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Abstract 

FMI (Functional Mock-up Interface) is a standard initiated by Daimler AG within the ITEA2 MODELISAR 

project, and is now maintained by the Modelica Association. It has been designed to enable the exchange 

of source models and the co-simulation of executable models exported from more and more modeling 

tools. 

In FMI-CS (FMI for Co-Simulation), a component is a self-contained object that besides the model 

description also includes a numerical solver provided by design environment from where it comes.  

A co-simulation may implies lots of FMUs and during a macro-step of the system simulation, each 

FMU independently simulates part of the system and at the end of each macro-step, the outputs from 

some FMUs provide new initial values (or inputs) to some other FMUs. 

 

Unhappily, the current version 2.0 of the FMI-CS standard does not handle correctly all kind of signals 

especially in an hybrid co-simulation context. 

The purpose of this paper is to propose some extensions to the FMI-CS 2.0 standard and to detail a 

simple use case in order to test these extensions in a co-simulation involving some major tools 

implementing the FMI-CS standard at the FMU side and DACCOSIM at the Master Algorithm side. 

 

This work has been presented in the Annex 60 project, an international project conducted under the 

umbrella of the International Energy Agency (IEA) within the Energy in Buildings and Communities (EBC) 

Programme. Annex 60 will develop and demonstrate new generation computational tools for building 

and community energy systems based on Modelica, Functional Mockup Interface and BIM standards.  
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1 Introduction 

Complex systems are characterized by the interconnection of numerous and heterogeneous cyber components (e.g. 

controllers) and physical components (e.g. power grids). 

For EDF (the major French utility company), the smart power grids will extensively rely on new control functions (i) 

to increase the grid efficiency, reliability, and safety, (ii) to enable better integration of new assets (e.g. distributed 

generation and alternative energy sources), (iii) to support market dynamics and manage new interactions between 

established and new energy players. 

 

Cyber-Physical Systems (CPS) design involves multiple teams working simultaneously on different aspects of the 

system. Especially, the development of a smarter electrical grid requires to reuse models and tools often based on 

separate areas of expertise. 

This heterogeneity led EDF to investigate coupling standards such as the Functional Mock-up Interface (FMI1) initiated 

by Daimler AG within the ITEA2 MODELISAR project and now maintained by the Modelica Association2 . More 

precisely, EDF chose the FMI-CS (FMI for Co-Simulation) part of the standard because this operation mode allows to 

export models as active components called FMUs (Functional Mock-up Units), each FMU being a self-contained 

archive file including a model and a numerical solver. As an additional benefit, the model IP is readily protected when 

models are exported as FMUs from FMI-CS compliant modelling tools. 

 

For EDF, it is vital to develop agile modelling and simulation in order to design and validate distributed operating 

functions a long time before performing tests on experimental sites. The Distributed Architecture for Controlled CO-

SIMulation (DACCOSIM3 software) developed by EDF and CentraleSupelec is a part of the answer to this problematic. 

It is aimed at simulating large and complex multiphysics and hybrid systems on multi-core PC clusters fully exploiting 

all the potential of the FMI-CS standard. Unhappily the current FMI-CS 2.0 is not enough for hybrid co-simulation and 

this paper introduces improvements to be proposed to the FMI user group in charge of maintaining the FMI standard 

at the Modelica Association. 

These researches are carried out by the RISEGrid4 institute, founded by EDF and CentraleSupelec with the ultimate 

goal to design the smart electric grids of the future. Some others parties may also collaborate with RISEGrid, especially 

CEA List. 

  

                                                           
1 https://www.fmi-standard.org/downloads 
2 https://www.modelica.org/ 
3 https://daccosim.foundry.supelec.fr/ 
4 http://www.supelec.fr/342_p_36889/risegrid.html 
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2 Challenges and requirements 

FMI-CS is an attempt to define a unifying kernel for interoperability between active components through a 

standardized interface. Information about the standard with a list of compatible tools, the original specification of the 

standard, and a list of related publications can be found on the FMI website5. 

The problem with the FMI standard latest version FMI 2.0 is that it has been designed for dynamic systems with only 

continuous and differentiable time signals. 

 

 

 

 

 

 

 

 

Figure 1: this signal is continuous and differentiable at any point 

in its range of definition 

In a more general context of co-simulation, hybrid signals are to be also considered. Different examples are given in 

the next paragraphs. 

2.1 Continuous & piecewise differentiable signals 

In this case, the signals are: 

- Present at each time 𝑡𝑖 ϵ ℝ+ ; 

- Continuous on ℝ+ ; 
- Not differentiable in some points 𝑡𝑖 : lim

ℇ→0
𝑓′(𝑡𝑖 − ℇ) ≠ lim

ℇ→0
𝑓′(𝑡𝑖 + ℇ). 

 

 

 

Figure 2: this signal is not differentiable at all the points having a null ordinate 

2.2 Piecewise constant signals 

In this case, the signals are: 

- Present at each time 𝑡𝑖 ϵ ℝ+ ; 

- Constant on disjoint and continuous time slots 𝐼𝑖 so that: ⋃ 𝐼𝑖𝑖 = ℝ+ ; 
- With a discontinuity appearing at each time slot switch. 

 

                                                           
5 https://www.fmi-standard.org 

https://www.fmi-standard.org/
https://www.fmi-standard.org/
https://www.fmi-standard.org/
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Figure 3: this integer (or real) signal is defined on 4 time slots 
 

2.3 Piecewise continuous & differentiable signals 

In this case, the signals are: 

- Present at each time 𝑡𝑖 ϵ ℝ+ ; 
- Not continuous and then not differentiable at some points 𝑡𝑖 : lim

ℇ→0
𝑓(𝑡𝑖 − ℇ) ≠ lim

ℇ→0
𝑓(𝑡𝑖 + ℇ). 

 

 

 

 

Figure 4: this signal is not continuous and not differentiable at two points 
 

2.4 Discrete event signals 

In this case: 

- The signals are present for a set of definition 𝓓 being a discrete time set 𝑡𝑖 ϵ 𝓓 with 𝓓 ⊂ ℝ+ ; 
- These signals can be confused with the events they generate. 

 

 

 

Figure 5: an event is generated at each discontinuity of this discrete signal 
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3 DACCOSIM environment 

As stated in [1], DACCOSIM has been designed to achieve multi-simulations of continuous time systems, discretized 

with time steps, and running solvers using constant or variable time steps (to maintain the requested accuracy with 

the minimal amount of computations, whatever the dynamic of the system). It consists in two complementary parts: 

a Graphic User-friendly Interface (GUI) and a dedicated computation package. 

The GUI developed in Java facilitates the complex systems studies by designing the multi-simulation graph (Fig. 6), 

i.e. the FMUs involved and the variables exchanged in-between, defining the resources used by the simulation (local 

machine or cluster), configuring the simulation case (duration, co-initialization method, time step control strategy...) 

and implementing the graph into DACCOSIM master tasks managing the simulation. 

The dedicated computation package controls all task execution issues relative to the multi-simulation: co-

initialization, local or distributed computation steps, fixed or variable time step control strategies, detection of state 

events generated inside FMUs, inter-FMU communications, distributed and hierarchical decision process...The Java 

version of DACCOSIM relies on JavaFMI6 and is available for both Windows and Linux operating systems, whether 32-

bit or 64-bit. 

 

Figure 6: distributed DACCOSIM architecture with a hierarchical master 

With DACCOSIM as with any other Master Algorithm based on the FMI-CS 2.0, the event handling is approximate 

even with the help of the rollback feature. Typically, events are approached by small steps or a bisectional search 

(Fig. 7). 

 

Figure 7: the FMI-CS 2.0 only allows to approach the event handling 

                                                           
6 https://bitbucket.org/siani/javafmi/wiki/Home 
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4 Some proposals to improve the FMI-CS 2.0 

Hybrid co-simulation mix components whatever the nature of the associated input or output signals. A particular 

case is given when all the signals are present at each time: 

- With continuous simulators: 

o These components cannot indicate in advance the date of their state events 

o It’s typically the case with FMUs exported from Dymola 

- With pure discrete simulators: 

o Each component can theoretically indicate in advance the date of its time events 

o It’s potentially the case with FMUs exported from Control Build or Papyrus 

- With mixed simulators: 

o In the most general case, mixed (discrete-continuous) components can generate state events and 

time events 

A generalization of this case involves to be able to handle signals that can be present only at some times. It’s typically 

the case when telecom simulators are to be added to the co-simulation. 

4.1 A new function fmi21DoStep() 

The goal here is to precisely achieve state events whose date cannot be predicted without an exploration of the 

future (unpredictable break-point). 

 

Here are some details of the proposal : 

- Prototyping : fmi21DoStep(stepSize, nextEventInstant) ; 
- The solver integration stops at the first unpredictible event with a new return code fmi21Event and the time 

event is given by the returned value nextEventInstant; 
- The Master Algorithm can go on to integrate state variables without rollback on this component. 

 

 
Figure 8: illustration for the new fmi21DoStep() 

This new primitive fmi21DoStep() could be tested on the use case described further. 
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4.2 A new function fmi21GetNextEventTime() 

The goal here is to report in advance the time event precise date (predictable break-points). 

  

Here are some details of the proposal : 

- Prototyping: fmi21GetNextEventTime(currentTime, stopTime, eventInstant); 
- The Master Algorithm can know in advance the maximum value of the next step size which is wedged on the 

exact date of the next predictable event. 
 

 
Figure 9: illustration for the new fmi21GetNextEventTime() 

This new primitive fmi21GetNextEventTime() could be tested on the use case described further. 

 

4.3 Several new functions fmi21GetXXXEvent() 

The goal here is to get the value of variables according to their type XXX at a discontinuity point. 

 

Here are some details of the proposal : 

- Prototyping of fmi21GetXXXEvent() is in conformance with the proposal recently done by the UC Berkeley 
(« FIDE – An FMI Integrated Development Environment », SAC’16, April 2016) with a specific fmi21SignalStatus 
typed as an enumeration value ‘present’ or ‘absent’; 

- But semantics is slightly different: each time fmi21GetXXXEvent() is called at -𝑡𝑖, time moves till 𝑡𝑖
+ and an 

updated value is available for all the referenced variables, whatever their variability. 
 

These new primitives fmi21GetXXXEvent() could be tested on the use case described further. 
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5 Some basic examples to illustrate our proposals 

This paragraph give some examples to illustrate the use of the new primitives presented before. 

 

5.1 Example 1: continuous & piecewise differentiable signals 

Fig. 10 gives the Modelica model and the desired output waveform for this example. 

 

 
Figure 10: the Modelica model and the desired output waveform 

for continuous & piecewise differentiable signals 

The following array shows a theoretical chronological sequence at the Master Algorithm side: 

time fmi21 

DoStep()  

call 

fmi21 

DoStep() return 

fmi2 

GetReal() return 

0.0   12.0 

0.0 0.4   

0.4  0.4  

0.4    11.3 

0.4 0.8   

1.2  1.2  

1.2    5.5 

1.2 1.5   

 1.61   1.61  

 1.61   0.0 

 1.61 0.4   

 2.01   2.01  

 2.01    4.5 

 2.01 0.6   

 2.61   2.61  

 2.61    8.2 

 2.61 0.4   

 3.01   3.01  

 3.01    9.7 

 3.01 0.2  3.21  

 3.01    9.5 
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5.2 Example 2: piecewise constant signals 

Fig. 11 gives the Modelica model and the desired output waveform for this example. 

 

  
Figure 11: the Modelica model and the desired output waveform 

for piecewise constant signals 

The following array shows a theoretical chronological sequence at the Master Algorithm side: 

super 

dense 

time 

fmi21 

GetNextEventTime() 

return 

fmi2 

DoStep() 

return 

 fmi2 

GetReal() 

return 

fmi21 

GetRealEvent() 

return 

-0.0    0.0   

-0.0 0.5     

-0.5    0.5   

-0.5    0.0   

0.5+    7.0 

0.5+  3.5     

-2.5  2.0    

-2.5   7.0   

-3.5   1.0    

-3.5    7.0   

3.5+    2.0 

3.5+ 5.5     

-5.0   1.5   

-5.0    2.0   

-5.5  0.5    

-5.5     2.0  

5.5+      -2.0 

5.5+ tmax     
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5.3 Example 3: piecewise continuous & differentiable signals 

Fig. 12 gives the Modelica model and the desired output waveform for this example. 

 

  
Figure 12: the Modelica model and the desired output waveform 

for piecewise continuous & differentiable signals 

The following array shows a theoretical chronological sequence at the Master Algorithm side: 

super 

dense 

time 

fmi21 

DoStep() 

call 

fmi21 

DoStep() 

return 

fmi2 GetReal() 

return 

fmi21 

GetRealEvent() 

return 

-0.0    2.0   

-0.0 1.2     

-1.2   1.2   

-1.2     2.1  

-1.2 0.6    

-1.8   1.8   

-1.8     5.9  

-1.8 2.2     

-2.0   2.0    

-2.0    10.0   

2.0+    -7.0 

2.0+ 0.6     

-2.6   2.6   

-2.6     -0.5   

-2.6 2.5     

-5.1   5.1    

-5.1    1.0  

-5.1 1.0      

-6.0  6.0    

-6.0   9.0  

6.0+    5 

6.0+ 1.2    

-7.2  7.2   

-7.2    6.4  



12 

5.4 Example 4: discrete event signals 

Fig. 13 gives the Modelica model and the desired output waveform for this example. 

 

  
Figure 13: the Modelica model and the desired output waveform 

for discrete event signals 

The following array shows a theoretical chronological sequence at the Master Algorithm side: 

super 

dense 

time 

fmi21 

GetNextEventTime() return 

fmi2 

DoStep() 

return 

fmi21 

GetRealEvent() 

return 

-0.0 1.0   

-1.0   1.0  

1.0 +    2.5 

1.0+ 2.0   

-2.0   1.0   

2.0+    2.5 

2.0+ 3.0   

-3.0   1.0   

3.0+    2.5 

3.0+ 4.0   

-4.0   1.0  

4.0+    2.5 

4.0+ 5.0    

-5.0  1.0  

5.0+     2.5 

5.0+ 6.0    

-6.0  1.0  

6.0+    2.5 

6.0 + 7.0   

-7.0  1.0  

7.0 +   2.5 

7.0 + 8.0   
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6 Future application with an academic use case 

The academic use case we intend to use in order to implement and test the new primitives is described in paper [2]. 

This case mixes continuous time, piecewise constant and potentially discrete event. 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: an overview of the use case mixing discrete and continuous components 

For this case, a single reference model is available in Modelica. 

 

    

 
Figure 15: an overview of the use case mixing discrete and continuous components (OpenModelica) 

FMUs exported from Dymola are available for components c1, c2, tank and barrel. Discrete models c1 and c2 are also 

available in IEC 61131-3 (with Control Build) and in UML/SysML (with Papyrus/Moka). Discrete FMUs are (with 

Control Build) or will be in June (with Papyrus) available. 
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DACCOSIM can highlight co-simulation accuracy insufficiencies with the FMI-CS 2.0. 

 

 

 

 

 

 

 

 

 

Figure 16: an example of inaccuracy for a discrete signal 

7 Conclusion and future work 

The partners (EDF, CentraleSupélec and CEA List) intend now to: 

- Either 

o Implement all the new primitives in FMUs exported from their tools (e.g. Papyrus) 

o And slightly modify the Master Algorithm in DACCOSIM 

- Or 

o Only implement fmi21DoStep() in FMUs exported from their tools (e.g. Papyrus) 

o And implement all the other primitives in DACCOSIM at the Master Algorithm side; 

- Check for accuracy improvements with DACCOSIM; 

- Possibly write a common paper e.g. for the next « Modelica and FMI conference » early 2017. 

 

For pure discrete FMUs, a simplified implementation of the new fmi21GetNextEventTime() to explore the future could 

be something like: 

proc fmi21GetNextEventTime(tcur, tmax, eventInstant) 

fmi2GetState(S)     // internal FMU state copy 

fmi21DoStep(stepSize = tmax-tcur, nextEventInstant) // instantaneous calculation with discrete FMUs 

if cr == fmi21Event then   

eventInstant := nextEventInstant    // event date to return to the Master Algorithm 

else       // when no event will occur in the next future 

eventInstant := tmax
+

     // no event date to return to the Master Algorithm 

fmi2SetState(S)      // rollback  

endproc 

 

In this case: 
- fmi21GetNextEventTime() could be implemented at the DACCOSIM side only or in discrete FMUs; 
- fmi21DoStep() should be implemented in all FMUs and rollback should be implemented in FMUs. 

  

constant step size 
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For pure discrete FMUs, a simplified implementation of the new fmi21GetXXXEvent() to get the value of variables at 

discontinuity points  could be something like: 

proc fmi21GetXXXEvent(varlist, valuelist) 

fmi2GetState(S)     // internal FMU state copy 

fmi2DoStep(stepSize = ℇ)    // microstep (instantaneous calculation with discrete FMUs) 

fmi2GetXXX(varlist, valuelist)    // event updates to return 

fmi2SetState(S)      // rollback 

finproc 

 

In this case: 
- fmi21GetXXXEvent() could be implemented at the DACCOSIM side only or in discrete FMUs; 
- Rollback should be implemented in FMUs. 

 

 

To summarize, this paper potentially proposes six new primitives: 

- fmi21DoStep() 

- fmi21GetNextEventTime() 

o Similar to fmiGetMaxStepSize() proposed in paper [4] 

- fmi21GetRealEvent(), fmi21GetIntegerEvent(), fmi21GetBooleanEvent() and fmi21GetStringEvent() 

o Similar to a proposal done by UC Berkeley in paper [3] but avoiding to implement a fmi2DoStep() with 

a null step size 

A new variability variability = event is also used as suggested in paper [4] but proposed here in a wider context. 

Different possible implementations are suggested in DACCOSIM 2017 and in FMUs from partners. 
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