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1 Introduction

Radiation transfer plays a determinant role in applications at high temperature, in particular in
porous media. The field of applications is wide. In catalytic combustion or catalytic reforming,
the interfaces of the porous medium are covered by a catalyzer: The use of a porous medium
allows lower temperature conditions and consequently a minimization of pollutants generation.
Porous media are also used in solar absorbers, waste combustion, etc. The degraded core of a
nuclear reactor is, at the beginning of a severe accident, a large-scale porous medium in which
radiative transfer is determinant. Another class of applications deals with the walls of engines
and rockets under thermodegradation. This list is not exhaustive.

As it is not realistic to completely study heat transfer within a porous medium from pore
scale, a homogenization of the medium is necessary. Whatever the type of real phase, a homoge-
nized phase is, from the radiation point of view, a semi transparent medium, even for a medium
with opaque and transparent phases. In most of the studies, this homogenization step has been
carried out by empirical methods based on two assumptions:

- The homogenized phase follows the Beer’s law, i.e. exponential extinction law;

- The phase function which plays an important role in porous media, generally characterized
by strong back scattering, is assumed to follow an imposed law, for instance of Henyey-Greenstein
type[1].

Indeed, the classical homogenization methods are generally based on a parameter identifica-
tion technique. This technique (see for instance Refs.[2, 3, 4, 5, 6, 7, 8, 9]) is based on entry data
issued from experimental determination, in some particular conditions, or on a set of numerical
data issued from radiative transfer calculations. Uncertainties due to experiments or radiative
model, to the limitations of the imposed physical laws and to the identification technique in use
are then cumulated. This method, based on a large number of parameters to be determined,
generally allows to fit all these parameters, which have or do not have a physical meaning, even

∗The authors acknowledge for outstanding contributions Estelle Iacona and Fabien Bellet, their colleagues of
ECP, Dr Florian Fichot HDR (IRSN), Drs Manuel Tancrez, Barbar Zeghondy, Elie Chalopin, Miloud Chahlafi,
Vincent Leroy and Marie Zarrouati, former PhD students of ECP, and Yann Dauvois, PhD student of ECP. These
works have also been partially supported by Gaz de France, IRSN, Air Liquide, CEA-DAM and ECP.

VKI - 1 -



2 PHYSICAL MODEL

for instance when the Beer’s law is not valid. A detailed review of these techniques is given in
Ref.[10].

In fact a large number of porous media are not Beerian. It is the case of statistically non
homogeneous media[11], of statistically homogeneous but anisotropic media[12, 13] and even
of statistically isotropic and homogeneous media. For instance, a homogeneous and isotropic
medium of DOOS type (Dispersed Overlapping Opaque Spheres within a transparent phase)
is always Beerian, but a medium of DOTS type (Dispersed Overlapping Transparent Spheres
within an opaque phase, practical model of foams) is never exactly Beerian: The Beer’s law is
less and less verified when the medium porosity decreases. In practice, the Beer’s law is not
valid for a porosity smaller than 0.6[14]. Consequently, the physical validity of the Beer’s law
has to be checked before any radiative transfer study in a porous medium.

Due to the intense recent development of the tomography techniques, the morphology of
many real porous media is now known with a high spatial resolution. Only statistical methods
allow the huge number of data issued from these experiments to be applied to radiation modeling.
An original statistical approach for characterizing the radiative properties of a homogenized
phase of a porous medium has been developed, initially by Tancrez and Taine[14]. Many other
works based on these approaches have been published in the last decade[11, 12, 13, 15, 16, 17,
18, 19, 20].

In this statistical approach, extinction, absorption and scattering properties of a homogenized
phase are directly, completely and accurately, characterized by radiative statistical distribution
functions, instead of three scalars, i.e extinction, absorption and scattering coefficients: These
quantities have a physical meaning only in the case of a Beerian homogenized phase. As the
whole radiative distribution functions are accurately known, the Beerian assumption can be
accurately validated or, often, not validated. Moreover a general scattering phase function,
depending on both the incidence and scattering directions, is directly determined only from the
physical laws assumed at local scale.

An important assumption of the method is that the geometrical optics laws are valid: The
typical radiation wavelengths have to be shorter than the typical pore scale. The necessary
morphology data are obtained from either γ or X tomography techniques at a spatial resolution
a, or exactly in the case of classical models (overlapping or not overlapping spheres or finite
cylinders, etc.) Moreover, radiation properties of the porous medium are assumed known at a
scale smaller than a: Reflection law in the case of an opaque phase; Reflection and transmission
laws at interfaces, absorption, scattering coefficients and phase function if a real semi transpar-
ent phase is involved.

Section 2 is devoted to the development of the physical model for any type of porous medium,
Section 3 to the determination of the radiative statistical functions, based on a Monte Carlo
method, Section 4 to some key properties of a medium at equilibrium, which are used in the
modeling of emission and scattering in the companion paper[21]. Different models of radiative
transfer are studied in this paper.

2 Physical model

2.1 Radiative statistical functions

2.1.1 General case

The radiative effective properties of a homogenized phase of a porous medium, possibly sta-
tistically anisotropic and non homogeneous, i.e non Beerian, are exhaustively characterized by
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2.1 Radiative statistical functions 2 PHYSICAL MODEL

four statistical functions. These quantities are defined along any axis of direction u(θ, ϕ) and
coordinate s (see Fig.1):

Figure 1: Coordinates

i) An extinction cumulative distribution function Gext ν(s,u, s′ − s), which is in fact the
cumulative distribution function of the lengths s′−s of all the intervals MI joining any point M
of abscissa s in the direction u, within the considered phase, to the associated extinction point
I of abscissa s′. I can belong to the core of the phase, if it is semi transparent at local scale, or
can be, in any case, an impact point at the interface with another phase. It is worth noticing
that 1−Gext ν(s,u, s′ − s) simply is the transmissivity τν(s,u, s′ − s) of the homogenized phase
in the direction u.

ii) An absorption cumulative probability Pa ν(s,u, s′ − s), which is the probability that a ray
issued from a point M(s) of a phase in the direction u is absorbed within this phase or at an
opaque interface before a distance s′ − s from M ,
or

iii) A scattering cumulative probability Psc ν(s,u, s′ − s), which is the probability that a ray
issued from a point M(s) of a phase in the direction u is scattered within this phase or at an
interface before a distance s′ − s from M ; Psc ν(s,u, s′ − s) is linked to the previous quantities
by

Gext ν(s,u, s′ − s) = Pa ν(s,u, s′ − s) + Psc ν(s,u, s′ − s). (1)

Note that, in the common case of a porous medium with a transparent phase and an opaque
solid phase of diffuse gray absorptivity α, Pa ν(s,u, s′− s) and Psc ν(s,u, s′− s) are simply equal
to αGext(s,u, s

′ − s) and (1− α)Gext(s,u, s
′ − s), respectively.

IVi) A general phase function pν(s,u1,u), depending in the general case on the incidence
and scattering directions, respectively characterized by u1 and u.

2.1.2 RDFI method: Validity of the Beerian approximation

Note that, in the particular case of a Beerian medium, case of many statistically homogeneous
and isotropic porous media, the radiative statistical functions GBext ν , PBaν and PBsc ν are simply
exponential. For instance, the whole extinction cumulative distribution function

GBext ν = 1 − exp[−βν (s′ − s)] (2)

is completely characterized by a scalar, extinction coefficient βν . Similarly, the whole absorption
and scattering probabilities PBaν and PBsc ν are completely defined by the absorption coefficient
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2 PHYSICAL MODEL 2.2 Radiative Intensity

κν and the scattering coefficient σν , with: βν = κν + σν .

A statistically non homogeneous medium is never Beerian. Moreover, after homogenization,
a phase of a porous medium is not rigorously Beerian, in most cases. This property is exactly
verified only for singular geometrical configurations, for instance between overlapping or non
overlapping spheres or cylinders, but not within these spheres or cylinders. Nevertheless, a
medium can be, in many cases, considered as approximately Beerian and characterized by opti-
mized values of the extinction, absorption and scattering coefficients in a given range of optical
thickness.

The method of Radiative Distribution Function Identification (RDFI) is based on a criterion
of validity of the Beerian assumption[14, 15], from an accurate determination of the radiative
statistical functions, in particular of Gext. A homogenized phase can approximately be consid-
ered as Beerian if the Beerian extinction cumulative distribution function GBext ν associated with
the optimal fitted value of the extinction coefficient βRDFIν fulfills the following condition in the
optical thickness range [0, 3]

εext(βν(u)) =

( N∑
i=1

[Gext ν(u, vi)−GBext ν(u, vi)]
2/

N∑
i=1

[1−Gext ν(u, vi)]
2

)1/2

< η, (3)

where N discrete values vi of s′ − s are used. A typical value of η is 0.04. The real behavior of
Gext, for such a medium, is discussed in Sec.4.1.2.

Note that, in most of the other methods, the Beerian assumption is used without justification.

2.2 Radiative Intensity

For the sake of simplicity, the developments of this Section are limited to a porous medium with
an Opaque solid phase and a Transparent fluid phase (OT). The other cases will be systematically
studied in the companion paper[21].

Consider, around a pointM , an elementary volume dV of the whole porous medium, typically
an elementary cylinder of cross-section dS and length ds. The fraction per unit volume of the
homogenized phase, which occupies the volume of the transparent propagation phase, is Π.
Emission and scattering which occur within dV , in an elementary solid angle dΩ around the
direction u, generate a radiative flux in this direction: [Ssc ν(s,u) + Se ν(s,u)] dV dΩ dν. In this
expression, Ssc ν(s,u) and Se ν(s,u) respectively are the scattering and emission source terms in
the direction u, per unit volume dV = dS ds of the whole porous medium and consequently are
proportional to Π. Under the previous assumptions, the intensity Iν in the direction u within
the homogenized phase at a point M ′(s′) is simply expressed as (see Fig.1)

Iν(s′,u) =

∫ s′

sb

[Ssc ν(s,u) + Se ν(s,u)] τν(s,u, s′ − s) ds + Π Ib ν(u) τν(sb,u, s
′ − sb)

=

∫ s′

sb

[Ssc ν(s,u) + Se ν(s,u)] [1 − Gext ν(s,u, s′ − s)] ds

+ Π Ib ν(sb,u) [1 − Gext ν(sb,u, s
′ − sb)], (4)

where Π Ib ν(sb,u) is the intensity leaving the boundary of the porous medium in the direction
u, at the abscissa sb(u), within the homogenized phase (which explains the factor Π). This
intensity depends on the environment of the porous medium and can be expressed from the
classical laws of radiative transfer. Note that the intensities Iν(s′,u) and Ib ν in the previous
equation possibly include a refractive index.
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2.3 GRTE; Memory effect 2 PHYSICAL MODEL

The scattering source terms have different origins: i) Scattering by a real semi transparent
phase of the porous medium; ii) Reflection at an interface with another phase; iii) Transmission
at an interface between two semi transparent phases or between semi transparent and transparent
ones. Whatever the type of scattering, the expression of the scattering source term Ssc ν(s,u),
detailed in Ref.[20, 22], is given by the following equation of which the spatial and directional
quantities are defined in Fig.2

Ssc ν(s′,u) =

∫
4π

∫ s′1

s1b

dPsc ν
dv

(s1,u1, s
′
1 − s1)

pν(u1,u)

4π
[Ssc ν(s1,u1) + Se ν(s1,u1)] ds1 dΩ1

+

∫
4π

dPsc ν
dv

(s1b,u1, s
′
1 − s1b)

pν(u1,u)

4π
Π Ib ν(s1b,u1) dΩ1, (5)

in which Π Ib ν(s1b,u1) is the intensity leaving the boundary of the porous medium in the direc-
tion u1, at the abscissa s1b(u1), within the homogenized phase.
Note that the scattering occurs within all elementary volume dV . The same point M ′ is char-
acterized by the abscissa s′ in the considered direction u and by an abscissa s′1 in the current
direction u1 of a ray before its scattering around the point M ′. Consequently, the boundaries
of the elementary volume are s′ and s′+ ds′ in the direction u, and s′1 + ds′1 in the direction u1.
These notations are used along both this paper and its companion[21].

dPsc ν
dv (s1,u1, s

′
1−s1) ds′1, where v is equal to s′1−s1, is the probability for the energy associated

with the total source term Ssc ν(s1,u1)+Se ν(s1,u1), in s1, in dΩ1 around the direction u1, to be

scattered between s′1 and s′1+ds′1; pν(u1,u)
4π dΩ is the probability to be scattered in dΩ, around the

direction u. In cases i) and ii) the radiation is scattered in the same medium as the incident one.
On the contrary, in case iii) the initial and final media are generally characterized by different
values of the refractive index.

The emission source term Se ν(s1,u1) strongly depends on the scales at which the temperature
field is defined compared to the scales of the radiative properties. Its expression will be detailed
in the companion paper: Its modeling depends on the thermal conditions of the system and on
the modeling of other heat transfer modes.

2.3 Generalized Radiative Transfer Equation; Memory effect

The commonly encountered homogenized phases that do not follow the Beer’s law cannot be
modeled, in a general case, by using a classical Radiative Transfer Equation (RTE): Indeed,
extinction, absorption and scattering coefficients have then no more physical meaning. For
this type of non Beerian phases, a Generalized Radiative Transfer Equation (GRTE) has been
introduced by Taine et al.[20]. It is directly expressed in terms of the radiative statistical
functions instead of the extinction, absorption and scattering coefficients. This equation, one of
the most implicit ones of the physics, will only be briefly commented here; It simply writes, in
case ii)

dIν
ds′

(s′,u) = −
∫ s′

sb

[Ssc ν(s,u) + Se ν(s,u)]
dGext ν

ds′
(s,u, s′ − s) ds

− Π Ib ν(u)
dGext ν

ds′
(sb,u, s

′ − sb) + Ssc ν(s′,u) + Se ν(s′,u). (6)

In the other cases the GRTE must account for multiple extinction and source terms (see the
companion paper[21]).
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Figure 2: Scattering source term: a) dV is defined by reference to the coordinates of the direction
u1; b) by reference to the coordinates of the direction u.

The first member of Eq.6 is a classical transport term, practically always considered in steady
state. In other cases, at extremely short time scales for instance, an unsteady term 1

c
∂Iν
∂t is added

to this term.

The first term of the second member of the GRTE is an extinction term. It is worth noticing
that it cannot be expressed in terms of the intensity! Indeed, the components of the intensity,
issued from different points s, are submitted to different extinction phenomena, depending on
Gext ν(s,u, s′−s). Consequently, the knowledge of the intensity is not sufficient for characterizing
extinction: There is a ”memory effect” for each elementary radiation beam. It is only for Beerian
media that the variation of the intensity dIν , due to local absorption and scattering, can be
determined from the knowledge of this local intensity Iν . Indeed, the proportionality of dIν to
Iν is the definition property of an exponential function.

The second term of the second member simply is the extinction term of the intensity issued
from the boundary sb of the porous medium.

The two last terms of the second member are the source terms associated with scattering
and emission by [s′, s′ + ds′] in the direction u.

The formalism associated with the GRTE could seem complex. In fact, the GRTE can be
numerically solved as easily as a classical RTE by a stochastic Monte Carlo method: Indeed, it
is directly expressed in terms of cumulative distribution functions, which is the first requirement
of a Monte Carlo method.

VKI - 6 -



3 RADIATIVE PROPERTIES DETERMINATION

3 Radiative properties determination

The radiative statistical functions can only be defined within Representative Volumes (RV).
These representative volumes are extremely various. They are generally built by using the
possible macroscopic symmetries and periodicities of the porous medium. The typical dimensions
of a RV can be characterized by small, intermediate or large optical thicknesses, depending on the
macroscopic morphology of the medium. The representativity has to be checked by comparing
the results associated with different zones of the porous medium. Some examples are given in
the following.
Note that these radiative RVs are not similar to the REVs in use in many porous media models.
Indeed, the radiative statistical functions are defined at a scale which is much smaller than the
REV size (see Sec.4 of the companion paper[21]).

The position and the shape of an elementary volume dV of the whole real porous medium is
not modified after homogenization. But, contrary to the case of the real medium, the homoge-
nized phase, considered as an effective semi transparent medium, is continuous. It is character-
ized, within the elementary volume dV , by a presence probability which is its fraction per unit
volume Π, i.e. the porosity in the case of a fluid phase. Consequently, the propagation phase is
assumed to be present in any point, at this probabilistic sense. A determinant advantage of the
method is to be based on the whole radiative distribution functions, that cover all the spatial
scales, from optically thin scales to optically thick scales. Consequently, after homogenization
the vicinity of any point is representative of all the medium: the homogenization is not based
on averaged values as in most of other methods.

3.1 General assumptions

In all this study, the geometrical optics laws are assumed valid : The radiation wavelength is
small compared to the typical sizes of the considered structures.

The morphology of the real medium is assumed known, exactly in the case of regular
structures (bundles of rods[12], set of overlapping or not overlapping spheres[14, 11] or finite
cylinders[23], etc.), or from high resolution γ[13] or X[15] tomography of spatial resolution a.

A key assumption is that the radiative properties of the real phases at local scale, i.e at a
scale smaller than a, are known: Complete reflectivity law for an opaque interface, extinction,
absorption and scattering coefficients, phase function and refractive index for a semi transparent
real phase.

3.2 Statistically homogeneous medium

In most cases, the medium is considered as statistically homogeneous but often statistically
anisotropic and non Beerian. In case of strong porosity gradients, in particular in the vicinity
of a wall, a more advanced model dedicated to statistically non homogeneous porous media is
developed in Sec.3.3.

3.2.1 Medium with an opaque phase and a transparent one (OT)

a) Determination of Gext and pν

This case is frequently encountered, typically with a solid phase and air as propagation
phase. Within the real medium, extinction only occurs when a ray, issued from any point of the
transparent phase, hits an opaque interface. Radiation is then partially absorbed and partially
reflected, as shown in Fig3. These surface phenomena become volume phenomena within the
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3 RADIATIVE PROPERTIES DETERMINATION 3.2 Statistically homogeneous medium

homogenized propagation phase: Extinction, absorption and scattering in a continuous semi
transparent medium. They are characterized in a general case byGext(s,u, s

′−s), Pa ν(s,u, s′−s)
and Psc ν(s,u, s′ − s) and a general phase function pν(s,u1,u). As the extinction of rays issued

Figure 3: Principle of Gext determination (OT case)

from any points M of the propagation phase only occurs at points I of the interface, as shown in
Fig.3, the cumulative extinction distribution function Gext(s,u, s

′−s) is equal to the cumulative
distribution function of the lengths of the segments MI, that is a purely geometrical quantity,
which is independent of the radiation frequency, i.e.

Gext(s,u, s
′ − s) =

1

Π δV

1

δΩ

∫ s′

s

∫
Π δV

∫
δΩ
δ[s′′ − s0(r,u)] dΩ(u) dr ds′′. (7)

In Eq.7, the summations are carried out on a discretized elementary volume ΠδV of the trans-
parent phase of the real medium, around the point M(r), in a discretized elementary solid angle
δΩ, around the direction u; s is the abscissa of M in the direction u and, for a given couple
(r,u), s0 is the abscissa of the associated impact point I; δ is the Dirac distribution.

Gext is determined by a numerical Monte Carlo method. A huge number of shots are issued
from random points of the transparent phase within a given Representative Volume (RV) when
the real medium presents many symmetries, or within a large number of samples of the medium
when it is not the case.1 The distances MI associated to all the shots allow Gext to be built
step by step[14].

For each shot, a random number r in the range [0, 1] is compared to the absorptivity value
αν(n,u), where the normal unit vector n associated with an impacting ray is defined by both
the source point M(r) and the incidence direction u. Pa ν or Psc ν are then incremented for
r < αν(n,u) or r > αν(n,u), respectively[14, 15, 13].

In the considered OT case, the expression of the phase function pν(u1,u) is deduced from
the bidirectional reflectivity ρ′′ν (u1,u,n (r,u1)), that exhaustively characterizes the reflection
law at an opaque interface. The incidence and scattering directions u1 and u are defined in a
fixed frame associated with the whole porous medium and not in the local frame associated with

1Note that only scattering, absorption and extinction are accounted for in the characterization of the radiative
properties of a phase of a porous medium. It is not the case of emission, of which the modeling also strongly
depends on the temperature field properties. Consequently, the origin points of the shots, within the real medium,
belong to all the volume of the propagation phase and not only, in the case of opaque interfaces, to interfaces
which emit and scatter radiation. This approach is validated by its results: For instance, the behaviors of the
extinction cumulative distribution functions at both the optically thin and the optically thick limits, which can
be theoretically predicted (see the following Sections), are exactly found.
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3.2 Statistically homogeneous medium 3 RADIATIVE PROPERTIES DETERMINATION

the normal at any impact point. Finally, pν writes

dΩ1

(
pν(u1,u)

4π
dΩ

)
=

( dΩ1/(ΠV )
∫

Π, V /u.n≥0 ρ
′′
ν [u1,u,n (r,u1)] [−u1.n (r,u1)] dr∫

4π 1/(ΠV )
∫

ΠV /u′.n≥0 ρ
′′
ν [u1,u′,n (r,u1)] [−u1.n (r,u1)] dr dΩ′

)
dΩ. (8)

In this equation, the condition u.n ≥ 0 expresses that a scattered ray does not go through the
opaque phase. In practice, ρ′′ is not experimentally known in a given application. A specular
or a diffuse reflection law is generally used; Sometimes, a linear combination of these laws. The
determination of the phase function is detailed in Appendices A and B.

Within the same Monte Carlo calculations, random numbers in the range [0, 1], shot in the
reflection cumulative distribution function (the bidirectional reflectivity), allow the two angles
defining the scattering direction u(θ, φ) to be determined. ρ′′ is often a joined cumulative
distribution function of θ and φ. The general phase function pν(u1,u) is then directly built
from the assumed reflection law, without any other assumption. More details are given, for
instance, in Refs.[14, 12, 13].

Due to the huge number of shots, the determination of Gext, Pa ν , Psc ν and pν is very accu-
rate, as shown in the following examples.

b) Examples of geometrically defined media

The first study of Tancrez and Taine[14] has been devoted to models of foams: Sets of Dis-
persed size Overlapping Transparent Spheres within an opaque medium (DOTS) and Dispersed
size Overlapping Opaque Spheres within a transparent medium (DOOS), following a terminology
of Torquato[24]. Each realization of the medium is carefully and numerically built in order to
validate both statistical homogeneity and isotropy of the medium. For each of the 104 statistical
realizations of the medium, 102 shots are issued from a cubic shot zone enclosed in a cubic study
zone, such that practically all shots are extinguished within this zone.

If the extinction cumulative distribution functions associated with DOOS are rigorously
exponential, those associated with DOTS are approximately Beerian for high porosity values,
but strongly deviate from exponential functions when the porosity decreases, as shown in Fig.4,
even if the medium is statistically homogeneous and isotropic. Indeed, ln(1 − Gext) should be
a straight line. Note that all curves associated with different values of the porosity Π present:

- A slope at origin −βOT , where βOT is an extinction coefficient, only defined at the optically
thin limit[14] and expressed in the following. This case corresponds to weak βOT (s′ − s) values.

- Linear asymptotic behaviors, for large βOT (s′ − s) values (optically thick limit), but char-
acterized by different slopes. A precise physical explanation of this last fact will be given in
Sec.4.1.2

These behaviors at the optically thin and thick limits can be observed for all porous media.
In the present case of a statistically homogeneous and isotropic medium, the value of the slope
at the optically thin limit can be simply found. Whatever the reflection law at the opaque
interface, this interface is characterized by an hemispherical absorptivity αhν and the absorption
coefficient κν is given by[14]: κν = αhν β, where β is the extinction coefficient. If the medium
is Beerian (it is the case at the optically thin limit), the flux emitted by the real interfaces,
of area dS, belonging to an optically thin elementary volume dV of the porous medium, with-
out self-absorption, is αhν dS πI◦ν (T ); The same flux emitted by the corresponding homogenized
phase is: κν Π dV 4πI◦ν (T ). Consequently: κν = αhν (dS / 4 Π dV ) and the extinction coefficient
at the optically thin limit is then, for any statistically homogeneous and isotropic medium:
βOT = (A/ 4 Π), where A is the specific area of the porous medium dS/dV . As in Fig.4 the
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Figure 4: Gext associated with DOTS vs porosity for the same value of the specific area per unit
volume of the fluid phase A/Π[14], cited in [20]; βOT = A/(4Π): extinction coefficient for an
optically thin medium; Π = 0.18, 0.26, 0.37, 0.48, 0.56, 0.65, 0.72, 0.78, 0.82

results are plotted for the same value of the specific area per unit volume of the fluid phase A/Π,
a common slope of the curves equal to −βOT is observed.
Results associated with diffuse and specular reflection laws have been systematically studied
vs Π in Ref.[14]. For this statistically homogeneous and isotropic medium, the obtained corre-
sponding phase functions depend only on the scattering angle cosine.

y

x
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P

30°
M

Figure 5: Triangular configuration. Cross-section of the shooting and studied zone. A perfect
specular reflection (ρ = 1) is applied at any impact at a symmetry plane.

Another case of perfectly defined geometrical configuration is a bundle of rods of an in-
tact nuclear reactor core. Both triangular (see Fig.5) and square configurations have been
studied[12, 20]. This medium is periodical, statistically homogeneous but strongly anisotropic:
Gext depends both on the angle θ with the rod axes and on the azimuth ϕ. The calculations are
only carried out:
- In a plane cross-section of the system (θ = π/2): MI lengths associated with any θ values
are easily deduced from these results. Moreover, due to the periodicity of the triangular con-
figuration, for instance, the shooting and studied zone is simply the void phase included in the
hexagon connecting adjacent rod axes (see Fig.5);
- For ϕ values in the range [0, 30◦], due to the symmetries of the system.
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3.2 Statistically homogeneous medium 3 RADIATIVE PROPERTIES DETERMINATION

Examples of strong variations of Gext(θ = π/2, ϕ) vs ϕ are given in Fig.6. All curves converge
at the optically thin limit to the value[12] −βOT = − A

πΠ associated with this configuration.
When it is non truncated, each of them converges, as in the previous case, to an asymptotic
straight line (optically thick limit).
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(1
!G

ex
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"=13.5°
"=22.5°
"=28.5°

Figure 6: Gext(θ = π/2, ϕ) vs βOT (s′ − s) = A
πΠ(s′ − s); Gext is averaged over all ϕ values; gext

is the associated Beerian best fit; Π = 0.750 [20].

c) Media defined from tomography data

Chahlafi et al.[13] have studied the same type of rod bundles, but extracted from the cen-

   -72  0                                                                                                                  1146             z (mm)      

Figure 7: Axial cross-sections along z-axis of an intact bundle (above) and a degraded one
(below) of Phebus FPT1 experiments [25, 13].

tral region of a nuclear core, where they have locally been submitted to the conditions of a
severe accident (experiments FTP1 of CEA/IRSN[25]): The morphology of a degraded rod bun-
dle has been studied by γ tomography. A spatial reference is required for defining the cutoff
in density levels issued from tomography experiments, associated with the interfaces between
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3 RADIATIVE PROPERTIES DETERMINATION 3.2 Statistically homogeneous medium

opaque walls and the transparent medium. The study of an intact bundle has allowed this cutoff
criterion to be determined. Examples of intact and degraded rod bundles are shown in Fig.7.

A set of quasi homogeneous transverse zones, characterized by quasi uniform Π and A val-
ues has been determined. For each zone, as previously, calculations have been carried out in
transverse cross-sections (θ = π/2), more precisely in the same shooting and studied zone as
for the intact system, accounting for all its symmetries. Examples of homogeneous but strongly
anisotropic and non Beerian extinction cumulative distribution functions are shown in Fig.8.
As the general phase function is extremely complex to show, the scattering asymmetry factor

0 2 4 6 8 10

βref(s′−s)
−10

−8

−6

−4

−2

0

ln
(1
−G

ex
t)
(s

′−
s)

Figure 8: Extinction cumulative distribution function Gext(θ = π/2, ϕ) of a zone; Squared
configuration; From above to below: ϕ = 1.5◦ (red crosses); ϕ = 16.5◦ (green crosses); ϕ = 31.5◦

(blue circles); ϕ = 43.5◦ (violet squares); Gext for all ϕ values (thick line).

g(θ, ϕ) defined by

g(θ, ϕ) =
1

4π

∫ π

0

∫ 2π

0
(u1.u) pν(θ1, ϕ1, θ, ϕ) dΩ1 (9)

has been plotted in Fig.9
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Figure 9: Scattering asymmetry factor g(θ, ϕ) of a zone; Squared configuration; From above to
below: θ = 14◦; θ = 34.1◦; θ = 44.9◦; θ = 53.9◦; θ = 69.3◦; θ = 90◦.
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3.2.2 Medium with an opaque phase and a semi transparent one (OST)

The same rod bundles filled with a mixture of water vapor and water droplets at high pressure
have been studied in Ref.[13] for application to the reflooding of a degraded nuclear core at the
beginning of a severe accident.
The radiative properties of the medium without semi transparent phase are characterized by
Gext(s,u, s

′ − s), Pa ν(s,u, s′ − s) or Psc ν(s,u, s′ − s) and pν(u1,u) determined as previously.
The Beerian semi transparent real phase is characterized by uniform extinction, absorption or
scattering coefficients, β2 ν , κ2 ν or σ2 ν respectively, a phase function p2 ν and possibly a refractive
index n2 ν . In this singular configuration, the previously homogenized phase and the real one
occupy the same physical volume ΠdV .

The extinction phenomena due to the real and the previously homogenized semi transparent
phases are statistically independent: In the homogenized phase the opaque wall elements have
the same behavior as particles within a gas. Consequently the transmissivity of a column of
the global homogenized medium is the product of the transmissivities associated with the two
media. The global cumulative distribution function Gext g(s,u, s

′ − s) then writes

1−Gext g(s,u, s′ − s) = [1−Gext (s,u, s′ − s)] exp[−β2 ν (s′ − s)]. (10)

3.2.3 Medium with semi transparent phases (ST2) or one of them transparent
(STT)

The general case corresponds to two semi transparent phases(ST2) An important particular
case deals with a semi transparent phase and a transparent one (STT). These configurations are

Figure 10: Principles of Gext, Pa, Psc determination (STT case) .

typically encountered when a solid phase is semi transparent at local scale. Additional extinction
phenomena occur, as shown in Fig.10, when a ray, issued from any point of this semi transparent
phase:

- Hits an interface with the other phase. In the homogenized approach, the ray is then only
scattered: This scattering corresponds in the real medium to internal reflection or transmission.

- Is absorbed or scattered within the real semi transparent phase. These phenomena are
characterized by an absorption coefficient κν 1, a scattering coefficient σν 1 and a scattering
phase function pν 1.

All surface phenomena become volume phenomena within the homogenized propagation
phase. Consequently, four scattering phenomena occur, after homogenization, within the semi
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3 RADIATIVE PROPERTIES DETERMINATION 3.2 Statistically homogeneous medium

transparent phase 1. All of them are characterized by partial cumulative scattering probabilities
and phase functions:

- Psc ν 11 and pν 11 associated with internal reflection (extinction and source terms);
- Psc ν 12 and pν 12 associated with transmission from 1 to 2 (extinction term);
- Psc ν 1 associated with Beerian scattering within the real medium, characterized by the

scattering coefficient σν 1 and the corresponding phase function pν 1.
- Psc,ν 21 and pν 21 associated with transmission from 2 to 1 (source term).

z

x
y

θ
φ

Figure 11: Model of insulation material[23] .

All these scattering phenomena and absorption occur at any point of the homogenized phase:
Indeed the presence of both the semi transparent phase and interface elements is only proba-
bilistic. The extinction cumulative distribution function is then given by

Gν ext 1 = Psc ν 11 + Psc ν 12 + Psc ν 1 + Pa ν 1 (11)

A homogenized transparent phase 1 is only characterized by Psc ν 11, Psc ν 12, and Psc ν 21 and the
associated phase functions.

a) Geometrically defined media

Dauvois[23] has studied an insulation material, shown in Fig.11, which is a set of partially
overlapping finite cylinders characterized by two angles: θ with the system axis x and ϕ az-
imuth by reference to the x axis. The centers of the cylinders and the ϕ values are randomly
distributed; θ follows a Gaussian distribution: 95% of the angles belong to the range [0− 10◦].
These semi transparent cylinders (medium 1), characterized2 by β, κ, σ and a refractive index
n, are immersed in air (medium 2).

The extinction cumulative distribution function within air (interstices) is rigorously Beerian,
as previously for DOOS; On the contrary, the extinction cumulative distribution function within
the cylinders is strongly non Beerian, as shown in Fig.12.

Four phase functions psc 11, psc 12, psc 21 and psc 22 are associated with four scattering cumula-
tive probabilities Psc 11, Psc 12, Psc 21 and Psc 22: They correspond to reflection within cylinders,
transmission from cylinders to air, transmission from air to cylinders, reflection within air, re-
spectively. Examples are plotted in Fig.13.

2In the case of the work of Dauvois, the medium 1 is only absorbing. Nevertheless, an absorbing and scattering
medium 1, more general case, is considered here.
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Figure 12: Extinction cumulative distribution functions Gext 1(θ) (left) and Gext 2(θ) (right)
averaged on ϕ associated with the insulation material[23]. .
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Figure 13: Scattering phase functions p11 and p21 of the insulation material[23], averaged on
azimuth; µ = x.u1, µr = x.u (reflection case), µt = x.u (transmission case); u1 and u
incidence and scattering direction unit vectors.
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b) Media defined by tomography

Zeghondy et al.[15] have studied both theoretically and experimentally a semi transparent

Figure 14: Studied sample of mullite foam[15]; Π = 0.85.

mullite foam, in the visible range, from X tomography data collected at ESRF(Grenoble). The
spatial resolution of the tomography is about 3µm. Three representative samples within the
tomographied piece, of iteratively defined volume, have been used for checking the homogeneity
of the medium. The dispersion of the corresponding results is negligible.

Figure 15: RDFI optimized values of the directional extinction coefficient and RDFI relative
standard deviations for a mullite foam[15]; Π = 0.85.

The directional extinction cumulative distribution function, the absorption cumulative prob-
ability and a phase function depending both on the incidence and scattering directions have
been determined directly from the radiative properties of the real semi transparent medium and
from the Fresnel’s laws. Gext and Pa are practically isotropic and Beerian. The phase function
depends only on the scattering angle cosine. Optimal RDFI values of the extinction and ab-
sorption coefficients βν and κν are plotted in Figs.15 and 16 with the associated identification
errors, as defined in Sec.2.1.2.

3.3 Statistically non homogeneous media

Zarrouati[11] has studied the radiative properties of a bed of non overlapping opaque spheres at
the vicinity of a wall for a medium enclosed between two infinite vertical walls or within an infinite
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Figure 16: RDFI optimized values of the directional absorption coefficient and relative RDFI
standard deviations for a mullite foam[15]; Π = 0.85.
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Figure 17: Left: Example of realization of a packed bed of spheres[26, 11]; Right: Porosity field
along the direction normal to the wall[11].
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cylinder. This study has also been generalized to a bed of opaque finite cylinders enclosed in an
infinite cylinder. All these configurations present some statistical symmetries: The resolution is
one-dimensional. The morphological data have been obtained from the DigipacTM [26] simulation
software. An example of realization is shown in Fig.17 with the corresponding porosity field:
Strong variations of the porosity Π occur in the vicinity of a wall. A correct modeling of this
strong non homogeneity is important as, in the associated application (fuel reforming), the flux
is precisely imposed at the wall by combustion.

Examples of extinction cumulative distribution functions Gext(s, µ, s
′− s) for the plane con-

figuration, are given in Fig.18, where µ is the cosine of the angle between a direction and the
axis x normal to the plane walls. If the medium is Beerian far from the walls, it is less and less
Beerian when the distance to a wall decreases.

0 0.5 1 1.5 2
0

0.2

0.4

0.6
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t

Figure 18: Extinction cumulative distribution function Gext(x, µ, s) of the packed bed: x/D =
0.5; s+ = s/D; µ = − 0.5 (dashed curve); µ = 0 (solid curve); Beerian extinction cumulative

distribution function characterized by β = A(x)
4Π(x) (dotted curve).

Regular and periodical systems can also be accurately modeled by extinction cumulative
distribution functions Gext(x, µ, x

′ − x). Consider, for instance, a square regular rod bundle
enclosed between two parallel walls, which are also parallel to the rod axes, on which uniform
thermal conditions are imposed. The porosity field is a continuous function along an axis x
normal to the walls, which is equal to 1 within the alleys between the rods of axes belonging to
the same plane. An approach similar to the previous one can easily be developed in this case,
which corresponds to the example of Sec.2.3.1 a) of the companion paper[21].

4 Ideal Thermal Equilibrium and Local Thermal Equilibrium of
Radiation

At this step emission has not been modeled. Indeed, it strongly depends on the thermal con-
ditions of the matter and is studied in the companion paper[21]. As in the classical theory of
radiation, emission is defined by reference to Ideal Thermal Equilibrium (ITE) conditions. The
study of a medium in these conditions, developed in Sec.4.1.1, is then essential. In particular,
generalized extinction, absorption and scattering coefficients can be introduced at equilibrium
far from the porous medium boundaries.

On the other hand, radiation is generally considered in ballistic regime in open fields. But,
in many applications, a porous medium is practically isothermal along some extinction lengths,
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typically some pore sizes. The radiation field is then practically at Local Thermal Equilibrium
(LTE): An optically thick cell of the medium is practically at equilibrium and the radiative
transfer can simply be considered as a small perturbation of these LTE conditions. In this
important particular case, the GRTE degenerates into a simple RTE, introduced in Sec.4.2.
Moreover, some key properties of the phase functions and the scattering coefficients introduced
at LTE are also presented in Sec.4.3.

This Section is limited to statistically homogeneous phases, possibly strongly anisotropic and
non Beerian. Statistically non homogeneous media are studied in the companion paper[21].

4.1 Ideal Thermal Equilibrium of Radiation

4.1.1 Generalized extinction, absorption and scattering coefficients at equilibrium
far from the boundaries

In ideal thermal equilibrium conditions, the intensity associated with a homogenized phase, of
fraction per unit volume Π, is Πn2

ν(u) I◦ν (T ), where nν(u) is the phase refractive index. The
total source term S◦ν(u), sum of the emission and scattering source terms, is spatially uniform,
only if the distance to any boundary s′ − sb corresponds to an optically thick medium, i.e. if
S◦ν(u) at the point s′ is independent of the boundary condition in sb. Equation 4 then becomes
in ideal equilibrium conditions (see also Fig.1)

Π n2
ν(u) I◦ν (T ) = S◦ν(u, T )

∫ s′

−∞
[1 − Gext ν(u, s′ − s)] ds. (12)

The total source term S◦ν(u, T ) is, in these conditions, equal to the extinction term and also
writes

S◦ν(u, T ) = Bν(u) Πn2
ν (u) I◦ν (T ), (13)

equation which defines the generalized extinction coefficient at equilibrium Bν(u), far from the
porous medium boundaries

Bν(u) =
1∫∞

0 [1 − Gext ν(u, v)] dv
. (14)

It is easy to verify that, in the case of a Beerian medium characterized by the extinction coefficient
βν(u), Bν(u) is equal to βν(u). Bν(u) represents the extinction between s′ and s′ + ds′ of all
contributions to the intensity Πn2

ν (u) I◦ν (T ) in s′ due to all the source terms from infinity to s′

in the direction u.
The flux per unit volume and unit solid angle associated with all these source terms and

extinguished between s′ and s′ + ds′ by any type of scattering (i, ii or iii), defined in Sec.2.2,
simply becomes∫ s′

−∞

dPsc ν(u, s′ − s)
ds′

Bν(u) Πn2
ν (u) I◦ν (T ) ds = Psc ν(u,∞)Bν(u) Πn2

ν (u) I◦ν (T ), (15)

where Psc ν(u,∞), is the albedo of the homogenized phase for this type of scattering and the
direction u.

If we consider, for the sake of simplicity, the case of a porous medium with a transparent
phase and an opaque one (OT), characterized by a unique type ii) of scattering, the gener-
alized scattering coefficient at equilibrium Σν(u) and, correlatively, the generalized absorption
coefficient at equilibrium Kν(u) are defined by

Σν(u) = Psc ν(u,∞)Bν(u), Kν(u) = Bν(u) − Σν(u) = [1− Psc ν(u,∞)]Bν(u). (16)
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Note that, in the common case of a porous medium with a transparent phase and an opaque
one, characterized by a diffuse and gray absorptivity α, the albedo Psc(u,∞) is equal to 1− α.
Consequently: Kν(u) = αBν(u), Σν(u) = (1− α)Bν(u).

4.1.2 Behavior of Gext at the optically thick limit

The properties of the extinction cumulative distribution functions at the optically thick limit
are linked to the generalized extinction coefficient at equilibrium. It has been observed in Sec.3
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Figure 19: β+ (squares)and B+ (crosses) normalized values βRDFI/βOT and B/βOT of the RDFI
extinction coefficient and generalized extinction coefficient at equilibrium for DOTS[20]; RDFI
relative standard deviations associated with β+; βOT = A/(4Π).

that, for non Beerian media, the slope of the logarithm of the transmissivity 1−Gext(u, s′ − s):
- Is equal to the opposite of βOT , extinction coefficient at the optically thin limit, for very

small s′ − s values: βOT (s′ − s) << 1;

- Strongly varies in the intermediate optical thickness range ;

- Finally tends to the uniform value −B(u) at the optically thick limit characterized by
βOT (s′ − s) >> 1 (see, for instance Figs.4 and 12). Indeed, in these particular conditions, the
generalized extinction coefficient at equilibrium B(u) can be defined. This important property
allows, under precise conditions, a radiative Fourier’s law to be introduced, as shown in the
companion paper[21].

Note that, in the commonly encountered case of a medium which is not rigorously but
approximately Beerian, βOT , B and the optimized extinction coefficient obtained by the RDFI
method βRDFI take different values, as shown in Fig.19 dedicated to the DOTS, introduced in
Sec.3.2.1.

4.2 Local Thermal Equilibrium of Radiation

A cell of the system is at Local Thermal Equilibrium of Radiation if:
- i) Along a distance δ over which it is optically thick it is practically isothermal. A precise
quantitative condition is given in Sec.1.1 of the companion paper[21];
- ii) Its distance to any boundary of the porous medium also corresponds to an optically thick
medium: The cell is not directly influenced by the thermal conditions at the boundaries.

VKI - 20 -



4.3 Scattering properties at LTE 4 RADIATION ITE AND LTE

Under these conditions, the cell can be characterized by a temperature T (X) and the vari-
ations of this temperature only occur at a macro scale X larger than δ. But a radiative flux
appears at the scale X, as a small perturbation of its LTE conditions.

It has been shown[20] that, at LTE conditions, the GRTE degenerates into a RTE
”

char-
acterized by the generalized extinction, absorption and scattering coefficients at equilibrium of
Sec.4.1.1. In the OT case, this RTE writes, for a statistically homogeneous but anisotropic
homogenized phase associated with interface elements

Π
dIν
ds

(u,X) + ΠBi(u) Iν(u,X)

= ΠKν i(u)n2
ν I
◦
ν [Ti(X)] + Π

1

4π

∫
4π

Σν i(u1)pν i(u1,u)Iν(u1,X)dΩ1. (17)

In practice, Equation 17 is not solved by classical radiative transfer methods, but only solved by
a perturbation technique which leads to a radiative tensor, associated to a radiative Fourier’s
law. This method is developed in the companion paper[21]. Nevertheless, in some cases in which
condition ii) is fulfilled, but not condition i), this RTE has to be directly solved.

4.3 Some scattering properties at LTE (homogeneous phases)

The conditions of Local Thermal Equilibrium of the radiation field and the associated RTE,
defined in the previous Section, are assumed fulfilled. In these conditions, some key properties
of scattering, associated with both reflection (all cases) and transmission (STT ad ST2 cases),
are introduced in the present Section.

4.3.1 Scattering associated with reflection (all cases)

In the OT, OST, STT and ST2 models based on radiative statistical distribution functions, two
media coexist within the same physical volume Π dV statistically devoted to the fluid phase:

- the propagation phase characterized by a refractive index nν which is transparent (OT,
STT) or semi transparent (OST, STT and ST2) and, in these last cases, also characterized by
absorption, scattering and extinction coefficients,

- an effective semi transparent medium i associated with a statistical distribution of interface
elements. The first developments of the statistical homogenization have been founded on an
interfacial effective refractive index nν i(u)[12, 13, 22], what will also be done in Sec.4.3.3, but it
is simpler to base the model on the real transparent or semi transparent medium, which is done
in the present Section and the following one.

The scattering source term per unit volume and unit solid angle dΩ(u) associated with
interfacial reflection writes

Ssc(u) =

∫
4π

Π Σν(u1)
pν(u1,u)

4π
Iν(u1) dΩ(u1). (18)

The application of the general reciprocity theorem to the scattering of an elementary beam dΩ1

within the homogenized semi transparent medium, expressed in this medium, in ITE conditions,
leads to

Σν(u1) Πn2
ν I
◦
ν (T ) dΩ(u1)

[
pν (u1,u)

4π
dΩ(u)

]
= Σν(−u) Πn2

ν I
◦
ν (T ) dΩ(−u)

[
pν(−u,−u1)

4π
dΩ(−u1)

]
. (19)
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i.e. Σν(u1) pν (u1,u) = Σν(−u) pν(−u,−u1) (20)

The scattering source term per unit volume and unit solid angle dΩ(u) given by Eq.18 then
becomes

Ssc(u) = Π Σν(−u)

∫
4π

pν(−u,−u1)

4π
Iν(u1) dΩ(u1). (21)

In ITE conditions, this term is equal to Π Σν(−u)n2
ν I
◦
ν (T ). It is also equal to the extinction

term by scattering in the direction u, i.e Π Σν(u)n2
ν I
◦
ν (T ). Consequently

Σν(−u) = Σν(u), (22)

and finally the scattering source term per unit volume and unit solid angle dΩ(u), expressed in
the real medium simply writes

Ssc(u) = Π Σν(u)

∫
4π

pν(−u,−u1)

4π
Iν(u1) dΩ(u1), (23)

Note that pν 12(−u1,−u2), which is rigorously equal[27] to pν 12(−u2,−u1), is also commonly
equal to pν 12(u1,u2), due to the system macroscopic statistical symmetries.

4.3.2 Scattering associated with transmission (STT and ST2)

In the following, the intensity within a medium j expressed in a medium k of refractive index
nν k is noted Iν jk. The elementary solid angles dΩ1, dΩ2 and dΩv are associated with the media
1, 2 and the void of refractive indices nν 1, nν 2 and 1 respectively.

Consider a transmission from a medium 2 of refractive index nν 2 to a medium 1 of refractive
index nν 1. The phase function which is called pν 21 now associates a scattered intensity within
medium 1 with an incident flux per unit volume within medium 2. Precise definitions of the
bidirectional transmissivity and of the phase function associated with scattering by transmission
between phases are given in Appendices A and B. Ssc ν 21, the corresponding scattering source
term per unit volume and unit solid angle dΩ1(u1) then writes

Ssc ν 21(u1) =

∫
4π

Σν 21(u2)
pν 21(u2,u1)

4π
Π2 Iν 22(u2) dΩ2(u2). (24)

The refractive indices are linked to the elementary solid angles in the media 1 , 2 and the void
v by

n2
ν 1 dΩ1 = n2

ν 2 dΩ2 = dΩv. (25)

and similarly, from the Clausius theorem, the intensities within a medium j expressed in media
1, 2 and v are linked by

Iν j1 dΩ1 = Iν j2 dΩ2 = Iν jv dΩv. (26)

The general reciprocity theorem applied to scattering by transmission (incident elementary beam
dΩ1, scattered elementary beam dΩ2), in ITE conditions, expressed in void, then leads to

Σν 21(u2) Π2 I
◦
ν (T )dΩv(u2) [

pν 21(u2,u1)

4π

dΩv(u1)

n2
ν 1

)]

= Σν 12(−u1) Π1 I
◦
ν (T )dΩv(−u1) [

pν 12(−u1,−u2)

4π

dΩv(−u2)

n2
ν 2

], (27)

or

Σν 21(u2) Π2 n
2
ν 2 pν 21(u2,u1) = Σν 12(−u1) Π1 n

2
ν 1 pν 12(−u1,−u2) (28)
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and Equation 24 becomes

Ssc ν 21(u1) = Σν 12(−u1) Π1

∫
4π

pν 12(−u1,−u2)

4π
(
n2
ν 1

n2
ν 2

) Iν 22(u2) dΩ2(u2). (29)

In ITE conditions, this quantity is equal to Σν 12(−u1) Π1 n
2
ν 1 I

◦
ν (T ), and is also equal to

the scattering extinction term in medium 1 associated with transmission to medium 2, i.e.
Σν 12(u1) Π1 n

2
ν 1 I

◦
ν (T ). Consequently

Σν 12(−u1) = Σν 12(u1), (30)

and finally the scattering source term per unit volume and unit solid angle dΩ1(u1) also writes
in terms of quantities related to media 1 and 2

Ssc ν 21(u1) = Π1 (
n2
ν 1

n2
ν 2

)Σν 12(u1)

∫
4π

pν 12(−u1,−u2)

4π
Iν 22 dΩ2(u2). (31)

The factor n2
ν 1/n

2
ν 2 results from the definition of a phase function from a medium 2 to a

medium 1, which is expressed in medium 1. As, by reciprocity, the source term by scattering
from 2 to 1 has been expressed vs the phase function from 1 to 2, the factor n2

ν 1/n
2
ν 2 allows the

result to be expressed in medium 1.
The phase function pν 12(−u1,−u2), which is rigorously equal[27] to pν 12(−u2,−u1), is also

commonly equal to pν 12(u1,u2) due to system macroscopic statistical symmetries.

4.3.3 Scattering model based on an effective refractive index

This model will only be introduced in the case of scattering associated with reflection. The
results of Sec.4.3.1 can also be obtained by considering the effective semi transparent medium
i associated with the statistical distribution of interface elements within ΠdV . This medium is
characterized by the radiative coefficients Bν(u), Kν(u), Σν(u) and the phase function pν(u1,u),
and also an effective refractive index nν i(u).

Note that, according to the Clausius theorem, the elementary solid angle becomes dΩi in the
virtual homogenized phase. It is linked to the elementary solid angle dΩ in the real propagation
medium of refractive index nν and to the solid angle dΩv in the void by

dΩi(u)n2
ν i(u) = dΩ(u)n2

ν = dΩv(u). (32)

In ITE conditions, S◦ν sc(u), the scattering source term per unit volume and unit solid angle
dΩi(u), associated with reflection on interfaces in the real medium, writes

S◦ν sc(u) =

∫
4π

Π Σν i(u1)
pν(u1,u)

4π
n2
ν i(u1) I◦ν (T ) dΩi(u1). (33)

This quantity is equal to the term of extinction by scattering in ITE conditions, i.e.

S◦ν extsc(u) = Σν i(u) Πn2
ν i(u) I◦ν (T ). (34)

In these conditions, the unique solution verifies

Σν i(u)n2
ν i(u) = Cν . (35)

As this product is independent of u, Sν sc, the scattering source term per unit volume writes

Sν sc(u) dΩi(u) = Π dΩi(u) Σν i(u) n2
ν i(u)

∫
4π

pν(u1,u)

4π
Iν v(u1) dΩi(u1). (36)
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where Iν v is the intensity in the void, of refractive index equal to 1. By using the Clausius
theorem, Equation 36 becomes

Sν sc(u) dΩ(u) = Π dΩ(u) Σν(u)

∫
4π

pν(u1,u)

4π
Iν(u1) dΩ(u1). (37)

where Iν equal to n2
ν Iν v is the intensity in the real propagation phase. The results are identical

to those of Sec.4.3.1.

5 Conclusion

Scattering, absorption and extinction properties of porous media with opaque and transparent
phases (OT), opaque and semi transparent phases (OST), semi transparent phases (ST2), semi
transparent and transparent phases (SST) have been exhaustively characterized by radiative
statistical distribution functions and a general scattering phase function depending on both
incidence and scattering directions. This model also allows homogenized phases of a porous
medium, which do not follow the Beer’s extinction law, to be accurately characterized: It is the
case of most of the interfacial scattering and absorption phenomena for OT, OST, ST2 and STT
configurations. In this case, extinction, absorption and scattering coefficients have no physical
meaning. Indeed, they can only be defined for Beerian homogenized phases. The validity of
Beer’s law can be accurately verified by the RDFI method.

Emission is studied in the companion paper[21]. Indeed, this phenomenon depends both
on the matter radiative properties and the temperature field within the system. Consequently,
emission modeling depends on the thermal conditions of the homogenized phase. When a Beerian
absorption coefficient κν can be defined, the emission source term is simply κν n

2
ν I
◦
ν (T ). This

model is always valid for ST2 and STT configurations. But, emission by non Beerian interfacial
opaque elements, often encountered in OT and OST configurations, can only be expressed from
the reciprocity theorem applied to the GRTE: This approach is developed in the companion
paper[21], more generally dedicated to radiative transfer.

A Appendix: Bidirectional reflectivity and transmissivity

Theoretically, the reflection and transmission laws at local scale are characterized by bidirectional
reflectivity and transmissivity ρ′′ν(ui,ur) and τ ′′ν (ui,ut). These real quantities are generally
unknown: Their determination is difficult. From a practical point of view, opaque interfaces are
generally characterized by a diffuse reflection law, a specular one or a linear combination of these
laws. Interfaces between semi transparent or transparent phases are generally characterized by
Fresnel laws. All these models are characterized by the corresponding ρ′′ν(ui,ur) or τ ′′ν (ui,ut)
expressions.

ρ′′ν(ui,ur) or τ ′′ν (ui,ut) are defined in the local frame built around the unit vector normal to
an interface and have precise definitions:

ρ′′ν(ui,ur) =
Irν(ur)

dΦi
ν(ui)

=
Irν(ur)

Iiν(ui) cos(θi)dΩi(ui)

τ ′′ν (ui,ut) =
Itν(ut)

dΦi
ν(ui)

=
Itν(ut)

Iiν(ui) cos(θi)dΩi(ui)
(38)

where Iiν , Irν and Itν are the incident, reflected and transmitted intensities, dΦi
ν(ui) the incident

flux and ui, ur and ut are the incidence, reflection and transmission direction unit vectors;
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cos(θi) is equal to n.ui, where n is the normal unit vector to the considered surface element.
Note that the expression of the incident flux is independent of the medium in which it is ex-
pressed. The bidirectional reflectivity or transmissivity then depends on the refractive index of
the reflection or transmission medium.

By convention, Irν and Itν , and consequently ρ′′ν(ur) and τ ′′ν (ut) are expressed in the reflection
or transmission medium, characterized by the refractive index nν r or nν t.

B Appendix: Scattering phase functions

The phase functions are defined in the frame of the whole porous medium and couple an incidence
direction in this frame u to a scattering direction usc of the same frame. The definitions of the
scattering phase functions associated with reflection or transmission in the real medium are
based on the ones of the associated bidirectional reflectivities and transmissivities, defined at
local scale by reference to a unit vector normal to the surface element.

In the case of scattering corresponding to reflection at local scale, a normal unit vector
n(r,u) is associated at any impact point of a ray issued from any point M(r) of the phase (in
the case of a statistically homogeneous medium), in any incidence direction u. The quantity
pν(u,usc) dΩ(usc)/(4π) is the probability that the energy will be scattered in the elementary
solid angle dΩ(usc) around the direction usc, i.e

pν(u,usc)
dΩ(usc)

4π
=

dΩ(usc) ( 1
ΠV )

∫
ΠV /−usc.n≥0 ρ

′′
ν [u,usc,n (r,u)] (−n.u)(r,u) dr∫

4π( 1
ΠV )

∫
ΠV /−usc.n≥0 ρ

′′
ν [u,usc,n (r,u)] (−n.u)(r,u) dr dΩ(usc)

. (39)

Similarly, in the case of scattering corresponding to transmission at local scale, and with the
same notations the phase function writes vs the bidirectional transmissivity

pν(u,usc)
dΩ(usc)

4π
=

dΩ(usc) ( 1
ΠV )

∫
ΠV /uscn≥0 τ

′′
ν [u,usc,n (r,u)] (−n.u)(r,u) dr∫

4π( 1
ΠV )

∫
ΠV /usc.n≥0 τ

′′
ν [u,usc,n (r,u)] (−n.u)(r,u) dr dΩ(usc)

. (40)

In practice, a scattered intensity Iscν is associated by the phase function pν(u,usc) with an
incident flux per unit volume and frequency Iν dΩ(u), which, due to the Clausius theorem, is a
quantity independent of the medium (initial, final or void).

As for bidirectional reflectivity or transmissivity, pν(u,usc) is, by convention, expressed in
the scattering medium, characterized by the refractive index nν sc, i.e Iscν is expressed in this
medium.

Expressions of the phase functions are given in Ref.[27] in the case of diffuse and specular
reflection laws.
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