N
N

N

HAL

open science

A portable approach for SoC-based Dynamic
Information Flow Tracking implementations

Muhammad Abdul Wahab, Pascal Cotret, Mounir Nasr Allah, Guillaume
Hiet, Vianney Lapotre, Guy Gogniat

» To cite this version:

Muhammad Abdul Wahab, Pascal Cotret, Mounir Nasr Allah, Guillaume Hiet, Vianney Lapotre, et
al.. A portable approach for SoC-based Dynamic Information Flow Tracking implementations. 11éme

Colloque du GDR SoC/SiP, Jun 2016, Nantes, France. hal-01311045

HAL Id: hal-01311045
https://centralesupelec.hal.science/hal-01311045

Submitted on 21 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://centralesupelec.hal.science/hal-01311045
https://hal.archives-ouvertes.fr

A portable approach for SoC-based Dynamic Information Flow Tracking
implementations

Muhammad Abdul Wahab®, Pascal Cotret®, Mounir Nasr Allah?, Guillaume Hiet?
Vianney Lapdtre?, Guy Gogniat”
“IETR / SCEE research group, firstname.lastname @centralesupelec.fr
INRIA / CIDRE research group, firstname.lastname @ centralesupelec.fr
7 Lab-STICC / University of South Brittany, firstname.lastname @univ-ubs.fr

Abstract

This work introduces an efficient approach for DIFT (Dynamic
Information Flow Tracking) implementations on reconfigurable
chips. Existing solutions are either hardly portable or bring un-
satisfactory time overheads. This work presents an innovative
implementation for DIFT on reconfigurable SoCs such as Xilinx
Zynq devices. Even though the feasibility of this approach is cur-
rently being studied, the first results are promising.

1 Introduction

Security threats still remain a major concern in high techno-
logy systems. Regarding software security breaches, recent ef-
forts such as DIFT have been proposed. DIFT aims to track the
application control flow by adding metadata (also known as fags)
to information containers (e.g. registers, memory addresses),
propagating and checking it at runtime. These approaches have
been successfully used against a wide range of attacks including
buffer overflow, SQL injections and so on.

Nevertheless, existing approaches cannot be implemented in
modern SoCs due to their rigidity and strong time overhead. The
purpose of this work is to find a more efficient method to imple-
ment DIFT features in embedded systems without compromising
their security level. The chosen approach, including a dedicated
hardware DIFT coprocessor, is discussed in this paper.
Section [2] presents related works on SoC-based DIFT solutions.
Then, Section [3]explains the overall architecture of the approach
proposed in this work. Section [d]introduces the DIFT coproces-
sor; especially, the interface between the PS (Processing System)
and the coprocessor. Finally, Section[5]sums up the contributions
of this work and looks at perspectives.

2 Related work

First and foremost, DIFT was implemented in software as in
[Z] which presents a flexible solution. However, the performance
overhead is too high (from 300% up to 3700% as noted in [6]).
Several hardware architectures were proposed to speed up DIFT
processing time: [2} 8, 0] provide lower performance penalties at
the expense of flexibility.

In [6], Kannan et al. proposed to decouple tags computation from
the main application instructions towards a dedicated hardware
coprocessor allowing applications on the CPU to run faster with
multiple concurrent active policies. From that time, other so-
lutions were proposed to add features or improve performances
shown in [6]. For instance, Deng et al. ([3] 4]]) proposed to use
dynamic tainting to implement DIFT and other similar techniques
such as UMC (Uninitialized Memory Check) or BC (Boundary
Check).

In [3], Heo et al. proposed system-level approach to implement
DIFT and other related techniques. Information required for

tags computation by the coprocessor are added to the application
source code through binary instrumentation. This information is
executed at runtime: as a result, it sends data from the CPU to a
FIFO queue read by the coprocessor. This approach, even though
more realistic and generic, presents some drawbacks:

1. Information leakage at the interface between the CPU and
the coprocessor (transmission of load/store memory
addresses).

2. Code injection attacks may not be detected because the in-
jected code is not instrumented (no information flow control
will be done on this code).

3. It requires binary instrumentation to export memory ad-
dresses to the coprocessor (added instructions will be
architecture-dependent).

3 Global architecture

Previous works were implemented using softcores (the CPU
is implemented on FPGA logic): as a consequence, information
required for tags computation was easily extracted by accessing
internal signals. However, it is impossible with hardcores (where
the CPU is an ASIC). This work proposes to use existing debug
components in ARM CPUs to partially recover information re-
quired to decouple regular computation from tags computation.
The remaining information is obtained through static analysis.
The architecture proposed in this work is shown in Figure [T}

| :
I
ARM Coresight Multicore l
Debug and Trace

t t
Other DDR3
Peripherals RAM

Processing System (PS)

DIFT Coprocesor

TRF Memory
tags

Programmble Logic (PL)

Figure 1. Proposed Architecture for DIFT

In this work, Zynq SoCs from Xilinx were used. However, it
could be used with any architecture combining an ARM CPU
with a FPGA. ARM debug components (called CoreSight) allow
to generate and recover traces of applications ran by the CPU:
traces contain information on instructions committed on the CPU.
However, it uses a special protocol also known as PFT (Program
Flow Trace): PFT outputs must be decoded to obtain human-

mailto:firstname.lastname@centralesupelec.fr
mailto:firstname.lastname@centralesupelec.fr
mailto:firstname.lastname@univ-ubs.fr

readable information on committed instructions.

The PFT decoder analyzes traces and sends them to the copro-
cessor implemented in the FPGA logic. The PFT decoder takes
only 0.48% of FPGA logic. Moreover, during compilation phase
of source code with LLVM, static analysis is done. PFT data is
used alongside static analysis results that are loaded by the OS to
Tag dependencies IP in the PL (Programmable Logic) when the
program is launched. Tags are stored in TRF and in Memory tags
(see Figure[I). The DIFT coprocessor checks tags according to
user-defined security policies to verify if the CPU handles data in
an unauthorized way.

4 DIFT Coprocessor

Decoupling DIFT operations from instruction decoding is pos-
sible by synchronizing both cores at system calls. The DIFT
coprocessor requires at least three information from the CPU
core obtained through CoreSight components and static analysis:
PC (program counter), memory addresses (for load/store instruc-
tions) and instruction encoding.

4.1 DIFT Coprocessor interface

ARM CoreSight components allow to debug the code effi-
ciently with negligible time overhead. Information obtained from
CoreSight components of ARM Cortex-A9 (CPU included Zynq
SoCs) are related to all the instructions modifying the PC regis-
ter.

Instrumentation Trace Macrocell (ITM)

Trigger Register Write Packet
Registers

1T Trigger

Embedded Trace
Buffer (ETB)

Read Packet
Reglsters

MIOI
EMIO

Fabric Trace
Monitor (FTM)

|
|

|

|

|

|
Embedded Cross F:" o Packetizer — 1
Trigger (ECT) et |
|

|

|

|

|

Detector

Repllcator
Funnel

Figure 2. CoreSight Components[1]

Figure [2] shows the CoreSight components involved in the trace
generation and export to the PL (FPGA area). PTM (Program
Trace Macrocell) generates a trace for each committed instruc-
tion modifying the PC value. For instance, considering the code
in Figure [3] PTM will generate a trace for instructions on lines
4 or 5 depending on the condition on line 3. The trace is trans-
mitted through the funnel and the replicator and pushed in trace
sinks (ETB and TPIU). ETB (Embedded Trace Buffer) allows to
store traces in an on-chip RAM while TPIU (Trace Port Interface
Unit) can send it to the programmable logic.

4.2 Static Analysis

Figure 3] shows the code and the result obtained through static
analysis for this code. Static analysis allows to obtain tag depen-
dencies shown in the control flow graph. The directives inside
curly brackets indicate how tags should be propagated. Consider
the node 2 in figure 3] the variable x should be tainted by the tag
of “random” function output and y should be tainted by the tag of
“input” function output.
The main core (ARMV7 architecture) commits instruction and
waits, if necessary, on system calls until the DIFT coprocessor
completes tags checking. Meanwhile the DIFT coprocessor reads
tag dependencies, propagates and checks tags accordingly for all

°((y <-input()) }

et a((x <- rand()); (y <- input()) }
5 else {

B
- { (x <-rand()); (y <-input()) }
6. print(z); o
N
{(x <-rand()); (y <- input()); (z <-x) } e ° { (x <-rand(); (y <- input()); (z <-y) }

N
{(x <-rand()); (y s-Rinput()); (z<-y)}
{ (x <-rand()); (y <-input()); (z <-x)}

Figure 3. Example Code and CFG

the instructions. If a tag check fails, an exception is raised to alert
the CPU.

5 Conclusion

The approach proposed in this work shows huge potential as
it allows to efficiently implement DIFT on SoCs. This approach
should not be limited to ARM-based SoCs: Intel also offers trace
components, for debug purposes, allowing to retrieve information
on committed instructions. Any SoC with hard cores including
debug components can be used to implement DIFT with our ap-
proach. A prototype is under development to study feasibility of
DIFT on Zynq SoC using our approach. Then, we plan to look
at frequency issues between the CPU core and the DIFT copro-
cessor which is another reason why existing architectures are not
commonly used.

References

[1] Zynq technical reference manual. www.xilinx.
com/support/documentation/user_guides/
ug585-2yng—-7000-TRM.pdf.

[2] M. Dalton, H. Kannan, and C. Kozyrakis. Raksha: A flexible infor-
mation flow architecture for software security. SIGARCH Comput.
Archit. News, 35(2):482-493, June 2007.

[3] D.Y. Deng, D. Lo, G. Malysa, S. Schneider, and G. E. Suh. Flexi-
ble and efficient instruction-grained run-time monitoring using on-
chip reconfigurable fabric. In Proceedings of the 2010 43rd Annual
IEEE/ACM International Symposium on Microarchitecture, pages
137-148. IEEE Computer Society, 2010.

[4] D. Y. Deng and G. E. Suh. High-performance parallel accelera-
tor for flexible and efficient run-time monitoring. In Dependable
Systems and Networks (DSN), 2012 42nd Annual IEEE/IFIP Inter-
national Conference on, pages 1-12. IEEE, 2012.

[5] 1. Heo, M. Kim, Y. Lee, C. Choi, J. Lee, B. B. Kang, and Y. Paek.
Implementing an application-specific instruction-set processor for
system-level dynamic program analysis engines. ACM Transactions
on Design Automation of Electronic Systems (TODAES), 20(4):53,
2015.

[6] H. Kannan, M. Dalton, and C. Kozyrakis. Decoupling dynamic
information flow tracking with a dedicated coprocessor. In Depend-
able Systems & Networks, 2009. DSN’09. IEEE/IFIP International
Conference on, pages 105-114. IEEE, 2009.

[7] J. Newsome and D. Song. Dynamic taint analysis for automatic de-
tection, analysis, and signature generation of exploits on commodity
software. 2005.

[8] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure program
execution via dynamic information flow tracking. In Acm Sigplan
Notices, volume 39, pages 85-96. ACM, 2004.

[9] G. Venkataramani, I. Doudalis, Y. Solihin, and M. Prvulovic. Flexi-
taint: A programmable accelerator for dynamic taint propagation. In
High Performance Computer Architecture, 2008. HPCA 2008. IEEE
14th International Symposium on, pages 173-184. IEEE, 2008.

www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf

	Introduction
	Related work
	Global architecture
	DIFT Coprocessor
	DIFT Coprocessor interface
	Static Analysis

	Conclusion

