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Résumé. Pour évaluer les possibilités d’évacuation d’un bâtiment lors d’un incendie,
une méthode standard consiste à simuler la propagation d’un incendie, au moyen de
modèles de type différences finies, et en prenant en compte le comportement aléatoire du
feu, de sorte que le résultat d’une simulation est non-déterministe. La finesse du maillage
détermine la qualité du modèle numérique, ainsi que son coût de calcul. En fonction de
la taille des mailles, une seule simulation peut durer entre quelques minutes et quelques
semaines. Dans cet article, nous cherchons à prédire le comportement du simulateur à
une maille fine, à partir de résultats moins coûteux, à des mailles plus grossières. Dans la
littérature de la conception et de l’analyse d’expériences numériques, on parle d’approche
multi-fidélité. Notre contribution est d’étendre au cas de simulateurs stochastiques du
modèle bayésien multi-fidélité proposé par Picheny et Ginsbourger (2013) et Tuo et al.
(2014).

Mots-clés. Expériences numériques, Processus gaussien, Multi-fidélité, Sécurité in-
cendie

Abstract. To assess the possibility of evacuating a building in case of a fire, a standard
method consists in simulating the propagation of fire, using finite difference methods and
takes into account the random behavior of the fire, so that the result of a simulation is
non-deterministic. The mesh fineness tunes the quality of the numerical model, and its
computational cost. Depending on the mesh fineness, one simulation can last anywhere
from a few minutes to several weeks. In this article, we focus on predicting the behavior of
the fire simulator at fine meshes, using cheaper results, at coarser meshes. In the literature
of the design and analysis of computer experiments, such a problem is referred to as multi-
fidelity prediction. Our contribution is to extend to the case of stochastic simulators the
Bayesian multi-fidelity model proposed by Picheny and Ginsbourger (2013) and Tuo et al.
(2014).

Keywords. Numerical experiments, Gaussian process, Multi-fidelity, Fire safety
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1 Introduction

Fire Dynamics Simulator (FDS) is a numerical simulator developed by the National In-
stitute of Standards and Technology, that is used to simulate the propagation of fire in
a building, and assess its conformity to fire safety standards. Fire Dynamics Simulator
is based on a finite difference method, that takes into account the random behavior of
fire propagation. Consequently, the outputs of Fire Dynamics Simulator are stochastic.
Using smaller mesh size increases the quality of a simulation with respect to the physical
reality, but also increases the computational cost (see Table 1). Thus, the mesh size con-
trols a trade-off between speed and fidelity. In other words, Fire Dynamics Simulator is
a multi-fidelity simulator.

Our work aims at estimating the behavior of Fire Dynamics Simulator at a very fine
mesh, with a limited computational budget, using the result of simulations carried out
using coarser mesh sizes. To do this, we use a Bayesian approach, where we construct a
model of the output of Fire Dynamics Simulator as a function of the mesh size. Follow-
ing Kennedy and O’Hagan (2000) and others, our approach is based on Gaussian process
modeling.

Section 2 shows how to extend Bayesian multi-fidelity models proposed by Picheny
and Ginsbourger (2013) and Tuo et al. (2014) in the case of deterministic simulators, to
deal with the case of stochastic simulator. Section 3 presents numerical results to assess
the quality of our new model.

2 Model for multi-fidelity

To formalize, consider n input-output pairs of a stochastic simulator with a tuning param-
eter, ((xi, ti) , Zi)1≤i≤n ∈ (X × T) × R, where X ⊂ R

d and T ⊂ R
+. The outputs Zi are

supposed to be realizations of random variables, following distributions Pxi,ti
. The results

are mutually independent. In order to simplify, the distributions Pxi,ti
are assumed to be

Gaussian distributions, with means ξ (xi, ti), and variances λ (xi, ti) :

Zi ∼ N (ξ (xi, ti) , λ (xi, ti)) . (1)

To simplify, λ is supposed to depend only on t : λ (x, t) = λ (t). Besides, we add a
Gaussian prior distribution on the mean process, ξ. We assumed that ξ ∼ GP (m, k). The
prior distributions of ξ and λ are independent.

Mesh size t (cm) 100 50 33.33 25 20
Duration of one simulation (h) 1/12 1 6 20 54

Table 1: Approximate duration of one run of Fire Dynamics Simulator, on the example pre-
sented in Section 3, as a function of the tuning parameter.
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A popular model for the process ξ was developed by Kennedy and O’Hagan (2000) : it
is a recursive model, built in the case of finite number of levels, which links two successive
Gaussian processes by a autoregressive relationship, AR (1). However, this model is not
well-suited to a simulator with a continuous tuning parameter. Indeed, even if this model
can be extended for any number of levels (Le Gratiet, 2013), the number of covariance
parameters increases strongly with the number of levels. Also, this model does not actually
use the value of the tuning parameter, t.

For these reasons, another modeling was recently developed by Picheny and Gins-
bourger (2013) and Tuo et al. (2014). They supposed that an ideal simulator can be
thought up by setting the tuning parameter to an extreme value (t = 0). Then, the
process ξ can be written as

ξ (x, t) = ξ0 (x) + ε (x, t) , (2)

where ξ0 models this ideal simulator, and ε represents a deterministic numerical error,
independent of ξ0, which decreases when t tends to 0 : limt→0 E

[

ε (x, t)2
]

= 0.
Following this decomposition, the covariance function of ξ, k, is the sum of two covari-

ance functions : kξ0
(x, x

′) + kε ((x, t) , (x′, t′)). Two assumptions are made : first, the
covariance function kε is separable, kε ((x, t) , (x′, t′)) = r (t, t′) kXε (x, x

′), then, the two
spatial covariance functions, kξ0

and kXε are stationary. We choose anisotropic Matérn
covariance functions for both. The correlation r is chosen as a function of Brownian
covariance function: r (t, t′) = min {t, t′}L, L a positive real parameter.

The mean of ξ, m, is supposed constant, with an improper uniform prior distribution
on R.

Finally, in order to improve the estimation of the observation variances, particularly
on costly levels, we add a prior distribution on (λ (t))t∈T

. This prior distribution describes
two ideas : values of λ (t) are not precisely-known a priori, so Var [λ (t)] are large; but the
variances are alike, so Var [λ (t) λ (t′)] are small. Finally, a log-normal prior is chosen :

(ln [λ (t)])t∈T
∼ N

(

ln (λprior) 1, ς2Id + s2
1

)

, (3)

with λprior equals to 1% of the range of the output; 1 is the vector of ones; Id the identity
matrix; 1 the square matrix of ones; s2 = ln (10)2 ≫ ς2 = (ln (2) /3)2.

Finally, our multi-fidelity non-stationary model is built as follows :

(Zi)1≤i≤n ξ, (λ (t))t∈T
∼ N

(

(ξ (xi, ti))1≤i≤n , diag
{

(λ (ti))1≤i≤n

})

;

ξ ∼ GP (m, k) ;

m (x, t) = m ∼ UR;

k ((x, t) , (x′, t′)) = kξ0
(x − x

′) + min {t, t′}L
kXε (x − x

′) ;

(ln [λ (t)])t∈T
∼ N

(

ln (λprior) 1, ς2Id + s2
1

)

.

(4)
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Kind of design Multi-fidelity design High-fidelity design

Property Nested Latin Hypercube

Observations
t (cm) 100 50 33 25 20
npoints 270 90 30 10 0

t (cm) 100 50 33 25 20
npoints 0 0 0 0 100

Speed ≈ 11 faster 1 (reference)

Table 2: Summary of designs used for comparison. npoints : number of points.

The parameter m is integrated out analytically. All other parameters, (λ (t))t∈T
, L and

the hyper-parameters of kξ0
and kXε, are estimated by maximization of the joint posterior

density (MAP estimation).

3 Numerical results

We consider a parallelepiped building, with two doors and two windows, simulated with
Fire Dynamics Simulator. We study the maximal temperature in the building, T c

t (x), as
function of d = 8 inputs (external temperature, fire area. . . ).

The model presented in Section 2 is called multi-fidelity non-stationary model and
denoted by M-F1. Our objective here is to compare it to two other models. The first
model is similar to (4), but uses a stationary anisotropic Matérn covariance function on
X × T. This model, called multi-fidelity stationary model and denoted by M-F2, is a
simplification of the multi-fidelity non-stationary model. The second model is built only
from the most accurate level of the simulator. This model, called high-fidelity model and
noted H-F., serves as a reference value.

Two datasets have been built for this numerical experiment (see Table 2). The first one
is built with 400 simulations, at different mesh sizes. It is used to build both multi-fidelity
models (M-F1 and M-F2). The second one consists of 100 simulations at t = 20 cm. It is
used to build the high-fidelity model H-F., and also for validation.

The results of prediction are presented on Figure 1. On the left, figures show a com-
parison between predictions (posterior means) and observations. For the high-fidelity
model, predictions are made by leave-one-out cross-validation. On the right, the densities
of normalized residuals are compared with the probability density function of the nor-
mal distribution. Overall, the two multi-fidelity models present a goodness-of-fit similar
to that of the high-fidelity model, which is our reference. On closer inspection, it ap-
pears that both multi-fidelity models—and most particularly the multi-fidelity stationary
model—actually underestimate T c for high values. However, the standard deviations of
the densities of residuals are close to one, suggesting that posterior variances are neither
too large, nor too thin.

Finally, we consider the problem of estimating the probability PX (T c
20cm (x) > 60°C)

that the output temperature exceeds a critical threshold (here, 60°C), where PX is a
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Figure 1: Results on prediction of level 20 cm, by the three models. From left to right,
multi-fidelity non-stationary model (M-F1); multi-fidelity stationary model (M-F2); high-fidelity
model (H-F.). Left : predictions versus observations; dashed line : first bisector (y = x). Right :
Estimation of the probability density function of the normalized residuals ∆T c

20cm
; dashed line :

probability density function of normal distribution.

0.3 0.35 0.4 0.45 0.5 0.55 0.6
0

10

20

30

40

50

60

nbSimu = 1e3; nbPtsPerSimu = 5e3

P
ro

b
ab

ili
ty

 d
en

si
ty

 f
u

n
ct

io
n

 o
f 

th
e 

p
ro

b
ab

ili
ty

 o
f 

fa
ilu

re

 

 

p (PX (T c
20cm

> 60°C))

M-F1

M-F2

H-F.

Figure 2: Estimations of the posterior function of PX (T c
20cm > 60°C). These densities are

estimated with nsim = 1000 conditional random simulations on npts = 5000 inputs.
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probability distribution of the input space X. Such a probability is useful for fire engineers
to assess the safety of the building. Figure 2 presents different estimations of a posterior
probability density function of probability of exceeding the threshold. These densities
are estimated with nsim = 1000 conditional random simulations on npts = 5000 inputs.
The high-fidelity model yields the narrowest posterior distribution. The multi-fidelity
stationary model also yields a small posterior uncertainty, but the support of the density
of the probability of exceeding the threshold does not agree with that of the high-fidelity
model. Our model has a larger posterior variance, but is compatible with the reference
model, and has been obtained using less computational resources.

4 Conclusion

To conclude, we have proposed an extension of the model of Picheny and Ginsbourger
(2013) and Tuo et al. (2014) to the case of stochastic simulators. Our numerical results
show that the proposed model makes it possible to predict the behavior of a stochastic
multi-fidelity simulator at high fidelity, from simulations at low fidelities. We believe that
this is a promising approach, particularly in the domain of fire safety. Future research will
concentrate on fully Bayesian estimation of the parameters of the model, and sequential
design of experiment in order to achieve a more accurate estimation of the probability of
exceeding the threshold, using a limited computational budget for additional simulations.
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