Jean-Philippe Tavella

Mathieu Caujolle

Charles Tan

Gilles Plessis

Mathieu Schumann

Stéphane Vialle

Cherifa Dad

Arnaud Cuccuru

Sébastien Revol

Toward an Hybrid Co-simulation with the FMI-CS Standard

FMI (Functional Mock-up Interface) is a standard initiated by Daimler AG within the ITEA2 MODELISAR project, and is now maintained by the Modelica Association. It has been designed to enable the exchange of source models and the co-simulation of executable models exported from more and more modeling tools.

In FMI-CS (FMI for Co-Simulation), a component is a self-contained object that besides the model description also includes a numerical solver provided by design environment from where it comes.

A co-simulation may implies lots of FMUs and during a macro-step of the system simulation, each FMU independently simulates part of the system and at the end of each macro-step, the outputs from some FMUs provide new initial values (or inputs) to some other FMUs.

Unhappily, the current version 2.0 of the FMI-CS standard does not handle correctly all kind of signals especially in an hybrid co-simulation context.

The purpose of this paper is to propose some extensions to the FMI-CS 2.0 standard and to detail a simple use case in order to test these extensions in a co-simulation involving some major tools implementing the FMI-CS standard at the FMU side and DACCOSIM at the Master Algorithm side. This work has been presented in the Annex 60 project, an international project conducted under the umbrella of the International Energy Agency (IEA) within the Energy in Buildings and Communities (EBC) Programme. Annex 60 will develop and demonstrate new generation computational tools for building and community energy systems based on Modelica, Functional Mockup Interface and BIM standards.

Introduction

Complex systems are characterized by the interconnection of numerous and heterogeneous cyber components (e.g. controllers) and physical components (e.g. power grids). For EDF (the major French utility company), the smart power grids will extensively rely on new control functions (i) to increase the grid efficiency, reliability, and safety, (ii) to enable better integration of new assets (e.g. distributed generation and alternative energy sources), (iii) to support market dynamics and manage new interactions between established and new energy players.

Cyber-Physical Systems (CPS) design involves multiple teams working simultaneously on different aspects of the system. Especially, the development of a smarter electrical grid requires to reuse models and tools often based on separate areas of expertise. This heterogeneity led EDF to investigate coupling standards such as the Functional Mock-up Interface (FMI [START_REF] Galtier | FMI-Based Distributed Multi-Simulation with DACCOSIM[END_REF]) initiated by Daimler AG within the ITEA2 MODELISAR project and now maintained by the Modelica Association 2 . More precisely, EDF chose the FMI-CS (FMI for Co-Simulation) part of the standard because this operation mode allows to export models as active components called FMUs (Functional Mock-up Units), each FMU being a self-contained archive file including a model and a numerical solver. As an additional benefit, the model IP is readily protected when models are exported as FMUs from FMI-CS compliant modelling tools.

For EDF, it is vital to develop agile modelling and simulation in order to design and validate distributed operating functions a long time before performing tests on experimental sites. The Distributed Architecture for Controlled CO-SIMulation (DACCOSIM3 software) developed by EDF and CentraleSupelec is a part of the answer to this problematic. It is aimed at simulating large and complex multiphysics and hybrid systems on multi-core PC clusters fully exploiting all the potential of the FMI-CS standard. Unhappily the current FMI-CS 2.0 is not enough for hybrid co-simulation and this paper introduces improvements to be proposed to the FMI user group in charge of maintaining the FMI standard at the Modelica Association. These researches are carried out by the RISEGrid4 institute, founded by EDF and CentraleSupelec with the ultimate goal to design the smart electric grids of the future. Some others parties may also collaborate with RISEGrid, especially CEA List.

2 Challenges and requirements FMI-CS is an attempt to define a unifying kernel for interoperability between active components through a standardized interface. Information about the standard with a list of compatible tools, the original specification of the standard, and a list of related publications can be found on the FMI website 5 . The problem with the FMI standard latest version FMI 2.0 is that it has been designed for dynamic systems with only continuous and differentiable time signals.

DACCOSIM environment

As stated in [1], DACCOSIM has been designed to achieve multi-simulations of continuous time systems, discretized with time steps, and running solvers using constant or variable time steps (to maintain the requested accuracy with the minimal amount of computations, whatever the dynamic of the system). It consists in two complementary parts: a Graphic User-friendly Interface (GUI) and a dedicated computation package.

The GUI developed in Java facilitates the complex systems studies by designing the multi-simulation graph (Fig. 6), i.e. the FMUs involved and the variables exchanged in-between, defining the resources used by the simulation (local machine or cluster), configuring the simulation case (duration, co-initialization method, time step control strategy...) and implementing the graph into DACCOSIM master tasks managing the simulation.

The dedicated computation package controls all task execution issues relative to the multi-simulation: coinitialization, local or distributed computation steps, fixed or variable time step control strategies, detection of state events generated inside FMUs, inter-FMU communications, distributed and hierarchical decision process...The Java version of DACCOSIM relies on JavaFMI [START_REF]Future application with an academic use case[END_REF] and is available for both Windows and Linux operating systems, whether 32bit or 64-bit. With DACCOSIM as with any other Master Algorithm based on the FMI-CS 2.0, the event handling is approximate even with the help of the rollback feature. Typically, events are approached by small steps or a bisectional search (Fig. 7).

Figure 7: the FMI-CS 2.0 only allows to approach the event handling

4 Some proposals to improve the FMI-CS 2.0 A generalization of this case involves to be able to handle signals that can be present only at some times. It's typically the case when telecom simulators are to be added to the co-simulation.

A new function fmi21DoStep()

The goal here is to precisely achieve state events whose date cannot be predicted without an exploration of the future (unpredictable break-point).

Here are some details of the proposal : -Prototyping : fmi21DoStep(stepSize, nextEventInstant) ; -The solver integration stops at the first unpredictible event with a new return code fmi21Event and the time event is given by the returned value nextEventInstant; -The Master Algorithm can go on to integrate state variables without rollback on this component.

A new function fmi21GetNextEventTime()

The goal here is to report in advance the time event precise date (predictable break-points).

Here are some details of the proposal :

-Prototyping: fmi21GetNextEventTime(currentTime, stopTime, eventInstant); -The Master Algorithm can know in advance the maximum value of the next step size which is wedged on the exact date of the next predictable event.

Figure 9: illustration for the new fmi21GetNextEventTime()

This new primitive fmi21GetNextEventTime() could be tested on the use case described further.

Several new functions fmi21GetXXXEvent()

The goal here is to get the value of variables according to their type XXX at a discontinuity point.

Here are some details of the proposal : -Prototyping of fmi21GetXXXEvent() is in conformance with the proposal recently done by the UC Berkeley (« FIDE -An FMI Integrated Development Environment », SAC'16, April 2016) with a specific fmi21SignalStatus typed as an enumeration value 'present' or 'absent'; -But semantics is slightly different: each time fmi21GetXXXEvent() is called at -𝑡 𝑖 , time moves till 𝑡 𝑖 + and an updated value is available for all the referenced variables, whatever their variability.

These new primitives fmi21GetXXXEvent() could be tested on the use case described further.

Some basic examples to illustrate our proposals

This paragraph give some examples to illustrate the use of the new primitives presented before. The academic use case we intend to use in order to implement and test the new primitives is described in paper [2]. This case mixes continuous time, piecewise constant and potentially discrete event. For pure discrete FMUs, a simplified implementation of the new fmi21GetNextEventTime() to explore the future could be something like:

Example 1: continuous & piecewise differentiable signals

proc

Figure 1 :

 1 Figure 1: this signal is continuous and differentiable at any point in its range of definition

Figure 2 :

 2 Figure 2: this signal is not differentiable at all the points having a null ordinate

Figure 3 :

 3 Figure 3: this integer (or real) signal is defined on 4 time slots

Figure 4 :

 4 Figure 4: this signal is not continuous and not differentiable at two points

Figure 5 :

 5 Figure 5: an event is generated at each discontinuity of this discrete signal

Figure 6 :

 6 Figure 6: distributed DACCOSIM architecture with a hierarchical master

Figure 8 :

 8 Figure 8: illustration for the new fmi21DoStep()

Fig. 10

 10 Fig. 10 gives the Modelica model and the desired output waveform for this example.

Figure 10 :

 10 Figure 10: the Modelica model and the desired output waveform for continuous & piecewise differentiable signals

Fig. 11

 11 Fig. 11 gives the Modelica model and the desired output waveform for this example.

Figure 11 : 3

 113 Figure 11: the Modelica model and the desired output waveform for piecewise constant signals

Figure 12 :

 12 Figure 12: the Modelica model and the desired output waveform for piecewise continuous & differentiable signals

4

 4 Fig.13gives the Modelica model and the desired output waveform for this example.

Figure 13 :6

 13 Figure 13: the Modelica model and the desired output waveform for discrete event signals

Figure 14 :

 14 Figure 14: an overview of the use case mixing discrete and continuous components

Figure 15 :

 15 Figure 15: an overview of the use case mixing discrete and continuous components (OpenModelica)

Figure 16 :

 16 Figure 16: an example of inaccuracy for a discrete signal

 Hybrid co-simulation mix components whatever the nature of the associated input or output signals. A particular case is given when all the signals are present at each time:-With continuous simulators: o These components cannot indicate in advance the date of their state events o It's typically the case with FMUs exported from Dymola -With pure discrete simulators: o Each component can theoretically indicate in advance the date of its time events o It's potentially the case with FMUs exported from Control Build or Papyrus -With mixed simulators: o In the most general case, mixed (discrete-continuous) components can generate state events and time events

 could be implemented at the DACCOSIM side only or in discrete FMUs; -fmi21DoStep() should be implemented in all FMUs and rollback should be implemented in FMUs.

	fmi21GetNextEventTime(tcur, tmax, eventInstant)	
	fmi2GetState(S)	// internal FMU state copy
	fmi21DoStep(stepSize = tmax-tcur, nextEventInstant)	// instantaneous calculation with discrete FMUs
	if cr == fmi21Event then	
	eventInstant := nextEventInstant	// event date to return to the Master Algorithm
	else	// when no event will occur in the next future
	eventInstant := tmax +	// no event date to return to the Master Algorithm
	fmi2SetState(S)	// rollback
	endproc	
	In this case:	
	-fmi21GetNextEventTime()	

constant step size

https://www.fmi-standard.org/downloads

https://www.modelica.org/

https://daccosim.foundry.supelec.fr/

http://www.supelec.fr/342_p_36889/risegrid.html

https://www.fmi-standard.org

https://bitbucket.org/siani/javafmi/wiki/Home

For pure discrete FMUs, a simplified implementation of the new fmi21GetXXXEvent() to get the value of variables at discontinuity points could be something like: