
HAL Id: hal-01312973
https://centralesupelec.hal.science/hal-01312973v1

Submitted on 21 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Regrets, learning and wisdom
Damien Challet

To cite this version:
Damien Challet. Regrets, learning and wisdom. The European Physical Journal. Special Topics,
2016, 225 (17-18), pp.3137 - 3143. �10.1140/epjst/e2016-60122-y�. �hal-01312973�

https://centralesupelec.hal.science/hal-01312973v1
https://hal.archives-ouvertes.fr


Regrets, learning and wisdom

Damien Challet
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Abstract

This contribution discusses in what respect Econophysics may be able
to contribute to the rebuilding of economics theory. It focuses on ag-
gregation, individual vs collective learning and functional wisdom of the
crowds.

1 Introduction

A good starting point to rebuild an economic theory is to use agent-based
models that include learning, interaction and networks [29, 7, 8, 4]. This
framework is a natural meeting point for Economics and Physics (and
Psychology and Biology and Computer Science and ...), which already
hints that Econophysics is only part of the solution.

Statistical Physics’s strength comes from its familiarity with collective
phenomena. Aggregating the non-linear actions of many interacting in-
dividuals leads to remarkable global phenomena and great mathematical
simplifications [36, 39]. Whether the outcome is optimal for the agents or
the system is of central importance. This contribution argues that learn-
ing and optimality may occur at various levels, may be either implicit or
explicit, and that Econophysics would be wise to incorporate some more
ideas from Neuroscience, Computer Science and Experimental Psychology.

Let me start with a few generic remarks about the difference of ap-
proaches to data analysis and modelling in Econophysics and Economics
or Finance.

2 Interdisciplinary communication

The grass in other fields seems not only greener but also disconcerting at
times. This, of course, works both ways.
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Figure 1: Starlings flocking and a line. Original image source: Wikipedia.org

2.1 Statistics

In their 10-year old worries about Econophysics [21], Gallegati, Keen,
Lux and Ormerod pinpointed the general disregard of econophysicists for
Statistics, and rightly so. The spontaneous reaction of physicists is/was
to assume to have collected enough data to dispense with statistical tests
and tables. The situation has much changed in this respect. Confidence
intervals of estimates are not unheard of nowadays. Physicists not only
use some statistical tools, but even propose new statistics [44, 35, 12, 23].

2.2 Star(t)ling fits

The abundance of linear fits in Economics and Finance papers often puz-
zles physicists. Let me discuss what model fitting implies generically.
Measuring something is equivalent to projecting a system into a sub-space.
A good example is that of a picture taken by a camera: it is projection
of a 3+1-dimensional world into a 2-dimensional world. In addition, the
position of the camera is also of crucial importance. Figure 1 shows of a
flock of bird. For centuries, people have puzzled about the 3-dimensional
structure of such flocks, before it was realized that these clouds were dy-
namical two-dimensional objects, i.e., ribbons [10]. Had anyone been able
to ask a bird what the shape was like from the inside, the shape of star-
lings’ flocks would be have been known a long time ago. In short, placing
oneself in the right space is a necessary condition for meaningful fits.

Taking linear regressions against a few well-known factors is the same
thing as taking a picture from a limited number of popular standpoints.
Say that one wishes to analyse the performance of a collection of hedge
funds. A questionable approach is to project their performance in the
space spanned by the few Fama-French factors [18] and then argue that
hedge funds trade on such and such factors. This is inherently incom-
plete and very unlikely to yield real understanding of what drives hedge
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funds performance. What one really needs to do is to reverse-engineer
the performance of hedge funds. This requires to place one self in a space
that encompasses all likely used trading strategies, or equivalently, to de-
fine factors as the returns of a variety of these strategies. Reference [46]
is mostly successful in replicating the returns of several thousand funds,
except two: the feeder fund of Madoff, which lived in a fantasy world,
and Capital Fund Management Stratus Fund because the chosen strategy
space did not include the strategies of that particular fund, which resulted
in an meaningless projection.

Fitting any kind of model, however more sophisticated, to data is a
projection. For example, calibrating a simple agent-based model [28] to
financial data based on a moment method is a double projection, i.e., a
double dimensionality reduction: from the data to moments and from the
model to moments [1]. Model and data meet in a third space. This may
yield an incomplete fit, which therefore may not be more efficient than
other approaches. This leads us to microscopic models.

3 Lurking Ising models

Initially, econophysicists tried to apply the models they were most familiar
with to financial or economic situations, which sometimes was hair-raising,
even for some physicists. There is indeed no reason why financial markets
should be exactly equivalent to a gas of electrons, even if some random
power-law exponent seems right. This was deeply worrying. Much has
changed since then.

The case of the Ising model is less controversial, if only because it is
equivalent to Schelling’s model [40] and because it is easy to see why it
is quite likely to appear in discrete-choice agent-based models. It also
illustrates the variety of what a classical spin may describe in other con-
texts.1 The simplest idea of course is to map the two possible values of a
classical spin to two opposite decisions, which seems natural for investors
[14, 25, 6]. Another possibility is to map two alternative possibilities to
the two spin values: Ref. [37] proposes a test for the presence of social im-
itation in the choice between two alternative possibilities. The key point
is that this test is based on exact results from mean-field random-field
Ising model and consists in non-linear relationships between two quanti-
ties, all of which would be impossible to guess a priori. In other words,
analytically tractable aggregation provides much more than moments of
intellectual satisfaction.

Yet, all the above models are built as Ising models from scratch: ac-
tions are directly mapped to classical spins. Assuming instead that the
binary choice is which strategy to use also leads to disordered spin mod-
els: agents with very limited possible actions in a complex world are able
to optimise a global quantity, which can be written as a mean-field spin
Hamiltonian [13] where the disorder comes from agents’ heterogeneity.
When binary choices are involved in interacting agent models, it is hard
to avoid Ising models.

1For a review of the Ising model in Econophysics, see [41] and references therein.
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4 Learning

4.1 Microscopic learning

Whereas Logit learning is often found in Econophysics literature, surpris-
ingly few other types of learning have been investigated. There lies much
potential to establish bridges with other disciplines. First, computer sci-
entists have also applied learning to finance [15]. More generically, in a
Markovian context, Q-learning rests on the assumption that the system
may be classified in a finite number of states by the agents and converges
towards the optimal policy [45]. Computer scientists duly applied this
scheme to the Minority Game, for example, defining a state as either
which strategy was used, or the previous correct decision. Although this
is not discussed in their papers, such dynamics seem to converge to a Nash
equilibrium (e.g. [2]). Methods from Statistical Physics are without any
doubt able to tackle this kind of learning scheme.

Another central question is what to learn. The current consensus in
Neuroscience is that we learn to regret what we did not do and that a kind
of Q-learning describes well how the brain works [38]. In the context of
financial markets, this reinforces bubbles and crashes [33]. Indeed, when
the price of an asset has an apparent trend, investors that do own any
shares of the said asset regret not to have invested earlier, which triggers
their investment. Reversely, when they are invested in an asset whose
price begins to fall, they regret not to have closed their positions earlier.

Finally, Econophysicists have incorporated remarkably few well-known
behavioural biases in their models, as they often assume that agents are
risk-neutral. True, there are many reasons why one should use the expo-
nential or logarithmic utility functions with about a ton of salt. However,
it is surprising that even Prospect Theory [27] is nowhere to be seen in
our agent-based models. By contrast, in their beautiful paper [3], Bar-
beris et al. further simplify Prospect Theory with linear approximations,
keeping the crucial feature that losses are about twice as painful as gains
for agents, and a reference point which is a moving average of past wealth.
Prospect Theory hence requires to distinguish between gains and losses
in the agent payoff equation updates, which inevitably leads to additional
complications.

Adding a pinch of Prospect theory in our agent-based models is doable.
For example, asymmetric gains and losses can be included in the Minority
Game and turn out to be another cause for the emergence of large fluctu-
ations [5]. There is little doubt that De Dominicis generating functionals
[17] can accomodate Prospect Theory in more complex agent-based mod-
els.

5 Systemic learning

The Darwinian force in financial markets that makes them adaptive sys-
tems has long been noted [19, 48, 32]. It does not imply however that the
agents themselves are adaptive (e.g. that speculative funds calibrate their
strategies in real-time). Indeed, at a global level (and at long time scales),
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the relative importance of a single agent or of a sub-population of agents
may evolve because of competitive processes (for food, wealth, price pre-
dictability, etc.): fitness selection is an indirect form of global learning
(see e.g. [20]). As a result, even economic systems with zero-intelligence
agents undergo a global learning process provided that some kind of se-
lection is performed, as reflected by replicator equations in Evolutionary
Game Theory [47]. This does not systematically result in a measurable
global optimality.

There are cases, however, where a single global quantity is fairly well
optimised, sometimes for obvious reasons (e.g. financial predictability).
This is the Vox Populi [22], or Widsom of Crowds [42] effect: the aggrega-
tion of inconsistent opinions may lead to consistent aggregate estimates.
Although well-known historical examples are really about estimating a
single outcome such as the position of a lost craft or the weight of some
object, the power of aggregation extends to much more generic situations.

Ensemble learning such as Random Forests [9] apply this idea to classi-
fication and regression problems. The latter kind of problem implies that
an ensemble of imperfect learners may correctly learn functional relation-
ships, a much more difficult task. The implication for Economics is that
the many textbook noiseless “laws”, for example between price and excess
demand, may be valid at an aggregate level. In other words, the clearly
too simplistic economic intuition exposed in standard textbooks are in
fact quite noisy relationships,. In passing the noise may be due in part to
the heterogeneity of economic entities. A most striking illustration of how
to extend these “theories” comes from a work on Marseilles Fish Market
[24]: one of its figures plots the price paid for a type of fish as a function of
the quantity sold for many transactions. A cloud of point emerges. Only
when local averages are taken does emerge a relationship similar to those
predicted by usual economic theories. More recently, collective portfolio
optimisation in the presence of a complex transaction cost structure was
found in brokerage data [16].

The conditions under which collective learning may occur are still un-
clear and provide a nice challenge for the years to come [34, 11] and
certainly one which Physicists can contribute to. Finding more examples
of wisdom of the crowds will also be part of the fun. Beyond the average
behavior, the origin and role of heterogeneity in the dynamics of these
systems are complementary research topics.

6 Conclusion

The question is not if Economics can become a physical science, but how
to make it a science. 20 years of multidisciplinary research have convinced
me that it will not be enough to sprinkle economic theory with a few more
mechanistic ingredients and to take a slightly less axiomatic approach. A
famous speech by Jean-Claude Trichet called for help from a wide range
of hard and soft sciences [26]. Only the combination of Biology, Exper-
imental Psychology, Computer Science and Physics is likely to make a
difference. It is hard to disagree with this point of view [29, 7, 8, 41, 4].

Using common tools and concepts will certainly help achieving better
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cooperation. Agent-based models, learning and networks certainly qualify
as common grounds. A good example of cooperation between economists
and physicists is the European CRISIS project, which lead to substan-
tial scientific cross-fertilization. More sophisticated tools of Statistical
Physics such as generating functionals are nowadays used by mathemat-
ical economists, which is great news, but, expectedly, only by the most
mathematically minded, very much as in Physics. Mean-field games [31]
will also contribute to establish bridges between Physics and Economics
(see e.g. [43]).

With regards to whether less open-minded economists will accept the
resulting new economic thinking, there are many reasons to be optimistic.
Each economic crisis is an Economics crisis [29], and leads to more realistic
models. For example, the 2008 crisis has triggered much interest in real
networks and self-excited processes (e.g. [30]).

Let us build it and they will use it.
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