
HAL Id: hal-01311917
https://centralesupelec.hal.science/hal-01311917

Submitted on 24 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Kharon dataset: Android malware under a microscope
Nicolas Kiss, Jean-François Lalande, Mourad Leslous, Valérie Viet Triem Tong

To cite this version:
Nicolas Kiss, Jean-François Lalande, Mourad Leslous, Valérie Viet Triem Tong. Kharon dataset:
Android malware under a microscope. The Learning from Authoritative Security Experiment Results
(LASER) workshop, May 2016, San Jose, United States. pp.1-12. �hal-01311917�

https://centralesupelec.hal.science/hal-01311917
https://hal.archives-ouvertes.fr

Kharon dataset: Android malware under a microscope

N. Kiss
EPI CIDRE

CentraleSupelec, Inria, Univ. Rennes 1, CNRS,
F-35065 Rennes, France

J.-F. Lalande
INSA Centre Val de Loire

Univ. Orléans, LIFO EA 4022,
F-18020 Bourges, France

M. Leslous, V. Viet Triem Tong
EPI CIDRE

CentraleSupelec, Inria, Univ. Rennes 1, CNRS,
F-35065 Rennes, France

Abstract

Background – This study is related to the understand-
ing of Android malware that now populate smartphone’s
markets. Aim – Our main objective is to help other
malware researchers to better understand how malware
works. Additionally, we aim at supporting the repro-
ducibility of experiments analyzing malware samples:
such a collection should improve the comparison of new
detection or analysis methods. Methodology – In order
to achieve these goals, we describe here an Android mal-
ware collection called Kharon. This collection gives as
much as possible a representation of the diversity of mal-
ware types. With such a dataset, we manually dissected
each malware by reversing their code. We run them in
a controlled and monitored real smartphone in order to
extract their precise behavior. We also summarized their
behavior using a graph representations of the informa-
tion flows induced by an execution. With such a process,
we obtained a precise knowledge of their malicious code
and actions. Results and conclusions – Researchers can
figure out the engineering efforts of malware developers
and understand their programming patterns. Another im-
portant result of this study is that most of malware now
include triggering techniques that delay and hide their
malicious activities. We also think that this collection
can initiate a reference test set for future research works.

1 Introduction

Android malware have become a very active research
subject in the last years. Inevitably, all new proposi-
tions of detection, analysis, classification or remediation
of malware must deal with their own evaluation. This
evaluation will rely on a set of "malicious indicators" that
have to be detected/analyzed/classified as bad and a set
of "legitimate indicators" that have to be ignored by the
evaluation method. Designing a set of "good things" ap-
pears simple but on the contrary, for precise evaluation,

the set of "bad things" should be perfectly understood.
We claim here that rigorous experiments have to rely on
malware samples totally reversed.

Building an understandable dataset to be used for dy-
namic analysis is a difficult challenge. Indeed, an au-
tomatic methodology for reverse engineering a malware
does not exist. First, no mature reverse engineering tool
has been developed for Android that would be compara-
ble to the ones used for x86 malware. Second, each mal-
ware is different and finding automatically the malicious
code by statically analyzing the bytecode is a very diffi-
cult task because this code is mixed up with benign code.
It requires a human expertise to extract relevant parts of
the code. Finally, most advanced malware now include
countermeasures to avoid to trigger their malicious be-
havior at first run and in emulated environments. Thus,
an additional expertise is required to understand the spe-
cial events and conditions the malware is awaiting.

Thus, building an understandable malware dataset re-
quires a huge amount of work. We made this effort for
evaluating our previous works [1] and we propose here
to make our training dataset well documented in order to
initiate the construction of a reference dataset of Android
malware. Our goal is to build a well documented set of
malware that researchers can use to conduct reproducible
experiments. This dataset tries to represent most of the
possible know types of malware that can be found. When
choosing a malware for representing a type, we excluded
the malware that are too obfuscated or encrypted to be
reversed engineered in a reasonable time.

The contributions of the paper are:

1. A precise description of the internals of 7 malware
samples i.e. how each malware attacks the oper-
ating system, how it interacts with external servers
and the effects from the user perspective;

2. A graphical view of the induced information flows
when the malware is successfully executed;

3. Instructions on how to trigger the malware in or-
der to make reproducible the attacks operated by
each malware of the dataset. These instructions are
essential for conducting experimental evaluation of
methodologies that analyze dynamic events.

In the following, we give an overview of existing An-
droid malware datasets and present online services ded-
icated to malware analysis. In Section 3, we put seven
malware under a microscope and give a precise descrip-
tion of each of them. Section 4 concludes this article.

2 Related works

2.1 Android security basics

Android security relies on standard Unix and Java secu-
rity paradigms that are the base of standard Linux distri-
butions. Android processes are isolated from each oth-
ers using different Unix process ids but applications can
still communicate between each other, by using so called
Intents that transport exchanged information. Applica-
tion are executed by a virtual machine or compiled by a
Ahead-of-time compiler. Both mechanisms include run-
time checks for implementing security and the most im-
portant security checks are guaranteed by the Linux ker-
nel itself. For example, the access to the network is pro-
vided using a dedicated inet group.

A special file, called the Manifest, declares the soft-
ware components that are the possible entry points for
the application. The most important components can
be: an Activity i.e. a set of graphical components for
composing a screen of an application; a Service that can
be run in or outside the main process of the applica-
tion and has no graphical representation; a Broadcas-
tReceiver that executes the declared callback when the
application receives information. For starting or making
these components communicate, Intents are Java Objects
that provide facilities to transport data. Some pre-defined
Intents encode some system events. For instance, the In-
tent BOOT_COMPLETED notifies applications that the
smartphone has finished the boot process. As malware
need to communicate, we often observe the use of In-
tents.

The security policy of an application is expressed by
the permissions declared in the Manifest. Permissions
can protect resources (network, data, sensors, etc.) or
system data or components (list of processes, ability to
keep the smartphone awake, etc.). Other advanced secu-
rity mechanisms can be found in recent Android versions
such as checking the boot sequence integrity or the use
of SELinux for enforcing mandatory policies at kernel
level.

2.2 Malware datasets

One of the most known dataset, the Genome Project, has
been used by Zhou et al. in 2012 to present an overview
of Android malware [19]. The dataset is made of 1260
malware samples belonging to 49 malware families. The
analysis was focused on four features of Android mal-
ware: how they infect users’ device, their malicious in-
tent, the techniques they use to avoid detection and how
the attacks are triggered. The last feature is the most in-
teresting for us as we want to provide a dataset that can
be easily used by people working on dynamic analysis
of Android malware. According to Zhou et al. analysis,
Android malware can register for system events to launch
their attack e.g. the BOOT_COMPLETED event sent when
the smartphone is up. In addition to system events, some
malware directly hijacks the main activity or the handler
of the user interface components.

Unfortunately, the exact condition required to execute
the malicious code is never provided by the paper’s au-
thors. For example, for the case of DroidKungFu1, we
know that the malicious code can be launched at boot
time but there is no indication about the time bomb used
to schedule the execution of the malware. Indeed, Droid-
KungFu1 executes its malicious code only when 240
minutes have passed and this condition is checked by
reading a specific value in the application preferences.
Without this information, a dynamic analysis fails to ob-
serve interesting behaviors.

In [4], Arzt et al. present FlowDroid, a static taint
analysis tool for Android applications. The goal of Flow-
Droid is to detect data leaks in Android applications us-
ing static analysis. To evaluate their tool, Arzt et al.
have developed DroidBench1, a set of applications im-
plementing different types of data leakage thanks to im-
plicit information flows, use of callbacks and reflections.
Applications in this dataset are classified according to the
technique they use to leak data and contain a description
of the leak performed by the application. For each appli-
cation, the source code for performing the leak is given,
which makes result comparison and evaluation easy. At
the time of writing, the DroidBench repository contains
120 applications of which APK and source code are both
available. As it only performs a data leak, the source
code is really minimalist. Unfortunately, the applications
in DroidBench are not real malware samples and are only
meant to evaluate dynamic and static analysis tools. They
do not provide a dataset with the complexity of real mal-
ware in which benign code is mixed with malicious code.

Contagio dataset is a public collection of Android mal-
ware samples [15]. It was created in 2011 and is regu-
larly updated, which makes it one of the most up to date
public dataset. Each contribution is published as an ar-
ticle on the blog associated to the dataset with a link to

2

download the samples, a description, and an external link
generally to a VirusTotal report. The static analysis part
of the report seems to be done with Androguard and pro-
vides different information such as the required permis-
sions, the components, the use of reflection, cryptogra-
phy, etc. The dynamic analysis part lists the observed
behavior during the execution: started services, accessed
files, use of sensitive functions and connection to remote
servers. Such information gives an insight on the na-
ture of the application but is useless to determine how to
launch the malicious code of a malware sample.

2.3 Online services

Some analysis services are provided online for commer-
cial or research purposes. They are mainly developed
to detect Android malware and potentially harmful ap-
plications but can also give a better understanding of an
application.

One of them, Verify Apps, is the service used by
Google to scan applications submitted on Google Play
and applications installed on users’ devices. Google does
not provide any technical detail on their service but ac-
cording to their report on Android security for 2014 [8],
their tool uses a mix of static analysis and dynamic analy-
sis. The goal of the analysis is to extract multiple features
of the application and decide if it is potentially harm-
ful by comparing these features with the ones used by
known malware. For instance, the service compares the
developer’s signature with known signatures that are as-
sociated with malicious developers or malicious applica-
tions. The report provided by Google gives an insight
on the type of security threats but lacks details on how
these threats are executed. Unfortunately, the results of
the analysis are not publicly available which makes the
service not useful for research purposes.

Andrubis [12] is an online service that analyzes An-
droid applications statically and dynamically to de-
tect malicious behaviors using a combination of Taint-
Droid [7], Androguard, apktool and have analyzed more
than 1,000,000 applications. Lastly, VirusTotal is an on-
line scanning platform that uses 54 antiviruses and 61
online scan engines to perform analysis on files uploaded
on its web page or sent by email. It uses several tools to
perform the analysis, such as Androguard to disassemble
and decompile APK packages, and Cuckoo sandbox to
dynamically analyze an execution.

We claim that these platforms give very basic informa-
tion and are not sufficient to understand deeply malware.
We believe that every research team conduct apart their
own reverse analysis. It is a huge amount of work which
is often redone and thus has to be gathered and published.
Thus, the description of a malware dataset is a comple-
mentary approach to online analysis tools.

Table 1: Malware of the Kharon dataset
Malware Description Known

SHA 256 hash value Samples

BadNews Remote administration tool (Contagio) 15
[16] 2ee72413370c543347a0847d71882373c1a78-

a1561ac4faa39a73e4215bb2c3b

SimpleLocker Ransomware (Contagio) 1
[13] 8a918c3aa53ccd89aaa102a235def5dcffa04-

7e75097c1ded2dd2363bae7cf97

DroidKungFu Remote admin. tool (Genome project) 34
[10] 54f3c7f4a79184886e8a85a743f31743a0218-

ae9cc2be2a5e72c6ede33a4e66e

MobiDash Agressive adware (Koodous) 4
[6] b41d8296242c6395eee9e5aa7b2c626a2-

08a7acce979bc37f6cb7ec5e777665a

SaveMe Spyware (Contagio) 1
[11] 919a015245f045a8da7652cefac26e71808b2-

2635c6f3217fd1f0debd61d4330

WipeLocker Data eraser (Contagio) 1
[5] f75678b7e7fa2ed0f0d2999800f2a6a66c717-

ef76b33a7432f1ca3435b4831e0

Cajino Spyware (Contagio) 4
[18] 31801dfbd7db343b1f7de70737dbab2c5c664-

63ceb84ed7eeab8872e9629199

3 Seven malware under a microscope

In this section, we present a detailed analysis of seven
malware. We randomlly studied a lot of malware (more
than 30) and selected the ones that were not too obfus-
cated or using ciphering techniques. We choosed recent
ones that have been known to have been widespread on
user’s smartphones. These seven malware cover most of
the known types of malware [19]: Aggressive adware,
Fee paying services malicious usage, Ransomware, Re-
mote Administration Tool, Spyware and Data Eraser.
When studying each malware candidate for representing
a type, we excluded the malware that are too obfuscated
or encrypted to be reversed engineered in a reasonable
time. We followed the advices of Rossow et al. [17] in or-
der to support any future experiments: the dataset is bal-
anced, cleaned and studied in a controlled sandbox (cor-
rectness); the experiment setup and malware list is doc-
umented (transparency); malware are executed in a real
smartphone and sufficiently stimulated (realism); chosen
malware have no network spread capabilities (safety).

For each malware presented in Table 1, we indicate
its provenance in order to help researchers to rebuild the
dataset2. We conducted a two step analysis in order to
precisely describe their malicious code and their trig-
gering condition. In a first part, we have manually re-
versed the bytecode and inspected it. This static anal-
ysis helps us to locate where the malicious code is and
learn how it can be triggered. In a second part we did
a dynamic analysis, triggered the previously identified
malicious code and thus monitored all the malicious be-

3

haviors. We performed the experiment on a Nexus S with
Android 4.0 Ice Cream Sandwich to which we added An-
droBlare (further details below). We rooted our device
and installed the Superuser3 application if the application
requires root privileges. Our monitoring process consists
in dynamically tracking where information belonging to
the analyzed sample spread during its execution and then
building what we call a System Flow Graph to observe
the malicious behavior of Android malware [2]. The in-
formation flow tracking is done thanks to AndroBlare4,
a tool that tracks at system level the information flow be-
tween system objects such as files, processes and sock-
ets. The produced directed graph represents the observed
information flows: it is a compact and human-readable
representation of the observed malware activities cap-
tured by AndroBlare. The vertices are the information
containers such as files and the edges are the information
flows observed between these information containers.

3.1 BadNews, a remote administration tool
Badnews [16] is a remote administration tool dis-
covered in April 2013. Its malicious final charge
depends on commands received from a remote
server. The malicious code is located in the pack-
age com.mobidisplay.advertsv1. Its behavior can be
divided into three distinguished stages:

Stage 1: Malicious service setup and sensitive data
recovery. Badnews starts at the reception of the
BOOT_COMPLETED intent or the PHONE_STATE intent. When
one of these intents is received, the service AdvService
is started. On creation, this service collects information
about the device such as the IMEI, the device model, the
phone number and the network operator. Finally, this
service sets up an alarm manager that is in charge of
broadcasting an intent for the receiver AReceiver. This
receiver will restart AdvService every four hours with an
intent containing an extra data named update and set to
true.

final AlarmManager aM = this.getApplicationContext().
getSystemService("alarm");

final PendingIntent broadcast = PendingIntent.getBroadcast((
Context)this, 0, new Intent(this, AReceiver.class),
134217728);

aM.cancel(broadcast);
final long elapsedRealtime = SystemClock.elapsedRealtime();
aM.setRepeating(3, elapsedRealtime, 14400000L, broadcast);

Stage 2: Notify the C&C server of the avail-
ability of the device. Badnews transforms the de-
vice into a slave of a C&C server located at
http://xxxplay.net/api/adv.php5. When AdvService is
restarted with the extra data update set to true, it creates
a thread which executes a function named getUpdate().

This function contacts the server and begins with send-
ing an HTTP post request with the sensitive information
collected on creation.

Stage 3: Execute the service order. The function
getUpdate() then receives an answer from the server,
which contains one of the following orders: 1) Open an
URL; 2) Create a notification with an URL to open; 3) In-
stall a shortcut that will open an URL; 4) Download and
install an APK file 5) Create a notification with an APK
file to download and install 6) Install a shortcut that will
download an APK; 7) Update the primary or secondary
server address. The APK files that might be installed
are potentially malicious. During our observations, the
server sent a malicious version of Doodle Jump and a
fake version of Adobe Flash that seems to be a game.

Triggering Condition. As the malware requires a
server to obey commands, we built a fake server and
forged the commands. For example, for implement-
ing a fake install command of another malware (mal-
ware2.apk), we create a file index.html containing:

{"status" : "install",
"sound" : 0,
"vibro" : 0,
"apkname" : "Malware2",
"url" : "http://192.168.0.10/malware2.apk"}

where 192.168.0.10 is the address of the local com-
puter. We serve this file using a python web server.
For substituting the server url in badnews.apk, we un-
pack the APK, substitute http://xxxplay.net/api/adv.php
by 192.168.0.10/index.html, repack it again, and sign the
new APK:

$ apktool d badnews.apk # Then edit the smali files
$ apktool b badnews -o new_badnews.apk
$ jarsigner -verbose -keystore ~/.android/debug.keystore -

storepass android -keypass android new_badnews.apk
androiddebugkey

Then we install the new APK and force the service to
avoid waiting 4 hours:

$ adb install new_badnews.apk
$ adb shell am startservice ru.blogspot.playsib.savageknife/com.

mobidisplay.advertsv1.AdvService -ez update 1

3.2 SimpleLocker, a ransomware

Simplelocker [13] is a ransomware discovered in 2014.
It encrypts user’s multimedia files stored in the SD card.
The original files are deleted and the malware asks a ran-
som to decrypt the files. Our sample displays instructions
in Russian. Simplelocker communicates with a server
hidden behind a Tor network to receive orders, for exam-
ple the payment confirmation.

4

Figure 1: Information flows induced by an execution of
SimpleLocker

Simplelocker relies on the execution of three main
independent processes. First, rg.simplelocker runs the
graphical interface, the main service and the different
repetitive tasks. Second, libprivoxy.so and tor are two
processes that give access to the Tor network.

Stage 1: Malicious code execution. SimpleLocker
waits for the BOOT_COMPLETED intent. When it occurs, it
starts a service located in the MainService class. Start-
ing the main activity with the launcher also starts the ser-
vice. The service takes a WakeLock on the phone in order
to get the device running the malware even if the screen
goes off. Then, it schedules two repetitive task executors
(MainService$3 and MainService$4) and launches a new
thread (MainService$5). All these jobs are executed in
the main process rg.simplelocker.

Stage 2: Communication with a server via Tor. A
task executor MainService$3, launched every 180 sec-
onds, sends an intent TOR_SERVICE to start the TorSer-
vice class. If Tor is already up, the TorSender class is
called to send the IMEI of the phone using the service.
The TorService class is a huge class that setups executa-
bles: it copies and gives executable permission to the
files libprivoxy.so and libtor.so that come from the APK.
The libprivoxy.so process is executed calling from the
MainService class as shown below:

final String[] array = { String.valueOf(this.filePrivoxy.
getAbsolutePath()) + " " + new File(this.appBinHome, "
privoxy.config").getAbsolutePath() + " &" };

TorServiceUtils.doShellCommand(array, sb, false, false);

The libprivoxy.so process listens for HTTP requests on
the port 9050. It is an HTTP proxy that filters and cleans
the request generated and received by the tor client.

Stage 3: User’s data encryption. In the MainSer-
vice$5 thread, the malware encrypts all the multimedia
files and deletes the original ones:

for (final String s : this.filesToEncrypt) {
aesCrypt.encrypt(s, String.valueOf(s) + ".enc");
new File(s).delete(); }

The used algorithm is AES in CBC mode with PKCS#7
padding. The encryption key is a constant in the code:
we were able to generate a modified version of this mal-
ware where we have forced the decryption of the files.

The repetitive task MainService$4, checks in the
SharedPreferences the value DISABLE_LOCKER: if set,
the malware knows that the victim has paid. If not, it
restarts the Main activity that displays a fullscreen Rus-
sian message informing the user that its files have been
encrypted and asking for a ransom.

Triggering Condition. To trigger the malware, launch
the application or reboot the device.

Information flow observations. Figure 1 shows
that SimpleLocker is constituted of four indepen-
dent processes (ellipses). The main process named
rg.simplelocker writes the encrypted version of the multi-
media files (*.enc). The process named tor is the process
that communicates through the Tor network, using five
sockets (stars). Four of them are nodes of the Tor circuit
used to reach the server and the fifth is the interface used
to send and receive messages. The libprivoxy.so process
is the HTTP proxy used in combination with Tor.

3.3 DroidKungFu1, a remote admin tool
DroidKungFu1 is a malware discovered in the middle of
2011 that is able to install an application without any no-
tification to the user. We have included this malware
in our dataset because it is a well known malware that
presents interesting features. We do not give a lot of de-
tails about it and we refer the reader to [10, 3].

The malicious code of the malware is included into the
package com.google.ssearch that contains four classes.
The most important class is SearchService.class. The
malware also comes with 4 noteworthy assets : gjsvro, an
encrypted version of the udev exploit, ratc, an encrypted
version of the exploit Rage Against The Cage, legacy, an

5

APK file that contains a fake Google Search application,
and killall, a ratc wrapper.

Stage 1: Setup of a countdown. DroidKungFu waits
the BOOT_COMPLETED intent to start the service Search-
Service. When the service starts for the first time, it
writes the current time in an XML file stimestamps.xml
and stops itself. Every time SearchService is restarted, it
checks if the elapsed time between the time of the restart
and the time of stimestamps.xml exceeds four hours.

Stage 2: Installation of a fake Google Search app.
When the period of four hours has expired, the malware
collects sensitive information about the device (the IMEI,
the device model, the phone number, the SDK version,
memory size, network information) and tries to use the
Exploid or RATC exploits. If it fails, it tries to use the su
binary to become root. Then it extracts an APK from the
asset legacy. This APK file is placed into the directory
/system/app and further detected by system_server as
a new application to be installed.

Stage 3: Executing the C&C server commands.
Then, the malware or the fake Google Search app can
receive commands from a remote server. This way, if the
originating infected app is removed, the malware can still
be able to receive commands through the fake Google
Search app. The commands can be: install or delete any
package, start an application or open a web page.

Triggering Condition. To trigger this malware, install
the application, launch it once and reboot the phone.
Then you need to execute the following command:

adb pull /data/data/com.allen.mp/shared_prefs/sstimestamp.
xml

Modify the value start to 1 and push back the file in the
phone. After that, just reboot the phone again.

3.4 MobiDash, an adware

MobiDash [6] is an adware discovered in January 2015.
Hidden behind a functional card game, it displays un-
wanted ads each time the user unlocks the screen. To
evade dynamic analysis tools, the malware waits sev-
eral days before executing its malicious code. For that
purpose the malware uses three internal states, namely
None, Waiting and WaitingCompleted. The default state
is None. The malware switches from None to Waiting
when rebooted and reaches the state WaitingCompleted
after a fixed countdown. Finally, it starts to display ads.

Stage 1: Bootstrapping the configuration. When
the application is launched for the first time, the ac-
tivity com.cardgame.durak.activities.ActivityStart is cre-
ated and it calls the InitAds() function from the MyAdAc-
tivity class. This triggers a bootstrap procedure in which
the file res/raw/ads_settings.json is read. This file
contains information about the malware configuration,
and in particular, contains the server to be contacted
and the time to wait before triggering (called Over-
appStartDelaySeconds). In our sample, the server is
http://xxx.mads.bz6 and the delay is 24 hours. All
these parameters are then saved in the SharedPreferences
and the malware has reached the state None.

Stage 2: From state None to Waiting. Once the de-
vice is rebooted, the BOOT_COMPLETED intent is received
by the DisplayCheckRebootReceiver and it triggers the
ping() function from the AdsOverappRunner class. This
function checks the internal state of the malware and ex-
ecutes a specific function for each case.

final AdsOverappRunner.State state = getState(context);
switch (
$SWITCH_TABLE$mobi$dash$overapp$AdsOverappRunner$State

()[state.ordinal()]) {
case 1: {

startWait(context);
break;

}
case 2: {

checkForCompleted(context);
break;

}
case 3: {

startAds(context);
break;

}
}

If the state is None, it calls the startWait() function
which changes the internal state into Waiting, saves the
current time in the SharedPreferences and setups two
alarms. The first (resp. second) alarm is used to re-
trigger the DisplayCheckRebootReceiver every 15 min-
utes (resp. 24 hours).

protected static void startWait(final Context context) {
setState(context, AdsOverappRunner.State.Waiting);
setWaitStartTime(context, System.currentTimeMillis());
DisplayCheckRebootReceiver.setupPingAlarms(context);
DisplayCheckRebootReceiver.setupPingAlarmOne(context

, (long)(AdsExtras.getOverappStartDelaySeconds
()*1000+1000)); }

Stage 3: From state Waiting to WaitingCompleted.
The next call to ping() (with the Waiting state) will ex-
ecute the checkForCompleted() function. This function
checks if the delay has expired, changes the state to Wait-
ingCompleted and calls the startAds() function. star-
tAds() starts the service DisplayCheckService that re-
quest ads to the server and display them. Additionally,

6

the service sets up an alarm, as done in startWait(), in or-
der to restart itself every 15 minutes. It also dynamically
registers two receivers:
protected void setupUserPresent() {

this.registerReceiver(this.screenOffReceiver, new
IntentFilter("android.intent.action.SCREEN_OFF")
);

this.registerReceiver(this.userPresentReceiver, new
IntentFilter("android.intent.action.
USER_PRESENT")); }

The first receiver requests new ads each time the
screen turns off by calling the requestAds() function. The
second receiver displays an ad each time the user unlocks
the screen by calling the showLink() function.

Additional features. When reversing the malware, we
observed that the class HomepageInjector changes the
browser homepage and the class AdsShortcutUtils in-
stalls launcher shortcuts. During our observations, none
of these features have been activated.

We also observed that our malware sample contains
a lot of different lawful Advertising Service SDK: Ad-
Buddiz, AdMob, Flurry, MoPub, Chartboost, Play-
Haven, TapIt and Moarbile. Nevertheless, the mal-
ware main activity (ActivityMain$11) only uses Ad-
Buddiz, AdMob and Chartboost. To finish, log files
about all the downloaded malicious ads are stored
in the folder data/data/com.cardgame.durak/files
/mobi.dash.history/active/. These logs contain in-
formation such as the requests to the server.

Triggering Condition. First, the application must be
launched a first time and the device must be rebooted
in order to reach the state WaitingCompleted. Then, by
setting waitStartTime to 0 in the XML file of the direc-
tory /data/data/com.cardgame.durak/shared_prefs/
com.cardgame.durak_preferences.xml and rebooting
again, the malicious code is triggered. The smartphone
must be rebooted promptly after modifying the file, for
example by pushing it with adb, in order to avoid the
malware to overwrite the modification.

Information flow observations. We give in Figure 2
the full graph of MobiDash as an example of a malware
that generates a lot of system events. The main pro-
cess cardgame.durak reads the file ads_settings.json
to configure itself and connects to a large amount of IP
addresses. Some of those IP are contacted by the origi-
nating game itself to retrieve fair ads and most of them
are contacted by the malware to download malicious ads.
The IP addresses shared between cardgame.durak and
android.browser are connections opened when aggres-
sive ads are displayed in fullscreen in a webview. We
notice that the malware saves its history in a local direc-
tory, producing a lot of log files.

3.5 SaveMe, a spyware
SaveMe [11] is a spyware discovered in January 2015.
It presents itself as a standalone application that is sup-
posed to backup contacts and SMS messages. SaveMe
seems to be a variant of another malware known as So-
cialPath [14]. The application has been available on
Google Play before being removed.

Stage 1: Sensitive data recovery. When the appli-
cation is launched, it asks to the user his name and
phone number and saves these inputs in its local database
user_info4. In background, the activity collects the de-
vice’s MAC address, network operator name and ISO
country code. Those information are then all sent to
a master server, located at http://xxxxmarketing.com7

(no longer available).
The visible part of the application offers features such

as: add or delete a contact, save or restore your phone-
book, save all your SMS messages and write a SOS
message that will be sent to all your contacts in case
your phone has been stolen. If you choose to save
your messages, the application will save all the content
of content://sms/inbox and content://sms/sent in its
local database user_info and send it to the server.

Stage 2: Execute the master commands. In paral-
lel, when the application is launched, a service named
CHECKUPD is started (it also starts each time the de-
vice is rebooted). This service is used as a handshake be-
tween the device and the server. It executes three Async-
Task namely sendmyinfos(), sendmystatus() and send-
data() for dialoging with the server. After those ex-
changes, the main service GTSTSR is executed. The pur-
pose of this service is to contact the server in order to
get commands to be executed. Depending on the answer
given by the server, the service can perform different ac-
tions as detailed below.

First, it can send a text message to any number given
by the server. We believe that this can be used for pre-
mium services as stated in [14].

if (GTSTSR.Mac.equals(this.address) && GTSTSR.
Send_ESms.equals("SESHB")){

new update().var(this.address,"","SESFK","","","","","");
SmsManager.getDefault().sendTextMessage(GTSTSR.

EXT_SMS, null, GTSTSR.SMS, null, null);
return; }

The service can also make a call by starting a ser-
vice named RC. This service displays a WebView on the
screen, probably to hide the call and makes a call to a
potentially premium number given by the server [14].

Intent localIntent = new Intent("android.intent.action.CALL");
localIntent.setData(Uri.parse("tel:" + EXT_CALL));
intent.addFlags(268435456); intent.addFlags(4);
this.startActivity(intent);

7

Figure 2: Information flows induced by an execution of MobiDash

8

After few moments, the service ends the call, removes
the WebView and deletes the call in the call log by calling
the function DeleteNumFromCallLog().

final Uri parse = Uri.parse("content://call_log/calls");
contentResolver.delete(parse, "number=?", new String[]{s});

GTSTSR can also start a service named CO which
will automatically fetch all the contacts of the victim
and send them to the server. The main difference com-
pared with the official feature of the application (except
that there is no need to click on a button) is that CO
will also steal contacts stored in the SIM card by read-
ing content://icc/adn. Contacts are then stored in the
database user_info before being sent.

The last feature provided by GTSTSR is the sending of
text messages to victim’s contacts by starting the service
SCHKMS. The service checks the database user_info,
picks one contact and sends him a message. This feature
is used for spreading the malware via SMS containing a
link [14]. Of course, the service deletes the SMS from
the logs in order to hide it to the victim.

To finish with this malware, we observed a piece of
code in the activity pack which allows the app to remove
its icon from the launcher, in order to hide itself. This
way, the victim may forget to uninstall the application.
Nevertheless, this activity is never used in this sample.

this.getPackageManager().setComponentEnabledSetting(this.
getComponentName(),
COMPONENT_ENABLED_STATE_DISABLED,
DONT_KILL_APP);

Triggering Condition. To trigger this malware it is
sufficient to use the application icon or to reboot the de-
vice. Internet must be enabled for the malware to start.

3.6 WipeLocker, a blocker and data eraser
WipeLocker [5] is a malware discovered in September
2014. It blocks some social apps with a fullscreen hack-
ing message and wipes off the SD card. It also sends
SMS messages to victim’s contacts. It might be an app
for helping the sell of antivirus.

The malware presents itself as a fake Angry Bird
Transformers game. Once the application is launched,
the main activity performs three actions.

Stage 1: Starting the malicious service. The ap-
plication first starts the service IntentServiceClass
that can also be triggered by the BOOT_COMPLETED
event. This service schedules the execution of
MyServices.getTopActivity() every 0.5s and MySer-
vices.Async_sendSMS() every 5s. getTopActivity()
checks the current foreground activity: if it is a social
app like Facebook, Hangouts or WhatsApp, it displays a

fullscreen image "Obey or Be Hacked", making impos-
sible to use those apps. MyServices.Async_sendSMS() is
an AsyncTask that sends a text message every 5s to all
the victim’s contacts: "HEY!!! <contact_name> Elite
has hacked you.Obey or be hacked".

Stage 2: Activating the device admin features. The
second action of the malware is to ask the user to activate
the device administration features of the app [9]. If the
user declines, the app will ask again, over and over, until
the user accepts to do so. Administration features allow
an application to perform sensitive operations such as
wiping the device content or enforcing a password secu-
rity policy. The file res/xml/device_admin_sample.xml
declares the operations the application intends to handle.
The content of this file is however empty, which means
that the application will not handle any sensitive opera-
tions: the purpose of this stage is to make the app much
harder to uninstall because device administrators cannot
be uninstalled like normal apps. If the user accepts, the
app closes itself and remove its icon from the launcher.

Stage 3: Wiping off the SD card. The last action per-
formed by the malware is the deletion of all the files and
directories of the external storage. Even if the user de-
clined the device administration features, the function
wipeMemoryCard() is called. This function uses Envi-
ronment.getExternalStorageDirectory() to get the path of
the external storage, and then calls File.listFiles() for it-
erating on files and deleting each of them.

Stage 4: Intercepting SMS. A last feature that comes
with the malware is the interception of incoming SMS. It
is simply a receiver named SMSReceiver that is triggered
by the SMS_RECEIVED intent. When an SMS is received,
the malware automatically answers to the sender with
the message "Elite has hacked you.Obey or be hacked".
The victim is not notified by the system about any in-
coming SMS because the receiver has a high priority
(2147483647 in the manifest) and calls abortBroadcast()
just after reading the message.

Triggering Condition. The icon launcher triggers all
the features. A reboot of the device triggers the service.

3.7 Cajino, a spyware

Cajino is a spyware discovered in March 2015. Its par-
ticularity is to receive commands via Baidu Cloud Push
messages. In addition to alternative markets, samples
were downloadable on the Google Play store with more
than 50.000 downloads.

9

Stage 1: Registration. The application must be
launched at least one time. When it occurs, in the on-
Create() function, a registration procedure of the Baidu
API is executed in order to make the phone able to receive
Push messages from the remote server.

if(!Utils.hasBind(this.getApplicationContext())){
PushManager.startWork(this.getApplicationContext(),
0, Utils.getMetaValue((Context)this, "api_key")); }

At the same time, the MainActivity displays an empty
WebView and a dialog box pops up asking for an update
with a "Yes" or "No" choice, with no code behind.

Stage 2: Receiving Push messages. The malware has
a receiver named PushMessageReceiver. It can react to
these intents broadcasted by Baidu services:

com.baidu.android.pushservice.action.MESSAGE
com.baidu.android.pushservice.action.RECEIVE
com.baidu.android.pushservice.action.notification.CLICK

When a Push message is received, PushMessageRe-
ceiver starts BaiduUtils.getFile() which checks if the
device is concerned by the incoming message, and if
so, starts BaiduUtils.getIt() to execute the right com-
mand. The commands are designed to: steal the con-
tacts, steal the call logs, steal all SMS (inbox and sent),
get the last known location of the device, steal sensitive
data (IMEI, IMSI, phone number), list all data stored
on the external storage. For each of these features,
the malware first stores the results in files written into
/sdcard/DCIM/Camera/ before uploading them to the re-
mote server. The malware can also send SMS to any
phone number given by the server, upload to the server
or delete any file stored on the external storage.

In some other versions, e.g. ca.ji.no.method2, more
features are available. For example it can record the mi-
crophone with a MediaRecorder during a period of time
given by the server:

BaiduUtils.recorder.prepare(); BaiduUtils.recorder.start();
Thread.sleep(int1 * 1000);
BaiduUtils.recorder.stop(); BaiduUtils.recorder.release();

It can also download an APK file into the directory
/sdcard/update/ and install it on the device:

private static void installApk(final Context context, String
str) {

str = Environment.getExternalStorageDirectory()
+ "/update/update.apk";

final Intent intent = new Intent("android.intent.action.VIEW");
intent.addFlags(268435456);
intent.setDataAndType(Uri.fromFile(new File(str)),

"application/vnd.android.package−archive");
context.startActivity(intent); }

The last feature of Cajino is a classical call to a number
given by the server, not hidden from the user. That makes
a total of 12 distinct features the malware can perform.

Triggering Condition. Launch the app to trigger the
registration, then you need to wait for a Push message
from the remote server. If you want to force the execu-
tion of a command, for example for listing the files of
/sdcard/, send an intent with adb:

adb shell am broadcast -a com.baidu.android.pushservice.action
.MESSAGE --es message_string "all list_file"

3.8 Dataset summary and usage
Table 2 gives an overview of the studied malware. For
each of them, we recall their protection against dynamic
analysis and give the main actions for defeating these
protections. These remediation techniques will support
the reproducibility of future research experiments.

We have used our dataset to evaluate the performances
of GroddDroid [1], a tool for triggering malicious behav-
iors that targets suspicious methods. On four of them, the
targeted methods were automatically triggered. On Mo-
biDash, a method with benign code were targeted (false
positive) and on SimpleLocker, GroddDroid had a crash.
This example shows that documented dataset helps to
measure if a proposed method works fine. Of course,
for larger datasets, an other approach should be used to
compute the false positive/negative results, but the use of
Kharon dataset gives an opportunity to carefully check if
a tool works as expected.

4 Conclusion

In this article, we have proposed to initiate the construc-
tion of a dataset of seven Android malware that illustrate
as much as possible existing malware behaviors. These
malware are recent, from 2011 to 2015. For all of them
we detailed their expected behavior, isolated the mali-
cious code and we observed their actions in a controlled
smartphone. All these materials can be found online on
the Kharon website.

An important result of this study is that these malware
present a pool of techniques to hide themselves from dy-
namic analyzers. Thus, we explain how to trigger their
malicious code in order to increase the reproducibility of
research experiments that need malware execution.

We continue to supply the dataset and additional de-
scriptions of malware can be read. We also propose to
other actors of the community to enlarge this dataset.
For that purpose, we encourage researchers to gather
their experience by signaling us their own documenta-
tion about reversed android malware. We will be pleased
to integrate any contribution. This way, we hope that this
effort will bring new inputs for the research community
and will become a reference dataset for precise and re-
producible malware analysis.

10

Table 2: Malware dataset summary

Type Name Discovery Protection against dynamic Analysis Details for
→ Remediation reproducibility

Remote Admin Tool Badnews 2013
Obeys to a remote server and delays the attack

Section 3.1→ Modify the apk
→ Build a fake server

Ransomware SimpleLocker 2014 Waits the reboot of the device Section 3.2→ send a BOOT_COMPLETED intent

Remote Admin Tool DroidKungFu 2011 Delayed Attack Section 3.3→ Modify the value start to 1 in sstimestamp.xml

Adware MobiDash 2015 Delayed Attack
→ Launch the infected application, reboot the device Section 3.4

and modify com.cardgame.durak_preferences.xml

Spyware SaveMe 2015 Verifies the Internet access Section 3.5→ Enable Internet access and launch the application

Phone Blocker + Data Eraser WipeLocker 2014 Delayed Attack Section 3.6→ Press the icon launcher and reboot the device

Spyware Cajino 2015 Obeys to a remote server Section 3.7→ Simulate the remote server by sending an intent

Future works deal with comparing these seven mal-
ware with larger datasets in order to build automatic
classification techniques. Moreover, for advanced mal-
ware that implement sophisticated protections such as
obfuscation or ciphering, new investigations should be
designed in order to link the static analysis of the code
with dynamic analysis.

5 Most important malicious functions

In the following, we give the most 5 most important func-
tions of each malware. It may help researchers to check
that their experiment successfully executes the malicious
code.

Badnews

com.mobidisplay.advertsv1.AdvService.fillPostData()
com.mobidisplay.advertsv1.AdvService.onStartCommand(final

Intent intent, final int n, final int n2)
com.mobidisplay.advertsv1.AdvService.startUpdater()
com.mobidisplay.advertsv1.AdvService.sendRequest(String string

)
com.mobidisplay.advertsv1.AReceiver.onReceive(Context context

, Intent intent)

SimpleLocker

org.simplelocker.MainService.onCreate()
org.simplelocker.MainService$4.run()
org.simplelocker.TorSender.sendCheck(final Context context)
org.simplelocker.FilesEncryptor.encrypt()
org.simplelocker.AesCrypt.AesCrypt(final String s)

DroidKungFu

com.google.ssearch.SearchService.onCreate()
com.google.ssearch.SearchService.updateInfo()
com.google.ssearch.SearchService.cpLegacyRes()
com.google.ssearch.Utils.decrypt(final byte[] input)

com.google.ssearch.Utils$PkgManager.deleteApp(final Context
context, final String str)

MobiDash

myutils/activity/MyAdActivity.InitAds(int n, ChartboostDelegate
chartboostDelegate, int n2)

mobi/dash/overapp/AdsOverappRunners.ping(final Context
context)

mobi/dash/overapp/AdsOverappRunners.startWait(final Context
context)

mobi/dash/overapp/AdsOverappRunners.checkForCompleted(
final Context context)

mobi/dash/overapp/DisplayCheckService.setupUserPresent()

SaveMe

com.savemebeta.GTSTSR.CHECK()
com.savemebeta.RC.callnow()
com.savemebeta.LogUtility.DeleteNumFromCallLog(final

ContentResolver contentResolver, final String s)
com.savemebeta.CO.allSIMContact()
com.savemebeta.SCHKMS.fetchContacts()

WipeLocker

com.elite.MainActivity.onCreate(final Bundle bundle)
com.elite.MainActivity.wipeMemoryCard()
com.elite.MyServices.Async_sendSMS.doInBackground(Void ...

arrvoid)
com.elite.MyServices.getTopActivity(final Context context)
com.elite.MainActivity.HideAppFromLauncher(final Context

context)

Cajino

ca.ji.no.method3.MainActivity.onCreate(Bundle bundle)
ca.ji.no.method3.BaiduUtils.getIt(final String s, final

Context context)
ca.ji.no.method3.BaiduUtils.getLocation(final Context context

, final String s)
ca.ji.no.method3.BaiduUtils.sendSMS(final String s, final

String s2)
ca.ji.no.method2.BaiduUtils.installApk(final Context context,

String string)

11

6 Availability

All malware descriptions and graphs can be accessed
online at:

http://kharon.gforge.inria.fr/dataset

7 Acknowledgments

This work has received a French government support
granted to the COMIN Labs excellence laboratory and
managed by the National Research Agency in the "In-
vesting for the Future" program under reference ANR-
10-LABX-07-01.

We would like to thank the research engineers and en-
gineering students of the Cyber Security Master of Cen-
traleSupélec and Telecom Bretagne, who participated
to the reverse engineering of the dataset. Our special
thanks go to Radoniaina Andriatsimandefitra, Béatrice
Bannier, Sylvain Bale, Etienne Charron, Loïc Cloatre,
Marc Menu, Guillaume Savy.

References
[1] ABRAHAM, A., ANDRIATSIMANDEFITRA, R., BRUNELAT, A.,

LALANDE, J.-F., AND VIET TRIEM TONG, V. GroddDroid:
a Gorilla for Triggering Malicious Behaviors. In 10th Inter-
national Conference on Malicious and Unwanted Software (Fa-
jardo, Puerto Rico, oct 2015), IEEE Computer Society, pp. 119–
127.

[2] ANDRIATSIMANDEFITRA, R., AND VIET TRIEM TONG, V.
Capturing Android Malware Behaviour using System Flow
Graph. In 8th International Conference on Network and System
Security (Xi’an, China, Oct. 2014), M. H. Au, B. Carminati, and
C.-C. J. Kuo, Eds., Springer International Publishing, pp. 534–
541.

[3] ARSENE, L. An android malware analysis: Droidkungfu,
Nov. 2012. http://www.hotforsecurity.com/blog/an-
android-malware-analysis-droidkungfu-4474.html.

[4] ARZT, S., RASTHOFER, S., FRITZ, C., BODDEN, E., BARTEL,
A., KLEIN, J., LE TRAON, Y., OCTEAU, D., AND MCDANIEL,
P. FlowDroid: Precise Context, Flow, Field, Object-sensitive and
Lifecycle-aware Taint Analysis for Android Apps. In ACM SIG-
PLAN Conference on Programming Language Design and Im-
plementation (Edinburgh, UK, jun 2014), vol. 49, ACM Press,
pp. 259–269.

[5] CHRYSAIDOS, N. Android WipeLocker - Obey or be
hacked, Sept. 2014. http://www.virqdroid.com/2014/09/
android-wipelocker-obey-or-be-hacked.html.

[6] CHYTRY, F. Apps on google play pose as games
and infect millions of users with adware, Feb. 2015.
https://blog.avast.com/2015/02/03/apps-on-
google-play-pose-as-games-and-infect-millions-
of-users-with-adware/.

[7] ENCK, W., GILBERT, P., CHUN, B.-G., COX, L. P., JUNG, J.,
MCDANIEL, P., AND SHETH, A. N. TaintDroid: an information-
flow tracking system for realtime privacy monitoring on smart-
phones. In 9th USENIX Symposium on Operating Systems De-
sign and Implementation (Vancouver, BC, Canada, Oct. 2010),
USENIX Association, pp. 393–407.

[8] GOOGLE. Android security 2014 year in review. https:
//static.googleusercontent.com/media/source.
android.com/en//devices/tech/security/reports/
Google_Android_Security_2014_Report_Final.pdf.

[9] GOOGLE. Device administration. https://developer.
android.com/guide/topics/admin/device-admin.html.

[10] JIANG, X. Security alert: New sophisticated android mal-
ware droidkungfu found in alternative chinese app markets,
May 2011. http://www.csc.ncsu.edu/faculty/jiang/
DroidKungFu.html.

[11] LINDEN, J. The privacy tool that wasn’t: SocialPath malware
pretends to protect your data, then steals it, Jan. 2015. https:
//blog.lookout.com/blog/2015/01/06/socialpath/.

[12] LINDORFER, M., NEUGSCHWANDTNER, M., WEICHSEL-
BAUM, L., FRATANTONIO, Y., VAN DER VEEN, V., AND
PLATZER, C. Andrubis - 1,000,000 Apps Later: A View on Cur-
rent Android Malware Behaviors. In 3rd International Workshop
on Building Analysis Datasets and Gathering Experience Returns
for Security (Wroclaw, Poland, Sept. 2014).

[13] LIPOVSKY, R. ESET analyzes first android file-
encrypting, TOR-enabled ransomware, June 2014. http:
//www.welivesecurity.com/2014/06/04/simplocker/.

[14] NEMCOK, M. Warning: Mobile privacy tools “socialpath” and
“save me” are malware, Jan. 2015. http://blog.lifars.
com/2015/01/11/warning-mobile-privacy-tools-
socialpath-and-save-me-are-malware/.

[15] PARKOUR, M. Contagio mobile, 2012. http://
contagiominidump.blogspot.fr/.

[16] ROGERS, M. The bearer of BadNews, Mar. 2013.
https://blog.lookout.com/blog/2013/04/19/the-
bearer-of-badnews-malware-google-play/.

[17] ROSSOW, C., DIETRICH, C. J., GRIER, C., KREIBICH, C.,
PAXSON, V., POHLMANN, N., BOS, H., AND VAN STEEN, M.
Prudent practices for designing malware experiments: Status quo
and outlook. In IEEE Symposium on Security and Privacy (San
Francisco Bay Area, CA, USA, may 2012), IEEE Computer So-
ciety, pp. 65–79.

[18] STEFANKO, L. Remote administration trojan using baidu cloud
push service, Mar. 2015. http://b0n1.blogspot.fr/2015/
03/remote-administration-trojan-using.html.

[19] ZHOU, Y., AND JIANG, X. Dissecting android malware: Char-
acterization and evolution. In IEEE Symposium on Security and
Privacy (San Francisco Bay Area, CA, USA, may 2012), IEEE
Computer Society, pp. 95–109.

Notes
1https://github.com/secure-software-engineering/

DroidBench
2We warn the readers that these samples have to be used for research

purpose only. We also advise to carefully check the SHA256 hash of
the studied malware samples and to manipulate them in a sandboxed
environment. In particular, the manipulation of these malware impose
to follow safety rules of your Institutional Review Boards.

3https://play.google.com/store/apps/details?id=
com.noshufou.android.su

4https://www.blare-ids.org
5We intentionally anonymized this URL
6We intentionally anonymized this URL
7We intentionally anonymized the URL

12

http://kharon.gforge.inria.fr/dataset
http://www.hotforsecurity.com/blog/an-android-malware-analysis-droidkungfu-4474.html
http://www.hotforsecurity.com/blog/an-android-malware-analysis-droidkungfu-4474.html
http://www.virqdroid.com/2014/09/android-wipelocker-obey-or-be-hacked.html
http://www.virqdroid.com/2014/09/android-wipelocker-obey-or-be-hacked.html
https://blog.avast.com/2015/02/03/apps-on-google-play-pose-as-games-and-infect-millions-of-users-with-adware/
https://blog.avast.com/2015/02/03/apps-on-google-play-pose-as-games-and-infect-millions-of-users-with-adware/
https://blog.avast.com/2015/02/03/apps-on-google-play-pose-as-games-and-infect-millions-of-users-with-adware/
https://static.googleusercontent.com/media/source.android.com/en//devices/tech/security/reports/Google_Android_Security_2014_Report_Final.pdf
https://static.googleusercontent.com/media/source.android.com/en//devices/tech/security/reports/Google_Android_Security_2014_Report_Final.pdf
https://static.googleusercontent.com/media/source.android.com/en//devices/tech/security/reports/Google_Android_Security_2014_Report_Final.pdf
https://static.googleusercontent.com/media/source.android.com/en//devices/tech/security/reports/Google_Android_Security_2014_Report_Final.pdf
https://developer.android.com/guide/topics/admin/device-admin.html
https://developer.android.com/guide/topics/admin/device-admin.html
http://www.csc.ncsu.edu/faculty/jiang/DroidKungFu.html
http://www.csc.ncsu.edu/faculty/jiang/DroidKungFu.html
https://blog.lookout.com/blog/2015/01/06/socialpath/
https://blog.lookout.com/blog/2015/01/06/socialpath/
http://www.welivesecurity.com/2014/06/04/simplocker/
http://www.welivesecurity.com/2014/06/04/simplocker/
http://blog.lifars.com/2015/01/11/warning-mobile-privacy-tools-socialpath-and-save-me-are-malware/
http://blog.lifars.com/2015/01/11/warning-mobile-privacy-tools-socialpath-and-save-me-are-malware/
http://blog.lifars.com/2015/01/11/warning-mobile-privacy-tools-socialpath-and-save-me-are-malware/
http://contagiominidump.blogspot.fr/
http://contagiominidump.blogspot.fr/
https://blog.lookout.com/blog/2013/04/19/the-bearer-of-badnews-malware-google-play/
https://blog.lookout.com/blog/2013/04/19/the-bearer-of-badnews-malware-google-play/
http://b0n1.blogspot.fr/2015/03/remote-administration-trojan-using.html
http://b0n1.blogspot.fr/2015/03/remote-administration-trojan-using.html
https://github.com/secure-software-engineering/DroidBench
https://github.com/secure-software-engineering/DroidBench
https://play.google.com/store/apps/details?id=com.noshufou.android.su
https://play.google.com/store/apps/details?id=com.noshufou.android.su
https://www.blare-ids.org

	Introduction
	Related works
	Android security basics
	Malware datasets
	Online services

	Seven malware under a microscope
	BadNews, a remote administration tool
	SimpleLocker, a ransomware
	DroidKungFu1, a remote admin tool
	MobiDash, an adware
	SaveMe, a spyware
	WipeLocker, a blocker and data eraser
	Cajino, a spyware
	Dataset summary and usage

	Conclusion
	Most important malicious functions
	Availability
	Acknowledgments

