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Pour évaluer les possibilités d'évacuation d'un bâtiment lors d'un incendie, une méthode standard consiste à simuler la propagation d'un incendie, au moyen de modèles de type différences finies, et en prenant en compte le comportement aléatoire du feu, de sorte que le résultat d'une simulation est non-déterministe. La finesse du maillage détermine la qualité du modèle numérique, ainsi que son coût de calcul. En fonction de la taille des mailles, une seule simulation peut durer entre quelques minutes et quelques semaines. Dans cet article, nous cherchons à prédire le comportement du simulateur à une maille fine, à partir de résultats moins coûteux, à des mailles plus grossières. Dans la littérature de la conception et de l'analyse d'expériences numériques, on parle d'approche multi-fidélité. Notre contribution est d'étendre au cas de simulateurs stochastiques du modèle bayésien multi-fidélité proposé par Picheny et Ginsbourger (2013) et Tuo et al. (2014).

Introduction

Fire Dynamics Simulator (FDS) is a numerical simulator developed by the National Institute of Standards and Technology, that is used to simulate the propagation of fire in a building, and assess its conformity to fire safety standards. Fire Dynamics Simulator is based on a finite difference method, that takes into account the random behavior of fire propagation. Consequently, the outputs of Fire Dynamics Simulator are stochastic. Using smaller mesh size increases the quality of a simulation with respect to the physical reality, but also increases the computational cost (see Table 1). Thus, the mesh size controls a trade-off between speed and fidelity. In other words, Fire Dynamics Simulator is a multi-fidelity simulator.

Our work aims at estimating the behavior of Fire Dynamics Simulator at a very fine mesh, with a limited computational budget, using the result of simulations carried out using coarser mesh sizes. To do this, we use a Bayesian approach, where we construct a model of the output of Fire Dynamics Simulator as a function of the mesh size. Following [START_REF] Marc | Predicting the output from a complex computer code when fast approximations are available[END_REF] and others, our approach is based on Gaussian process modeling.

Section 2 shows how to extend Bayesian multi-fidelity models proposed by [START_REF] Picheny | A nonstationary space-time gaussian process model for partially converged simulations[END_REF] and [START_REF] Rui Tuo | Surrogate modeling of computer experiments with different mesh densities[END_REF] in the case of deterministic simulators, to deal with the case of stochastic simulator. Section 3 presents numerical results to assess the quality of our new model.

Model for multi-fidelity

To formalize, consider n input-output pairs of a stochastic simulator with a tuning parameter, ((x i , t i ) , Z i ) 1≤i≤n ∈ (X × T) × R, where X ⊂ R d and T ⊂ R + . The outputs Z i are supposed to be realizations of random variables, following distributions P x i ,t i . The results are mutually independent. In order to simplify, the distributions P x i ,t i are assumed to be Gaussian distributions, with means ξ (x i , t i ), and variances λ (x i , t i ) :

Z i ∼ N (ξ (x i , t i ) , λ (x i , t i )) .
(1)

To simplify, λ is supposed to depend only on t : λ (x, t) = λ (t). Besides, we add a Gaussian prior distribution on the mean process, ξ. We assumed that ξ ∼ GP (m, k). The prior distributions of ξ and λ are independent. Mesh size t (cm) 100 50 33.33 25 20 Duration of one simulation (h) 1/12 1 6 20 54

Table 1: Approximate duration of one run of Fire Dynamics Simulator, on the example presented in Section 3, as a function of the tuning parameter.
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A popular model for the process ξ was developed by [START_REF] Marc | Predicting the output from a complex computer code when fast approximations are available[END_REF] : it is a recursive model, built in the case of finite number of levels, which links two successive Gaussian processes by a autoregressive relationship, AR (1). However, this model is not well-suited to a simulator with a continuous tuning parameter. Indeed, even if this model can be extended for any number of levels [START_REF] Le | Multi-fidelity Gaussian process regression for computer experiments[END_REF], the number of covariance parameters increases strongly with the number of levels. Also, this model does not actually use the value of the tuning parameter, t.

For these reasons, another modeling was recently developed by Picheny and Ginsbourger ( 2013) and [START_REF] Rui Tuo | Surrogate modeling of computer experiments with different mesh densities[END_REF]. They supposed that an ideal simulator can be thought up by setting the tuning parameter to an extreme value (t = 0). Then, the process ξ can be written as

ξ (x, t) = ξ 0 (x) + ε (x, t) , ( 2 
)
where ξ 0 models this ideal simulator, and ε represents a deterministic numerical error, independent of ξ 0 , which decreases when t tends to 0 : lim t→0 E ε (x, t) 2 = 0. Following this decomposition, the covariance function of ξ, k, is the sum of two covariance functions :

k ξ 0 (x, x ′ ) + k ε ((x, t) , (x ′ , t ′ )). Two assumptions are made : first, the covariance function k ε is separable, k ε ((x, t) , (x ′ , t ′ )) = r (t, t ′ ) k Xε (x, x ′ ),
then, the two spatial covariance functions, k ξ 0 and k Xε are stationary. We choose anisotropic Matérn covariance functions for both. The correlation r is chosen as a function of Brownian covariance function: r (t, t ′ ) = min {t, t ′ } L , L a positive real parameter.

The mean of ξ, m, is supposed constant, with an improper uniform prior distribution on R.

Finally, in order to improve the estimation of the observation variances, particularly on costly levels, we add a prior distribution on (λ (t)) t∈T . This prior distribution describes two ideas : values of λ (t) are not precisely-known a priori, so Var [λ (t)] are large; but the variances are alike, so Var [λ (t) λ (t ′ )] are small. Finally, a log-normal prior is chosen :

(ln [λ (t)]) t∈T ∼ N ln (λ prior ) 1, ς 2 I d + s 2 1 , (3) 
with λ prior equals to 1% of the range of the output; 1 is the vector of ones; I d the identity matrix; 1 the square matrix of ones; s 2 = ln (10

) 2 ≫ ς 2 = (ln (2) /3) 2 .
Finally, our multi-fidelity non-stationary model is built as follows : The parameter m is integrated out analytically. All other parameters, (λ (t)) t∈T , L and the hyper-parameters of k ξ 0 and k Xε , are estimated by maximization of the joint posterior density (MAP estimation).

(Z i ) 1≤i≤n ξ, (λ (t)) t∈T ∼ N (ξ (x i , t i )) 1≤i≤n , diag (λ (t i )) 1≤i≤n ; ξ ∼ GP (m, k) ; m (x, t) = m ∼ U R ; k ((x, t) , (x ′ , t ′ )) = k ξ 0 (x -x ′ ) + min {t, t ′ } L k Xε (x -x ′ ) ; (ln [λ (t)]) t∈T ∼ N ln (λ prior ) 1, ς 2 I d + s 2 1 . ( 4 

Numerical results

We consider a parallelepiped building, with two doors and two windows, simulated with Fire Dynamics Simulator. We study the maximal temperature in the building, T c t (x), as function of d = 8 inputs (external temperature, fire area. . . ).

The model presented in Section 2 is called multi-fidelity non-stationary model and denoted by M-F 1 . Our objective here is to compare it to two other models. The first model is similar to (4), but uses a stationary anisotropic Matérn covariance function on X × T. This model, called multi-fidelity stationary model and denoted by M-F 2 , is a simplification of the multi-fidelity non-stationary model. The second model is built only from the most accurate level of the simulator. This model, called high-fidelity model and noted H-F., serves as a reference value.

Two datasets have been built for this numerical experiment (see Table 2). The first one is built with 400 simulations, at different mesh sizes. It is used to build both multi-fidelity models (M-F 1 and M-F 2 ). The second one consists of 100 simulations at t = 20 cm. It is used to build the high-fidelity model H-F., and also for validation.

The results of prediction are presented on Figure 1. On the left, figures show a comparison between predictions (posterior means) and observations. For the high-fidelity model, predictions are made by leave-one-out cross-validation. On the right, the densities of normalized residuals are compared with the probability density function of the normal distribution. Overall, the two multi-fidelity models present a goodness-of-fit similar to that of the high-fidelity model, which is our reference. On closer inspection, it appears that both multi-fidelity models-and most particularly the multi-fidelity stationary model-actually underestimate T c for high values. However, the standard deviations of the densities of residuals are close to one, suggesting that posterior variances are neither too large, nor too thin.

Finally, we consider the problem of estimating the probability P X (T c 20cm (x) > 60°C) that the output temperature exceeds a critical threshold (here, 60°C), where P X is a probability distribution of the input space X. Such a probability is useful for fire engineers to assess the safety of the building. Figure 2 presents different estimations of a posterior probability density function of probability of exceeding the threshold. These densities are estimated with n sim = 1000 conditional random simulations on n pts = 5000 inputs. The high-fidelity model yields the narrowest posterior distribution. The multi-fidelity stationary model also yields a small posterior uncertainty, but the support of the density of the probability of exceeding the threshold does not agree with that of the high-fidelity model. Our model has a larger posterior variance, but is compatible with the reference model, and has been obtained using less computational resources.

(P X (T c 20cm > 60°C)) M-F 1 M-F 2 H-F.

Conclusion

To conclude, we have proposed an extension of the model of [START_REF] Picheny | A nonstationary space-time gaussian process model for partially converged simulations[END_REF][START_REF] Picheny | A nonstationary space-time gaussian process model for partially converged simulations[END_REF][START_REF] Rui Tuo | Surrogate modeling of computer experiments with different mesh densities[END_REF] to the case of stochastic simulators. Our numerical results show that the proposed model makes it possible to predict the behavior of a stochastic multi-fidelity simulator at high fidelity, from simulations at low fidelities. We believe that this is a promising approach, particularly in the domain of fire safety. Future research will concentrate on fully Bayesian estimation of the parameters of the model, and sequential design of experiment in order to achieve a more accurate estimation of the probability of exceeding the threshold, using a limited computational budget for additional simulations.
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 1 Figure 1: Results on prediction of level 20 cm, by the three models. From left to right, multi-fidelity non-stationary model (M-F 1 ); multi-fidelity stationary model (M-F 2 ); high-fidelity model (H-F.). Left : predictions versus observations; dashed line : first bisector (y = x). Right : Estimation of the probability density function of the normalized residuals ∆ T c 20cm ; dashed line : probability density function of normal distribution.
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 2 Figure 2: Estimations of the posterior function of P X (T c 20cm > 60°C). These densities are estimated with n sim = 1000 conditional random simulations on n pts = 5000 inputs.

Table 2 :

 2 ) Summary of designs used for comparison. n points : number of points.

	Kind of design	Multi-fidelity design	High-fidelity design
	Property	Nested	Latin Hypercube
	Observations	t (cm) 100 50 33 25 20 n points 270 90 30 10 0	t (cm) 100 50 33 25 20 n points 0 0 0 0 100
	Speed	≈ 11 faster	1 (reference)