benchmark with hetero-
geneous computation tasks and important communications. Figure 10 shows the
best FMU distribution, achieved on three nodes, which has become the distribution
pattern of this 1-building cl3 benchmark on our Nehalem cluster.

6 First scaling approach and experiments

All experiments introduced in this section use the overlapped orchestration mode,
and avoid to go through the middleware for internal node communications. This
configuration appears the most efficient on our benchmarks and clusters. We mea-
sured multi-simulation times with result storage (approximately 850MB per run),
however we stored these results on the local disks of the computing nodes, in order
to avoid fluctuations due to network traffic on our LAN.

6.1 Size up achievement based on distribution pattern replication

We conducted many experiments to measure size up of our multi-simulation bench-
marks: we increased both the problem size (number of buildings simulated) and
the number of computing ressources (number of cluster nodes), attempting to keep
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Figure 11: Size up experiments on cl5 benchmark

Figure 12: Size up experiments on cl3 benchmark

constant the execution time. When processing larger multi-simulations we repli-
cate the distribution pattern identified for one building (see figure 5 and 6). So we
attempt to obtain:

T (b buildings, b× n1 nodes) = T (1, 1× n1)

With n1: the optimal number of nodes to simulate 1 building

Our previous experiments has shown the optimal distribution for one cl5 building
requires 4 nodes, so we simulated 2, 3 and 4 buildings on 2 × 4, 3 × 4 and 4 × 4
nodes. Figure 11 shows this approach has fully succeeded for the cl5 benchmark.
We obtained approximately the same execution time: 53s on our Nehalem cluster
with an Eth 1Gb/s interconnect and 45s on our Sandy Bridge cluster with an
Eth 10Gb/s. These results were expected, as the cl5 benchmark includes mainly
computations and our replication strategy of distribution pattern avoids the building
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simulations disturb each others.
At the opposite, the cl3 benchmark includes significant amount of commu-

nications compared to the amount of computations. We replicated our 3 nodes
distribution pattern, and we simulated 2, 3, 4 and 5 buildings on 2 × 3, 3 × 3,
4 × 3 and 5 × 3 nodes. Figure 12 shows we obtained unperfect but interesting
performances on our 10Gb/s cluster (bottom thick curve). Multi-simulation times
increase by +31%: from 58s up to 76s when processing 1 building on 3 nodes
up to 5 buildings on 15 nodes. On our 1Gb/s cluster the times increase by +72%
(top thick curve). This experiment shows the impact of the cluster network band-
width, but we also observed the FMUs exchange mainly small messages. So, a
high bandwidth and a low latency seem both necessary to achieve good size up of
DACCOSIM simulations.

Thin curves on figure 12 show the execution time when the multi-simulation
results are not stored. No result storage means no asynchronous IO thread running
in parallel with all others on each node, and no time spent writing on disks. On cl3
benchmark it leads to smaller execution times but size up benchmarks still exhibit
regular increase of execution time. So, we can probably improve our result storage
mechanism, but it is not the main limitation of our size up benchmark.

6.2 Speedup evolution when increasing multi-simulation size

Finally, figures 13 and 14 exhibit multi-simulation times of cl3 benchmark for 4, 5
and 8 buildings, when increasing the number of computing nodes. We replicated
our distribution pattern (1 building on 3 nodes for cl3 benchmark), to deploy for
example 4 buildings on 12 = 4×3 nodes. Then we grouped 2 buildings per 3-node
block to deploy 4 buildings on 6 nodes, and finally we grouped the 4 buildings
on 3 nodes. So, all our deployments are based on replication of the previously
identified optimal deployment of 1 building. This straightforward approach does
not track a global optimized deployment, but allows to quickly configure large
scale experiments.

Logarithmic scales on both axis lead to expect straight lines with −1 slope for
ideal distributions, corresponding to theoretical times T (n nodes) = T (1 node)/n.
Experimental time curves roughly look like straight lines, but the slope appears
stronger on 10Gb/s cluster, showing again the impact of the interconnect perfor-
mance on our distributed multi-simulations. When simulating 4 or 5 buildings
(middle and bottom curves), it was bearable to run and measure execution times
on 1 multi-core node and to compute speedup. On 10Gb/s cluster we achieved
significant speedup close to 7 on 12 nodes and to 9.7 on 15 nodes (see figure 14),
compared to multi-threaded executions on one node. When simulating 8 buildings
we did not waste time to run long computations on one node: large problems are not
intended for mono-node executions (and perhaps could not fit into one node mem-
ory). But we observe the 8-building curves are similar to the 4-building ones with
better decrease. So, DACCOSIM can efficiently run larger problems on greater
number of nodes and scale our multi-simulations (with a fast cluster network).
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Figure 13: cl3 benchmark time with 4, 5 and 8 buildings on 1Gb/s cluster

Figure 14: cl3 benchmark time with 4, 5 and 8 buildings on 10Gb/s cluster

Executions on 6 nodes (for 4 and 8 buildings) should be 2 times longer than
executions on 12 nodes. Computing ressources are 2 times less numerous, but
communication achievement is also different. The BC FMU is connected to 6 local
FMUs instead of 3 and achieves 2 times more intra-node communications, and the
network switch is solicited on 6 ports instead of 12. Deep investigations would be
required to analyse the origin of these abnormally good performances on 6 nodes,
but they point out our straightforward deployment (replicating the 1-building best
one) is not optimal. A global deployment of b buildings (i.e. 1+10×b FMUs) on n
multi-core nodes could achieve better performances, but is not currently available.
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7 Conclusion and future work

7.1 Summary of DACCOSIM scaling experiments

Our FMI based multi-simulation environment (DACCOSIM) is multithreaded and
distributed, and allows the user to distribute FMU graphs on clusters of multi-core
nodes. According to our distribution strategies, our experiments have achieved
significant speedup and satisfying size up on an Ethernet 10Gb/s cluster of hexa-
cores, running up to 81 FMUs and using up to 16 nodes to simulate heat transfer
inside buildings. Complementary large benchmarks replicating an elementary pat-
tern distribution have shown DACCOSIM can scale (i.e. efficiently running larger
problems on more computing nodes).

7.2 Technical and scientific future work

In order to improve DACCOSIM performances on distributed architectures, our
next works will consist in improving both communications and FMU graph distri-
bution:

• First implementation of DACCOSIM communications does not track maxi-
mal performances. They will be technically improved: (1) exchanging more
compact messages, (2) using high performance MPI communication library
instead of ZeroMQ middleware, and (3) exploiting low latency and high
bandwidth Infiniband cluster network by relying on MPI.

• Current FMU graph distribution is under the responsibility of the multi-
simulation developer, following a methodology deduced from our first ex-
periments. We aim to design a distribution algorithm to point out the ideal
number of nodes and the associated distribution of a FMU graph, and also to
compute the optimal distribution when the number of nodes is constrained
by the cluster availability.

• Some others benchmarks have to be designed and run with variable time
steps, in order to measure performances on distributed systems when sup-
porting rollbacks with ordered and overlapped orchestration modes. Auto-
matic switching between the two orchestration modes, function of the fre-
quency of the encountered rollbacks, will be investigated to attempt to opti-
mize performances.

Finally, the use case considered in this paper was based on multi-floor buildings
with equation-based models only. In the future, EDF R&D intends to run hybrid
multi-simulations involving cyber and physical models mixing piecewise constant
signals and continuous time signals. As FMI-CS has been designed only for con-
tinuous time signals, some extensions to the standard FMI are required and some
proposals are on the table (see [4] from UC Berkeley). EDF also leads a French
working group on this topic with partners (CentraleSupélec, Dassault Systèmes
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and CEA List). From the point of view of the optimal distribution of a multi-
simulation on clusters, the control FMUs will certainly be very light and ought to
be handled by the deployment algorithm without disturbing the distribution of the
heavily calculative FMUs.
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