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Maximum power extraction on wind turbine systems using
block-backstepping with gradient dynamics control
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In this work, a novel adaptive control scheme that allows driving a stand-alone variable-speed wind turbine
system to its maximum power point is presented. The scheme is based on the regulation of the optimal rotor
speed point of the wind turbine. In order to compute the rotor speed reference, a model-based extremum-
seeking algorithm is derived. The wind speed signal is necessary to calculate this reference, and a novel
artificial neural network is derived to approximate this signal. The neural network does not need off-line
learning stage, because a nonlinear dynamics for the weight vector is proposed. A block-backstepping con-
troller is derived to stabilize and to drive the system to the optimal power point; to avoid singularities, the
gradient dynamics technique is applied to this controller. Numerical simulations are carried out to show the
performance of the controller and the estimator.

KEY WORDS: adaptive control; nonlinear systems; wind turbine systems; wind speed estimation; model-
based extremum-seeking algorithms; renewable energy systems

1. INTRODUCTION

The compromising situation of the environment because of pollution and the high costs of the fossil

fuels have originated new policies and regulations that have stimulated the interest on alternative

energy sources. Many countries around the world have increased in an important way the penetration

of these energy sources [1]. The wind energy conversion system is one of these systems. It converts

wind energy into electricity by means of an electromechanical process.

In recent years, small wind turbines (1–100 kW) have been receiving attention as serious contrib-

utors for powering homes, farms, and small businesses. A class of small wind turbines are those

using surface mount permanent magnets synchronous generators (PMSG) [2].

There exists two types of wind turbine systems (WTS): constant-speed turbine systems and

variable-speed turbine systems (VST). Constant-speed turbine systems operate at fixed rotor speed

and can be connected to the utility grid directly; VST operate at variable rotor speed and need power

converter systems to convert the generated variable-frequency power to the fixed utility grid fre-

quency. VST can work most of the time at maximum power point; also, they present lower loads.

These facts have occasioned that they are preferred in the industry for utility-scale installations [3].

Depending on the wind speed, VST can operate in three regions, as it is shown in Figure 1. The

region 1 is when the wind speed signal is under the cut-in wind speed vmin. A stopped turbine or

*Correspondence to: Fernando Jaramillo-Lopez, Départament de Signaux, Laboratoire des Signaux et Systèmes, Supelec,
Plateau du Moulon, 91192 Gif-sur-Yvette, France.
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Figure 1. Operation regions for variable-speed turbine systems.

a turbine that is just starting up is considered to be operating in this region. No maximization of

efficiency occurs on this region. Region 2 is when wind speed is above vmin but under the rated

value vN . In this region, the main controller task is to increase the efficiency of the WTS, operating

it at its maximum power point (MPP). This is the main operational region. Region 3 is when wind

speed is above vN but under the cut-out wind speed vmax . In this region, the controller task is to

keep the captured power at a fixed or rated value, instead of trying to maximize it. Another important

controller task in this region is to keep the electrical and structural conditions in a safety region.

This is done by varying the blade pitch. When the wind speed signal is above vmax , VST shut-down

in order to preserve the system integrity.

In wind speed estimation-based control, the more usual way to achieve maximum power point

tracking (MPPT) is by calculating the optimal rotor speed reference (ORSR) with the help of an

optimal ratio value that is assumed to be known and the estimation of the wind speed; then the

main problem turns into a regulation control problem. Several ways to estimate the wind speed have

been reported. In [4], an interesting estimator for wind speed was proposed. It uses the immersion

and invariance technique (I&I) to estimate the nonlinearly parametrized wind speed signal. It was

shown that under some conditions based on the power coefficient function and the rotor speed, the

estimator is asymptotically consistent. Artificial neural networks have been used in the identification

of dynamic systems. See [5, 6] for discrete time systems and [7, 8] for continuous systems. In [8],

the authors proposed a framework for time-varying parameter estimation in the continuous time-

domain for a large class of nonlinear systems using a sliding-neural observer. In [9–11] and [12],

the authors used artificial neural networks to estimate the wind speed directly; however, in those

solutions, the node parameters (the weight vector included) need to be calculated off-line with an

extensive set of input vectors. In some real-time conditions, the output of these estimators can be

inaccurate, specially when these conditions were not included in the training input vectors. Also,

in some operating points, the estimators can give wrong estimations of the wind speed signal [10].

In [13], the authors used the mechanical torque equation to estimate the wind speed. First, the

mechanical torque is estimated using a Kalman filter, and then, the wind speed signal is calculated

solving the mechanical torque equation for the wind speed using the Newton algorithm. The main

drawback of this method is the iterative process in the Newton algorithm.

Perturbation-based and model-based extremum-seeking techniques have been used to solve many

practical applications [14–17]. In [18], Guay et al. presented an adaptive extremum-seeking frame-

work that is capable of driving the states of a nonlinear system to the desired set-points that

maximize a given objective function. See that work for a detailed explanation of the model-based

extremum-seeking technique. In that work, it is assumed that the structure of the objective function

is known, but some parameters can be unknown. A controller is derived using the inverse optimal
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design technique. The main drawbacks of that work are that the analysis is done considering con-

stant parameters and a dither signal is added to the controller to help in the convergence of the

estimates to their true values, but this excitation signal is also a perturbation that keeps away the

states from their optimal values. In [14], the authors presented an application of the previous work,

but this time, they assumed that part of the objective function is unknown and they used a neu-

ral network to approximate that part. They used the same technique, and the drawbacks are the

same, but this result is interesting because part of the structure of the objective function can be

considered unknown.

The model-based extremum-seeking technique is used in this paper to calculate the optimal rotor

speed reference. In [19], the authors presented a similar extremum-seeking algorithm to derive the

dynamics of an optimal reference; however, in that work, the analysis was made considering the

dynamics of the plant as linear time-invariant, and the optimal value of the objective function as

time invariant.

Many works have been focused on MPPT control of WTS. Some of them used linear techniques;

however, the dynamics of the wind turbine systems have strong nonlinearities, and the wide range

operation of these systems make that linear techniques are not well suited for this problem.

The main nonmodel-based control algorithms for MPPT control of WTS are the perturb and

observe, hill-climb search, and the perturbation-based extremum-seeking algorithm. See [20–22]

and [23] for a detailed explanation of some of these techniques. The main advantages of these

algorithms are their simplicity and the fact that they do not need the model of the wind turbine

system; however, the main drawback of these nonmodel-based control algorithms is that they work

most of the time in a suboptimal operation point. For example, for the perturb and observe method,

larger step-size means a faster response and more oscillations around the peak point, and hence,

less efficiency; a smaller step-size improves efficiency but reduces the convergence speed [20]. This

method also has the important inconvenience that the torque oscillations produced by the contin-

uously changing operation point could damage the mechanical system, especially if its resonance

frequency is excited [22].

Different authors have faced the MPPT problem neglecting the generator dynamics and using the

electrical torque as an actual control variable; refer to [3] and [4]. Some works have been proposed

that claim the achievement of certain control objectives like those in [24–26] and [27]; but theoretical

stability analysis is not given. In [28], the authors proposed a sensorless robust control scheme of

variable-speed wind turbine systems using the optimal torque control method. See the references

therein for other related control works. Another sensorless control scheme for variable-speed wind

turbine systems was proposed in [29]. In that work, a backstepping controller was derived and

asymptotic stability was proved. In [2], the authors proposed a standard passivity-based controller

(SPBC) that takes into account the generator dynamics and asymptotic stability of the equilibrium

point was proved. This controller works well under slow variations in the wind input signal.

Some works have been proposed for fault detection and fault tolerant control of wind turbine sys-

tems. In [30] and [31], the authors presented two test benchmark models for the evaluation of fault

detection and accommodation schemes for utility-scale wind turbine systems. The implementation

of fault detection and supervisory control strategies for two 600-kW wind turbines at the National

Renewable Energy Laboratory’s National Wind Technology Center was described in [32]. In that

work, the authors shared field experience obtained during the development and field testing of the

existing fault detection system in both turbines. In [33], the author proposed three novel sensor fault

detection and isolation algorithms for wind turbines with doubly fed induction generators.

In this paper, a novel algorithm to compute the ORSR, a new procedure to estimate the

wind speed, and a novel block-backstepping controller with the gradient dynamics technique are

presented and applied to the optimal control of wind turbine systems.

A model-based extremum-seeking algorithm is derived to compute the ORSR; it uses sliding

mode theories to maximize the objective function. Uniform asymptotic stability of the error origin is

proved using Lyapunov arguments. This is done considering that the optimum value in the objective

function is time varying. This analysis is different from the one investigated in most previous works

in extremum seeking that considers the optimum value in the objective function as time invariant.
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The wind speed is calculated using the optimal mechanical torque value that is approximated

with a neural network identifier. This neural identifier is derived based on the work proposed in

[8]; however, no sliding techniques are used, and a nonlinear dynamics is proposed. This neural

identifier is not used to estimate unknown parameters like in [8], neither to estimate the wind speed

directly, but to approximate the unknown mechanical torque signal. The proposed neural network

has a real-time dynamic nonlinear learning law (as opposed to off-line training procedure) of the

weight vector. Uniform asymptotic stability of the error origin is proved using Lyapunov theories.

The nonlinear learning law makes that the neural network can approximate very fast changing data.

In this form, off-line training with extensive input data is not necessary. Also, good accuracy in any

operation condition is guaranteed and continued learning is achieved.

A novel block-backstepping controller is derived to regulate the optimal equilibrium point; and

the main contribution in this part of the adaptive scheme is that to avoid singularities the recent

gradient dynamics technique proposed in [34] is applied. Uniform asymptotic stability of a small

neighborhood of the tracking error origin for the overall system is proved using Lyapunov argu-

ments, and the performance of this controller is compared with a classical PI controller and an SPBC

that was proposed for the same system.

The paper is organized as follows. In Section 2, the mathematical model of the system is presented

and the main problem is stated. The adaptive extremum-seeking algorithm that allows to calculate

the optimal rotor speed reference is explained in Section 3. In Section 4, the procedure to calculate

the wind speed is presented. The block-backstepping controller is derived in Section 5. In Section 6,

numerical simulations for the block-backstepping controller, the PI controller, and the SPBC are

presented and comparisons are made. Section 7 is devoted to conclusions and future research.

2. MATHEMATICAL MODEL AND PROBLEM STATEMENT

The system considered in this paper consists in a small-scale variable-speed wind turbine with

a PMSG generator connected to a battery charging scheme. It is shown in Figure 2. The PMSG

generator is connected to the battery system through a passive rectifier and a DC–DC converter.

The captured power by the wind turbine is given by

Pm D
1

2
��r2Cp.�/v3

w (1)

where � is the density of the air, r is the rotor swept radius, Cp.�/ is the power coefficient, and vw

is the wind speed. � is the tip-speed ratio (TSR) and is given by the following expression:

� ,
r!m

vw

;

where !m is the rotor speed.

The power coefficient data is obtained by experimental measurements or by using blade-element

moment theory, and it depends on the size and geometry of the blades. Some works have been

Figure 2. Wind turbine with surface mount permanent magnets synchronous generators generator.
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proposed to characterize the Cp.�/ expression, like the work presented in [35]. Although the general

characterization of Cp depends not only on � but also on the blade pitch � , the present work aims

to increase the efficiency of WTS in region 2, and � will be considered as fixed, that is, � � 0. The

following characterization, taken from [36], is used in this work.

Cp.�/ D e� cp1
�

�cp2

�
� cp3

�

C cp4� (2)

where cp1 D 21, cp2 D 125:2165, cp3 D 9:7798, and cp4 D 0:0068.

The model of the PMSG generator in the dq framework is given by ([37], [38])

LPid D �Rid C Liq!e � vd ;

LPiq D �Riq � Lid !e C �!e � vq

where id and iq are the dq currents; vd and vq are the dq voltages; R and L are the stator resistance

and inductance, respectively; � is the permanent magnetic flux; and the electric frequency !e is

given by

!e D
P

2
!m;

with P the number of pole pairs.

Because of the topology used, the PMSG current has unity power factor and the dq voltages are

determined by the battery voltage vb and the duty ratio of the DC–DC converter D [2]:

vd D
id

q

i2
d

C i2
q

kdevbD

vq D
iq

q

i2
d

C i2
q

kdevbD

where kde D �

3
p

3
is the diode gain.

The rotor speed dynamics is given by

P!m D
1

J
Tm �

1

J
Te

where J is the rotor inertia; Tm is the mechanical torque and Te is the electrical torque:

Te D
3P

4
�iq :

The mechanical torque is given by the ratio between the captured power and the rotor speed:

Tm D
Pm

!m

D
1

2
��r3 Cp.�/

�
v2

w : (3)

The states of the system are defined by a scaling in the dq currents and the rotor speed:

x ,

�

s1Lid ; s2Liq; s3

2J

3r
!m

�T

where si > 0, i D 1; 2; 3 is an additional scaling factor that helps to increase the region of attraction

of the equilibrium point.
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The model of the overall system is given by

Px D f .x; vw/ C G.x/u (4)

where

f .x; vw/ , Œf1; f2; f3�T ; G.x/ , Œg1; g2; 0�T (5)

and

f1 D �
Rx1

L
C

3PLrs1x2x3

4LJs2s3

(6)

f2 D �
Rx2

L
�

3PLrs2x1x3

4LJs1s3

C
3P �rs2x3

4Js3

(7)

f3 D Tsm.x3; vw/ � g3vx2 (8)

g1 D �
kdevbx1

L
(9)

g2 D �
kdevbx2

L
(10)

g3v D
P �s3

2Lrs2

(11)

with the control signal and the scaled mechanical torque, respectively:

u ,
D

r

�

x1

Ls1

�2

C
�

x2

Ls2

�2

Tsm.x3; vw/ D
2��Js2

3v3
w

9x3

Cp

�

3r2x3

2Js3vw

�

: (12)

It is assumed that the states x 2 R
3 are measured; the model parameters are well known; the

wind speed vw is unknown, and the system is working in region 2, that is, x3 > 0.

2.1. Equilibria and control objective

The main control objective is to regulate the rotor speed to its optimal value and to achieve, in this

way, maximum power extraction. In wind speed estimation-based control (sometimes called TSR

control), the more usual way to calculate the reference for the rotor speed is by using the estimated

wind speed and the optimal TSR. In this work, a different approach is presented. This reference is

calculated using an adaptive extremum-seeking algorithm —which is explained in the next section—

ONx3�.r�Cp/:

The second reference of the equilibria is derived solving (8) for x2:

x2� D
4��LJrs2s3v3

w

9P �x3�
Cp

�

3r2x3�
2Js3vw

�

:
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Figure 3. Block diagram of the wind turbine system.

The first reference for the two equilibrium points is given by solving (6) and (7) for x1:

x1� D
�s1

2
˙

1

2

s

.�s1/2 �
4s2

1x2
2�

s2
2

:

The second equilibrium point (minus sign) will be used to drive the system to the optimal rotor

speed operation point.

2.2. Block diagram

Figure 3 shows the block diagram of the overall wind turbine system. The gray blocks represent

the physical components, whereas the white blocks represent the algorithms. The gray arrows rep-

resent the physical signals, whereas the white arrows represent the information flow between the

algorithms. The model identifier block is composed by the wind speed estimator based in the opti-

mal mechanical torque point, which is explained in Section 4, and the adaptive extremum-seeking

algorithm, which is used to calculate the reference signal for the third state, and is explained in the

next section. This block also calculates the reference signals for the first and second states. This

information, the estimated wind speed signal, and the three signal references, along with the three

measured states, feed the gradient dynamics-block-backstepping controller (GD-BBSC).

3. ROTOR SPEED REFERENCE CALCULATION

In this Section, the model-based extremum-seeking algorithm that allows to calculate the rotor speed

reference is derived as follows.

The objective function is given by the power coefficient function

y , Cp.�f / (13)

with

�f D
3r2x3

2Js3vwf
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and

vwf
,

1

�s C 1
vw

where the wind speed signal in the argument of Cp is filtered. The low-pass filter is added to

eliminate high-frequency components of the wind speed signal caused by wind gusts, as these com-

ponents can be reflected in the control signal causing unnecessary stress on the structure. This filter

is incorporated in the wind speed estimator.

Using the power coefficient (2) given in Section 2, and computing its gradient, yields

h ,
@y

@�f

D
1

�2
f

e
� cp1

�f

�

cp1cp2

�f

� cp2 � cp1cp3

�

C cp4:

In order to calculate the rotor speed reference, we need to maximize the power coefficient function

Cp; this can be done by vanishing its gradient h. The following assumption is necessary to derive

the algorithm.

Assumption 1

There exists a unique �� maximizing the objective function (13) on the compact set �y , that is,

@y.�f /

@�f

ˇ

ˇ

ˇ

ˇ

ˇ

�f D��

D 0;
@2y.�f /

@�2
f

ˇ

ˇ

ˇ

ˇ

ˇ

�f D��

< 0 8 �� 2 �y

@y.�f /

@�f

ˇ

ˇ

ˇ

ˇ

ˇ

�f D��C�

� < 0 8 .�� C �/ 2 �y :

Remark 1

This assumption means that the objective function is strictly convex on a certain interval. The power

coefficient function, in general, always satisfies this assumption, at least for a subset in its domain.

For the power coefficient function given by (2), it is satisfied for all its domain.

Because the wind speed signal in �f is unknown, the following algorithm is proposed to bring

the rotor speed reference to the optimal trajectory:

PONx3� ,

´

kg1sign Oh if j Ohj 6 �x3�

kg2sign Oh otherwise
(14)

where

Oh ,
@y

@�f

ˇ

ˇ

ˇ

ˇ

ˇ

�f DO�

kg i > 0; i D 1; 2. �x3�
> 0; and

O� D
3r2x3

2Js3 Ovw

with Ovw the estimated wind speed, which is derived in the next section.

Two gains (kg i ) are introduced in the present scheme to reduce the chattering problem. The bigger

one is used when the estimated reference is far from its optimal point and the smaller one when the
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estimated reference is in the neighborhood of the optimal point. In order to prove stability of the

estimated reference, consider the following definition and assumption.

Qx3� D x3� � ONx3�

where x3� is the time-varying ideal reference for the third state, which is assumed to be unknown,

and ONx3� is the estimated reference.

Assumption 2

The derivative of the ideal third reference x3� is bounded by a known value:

k Px3�k 6 �x3�

where �x3�
is a known positive number.

If the sliding mode gains are chosen in this way:

kg i > �x3�
; i D 1; 2 (15)

then, the following results.

Lemma 1

Consider the reference given by (14) satisfying assumptions 1, 2 and condition (15), then the origin

of the Qx3� error is uniformly asymptotically stable.

Proof

As it is shown in the next Section, the wind speed estimation error depends on the neural identifier

error e and the tracking error of the third state Qx3: Ovw.e; Qx3/. Considering this fact, the estimated

gradient can be defined as

� D h.�f / � eh.e; Qx3/ (16)

where eh.e; Qx3/ D h.�f / � Oh. O�/ is the gradient error.

Let us define the perturbation set, and its complement, for the estimated reference of the wind

turbine system

�� D
®

� W
ˇ

ˇh.�f /
ˇ

ˇ 6 �
¯

N�� D
®

� W
ˇ

ˇh.�f /
ˇ

ˇ > �
¯

where

� D jeh.e; Qx3/j

is the size of the perturbation. For all � 2 N�� (outside of the perturbation region), Qx3� and the

function sign.�/ have the same signs (Figure 4).

To prove convergence to the sliding surface, consider the following Lyapunov candidate function

V D
1

2
Qx2
3�

its time derivative is

PV D Qx3� PQx3� D � Qx3�
�

kg i sign� � Px3�
�

6 �j Qx3�j
�

kg i � �x3�

�

8 � 2 N��:

Because PV is negative on the boundary of �� , then the set �� is positively invariant. This results

in a sliding mode regime on � D 0 in finite time. Considering this fact, and (16), it results

9



Figure 4. Coefficient power function Cp and third reference variables.

h.�f / D eh.e; Qx3/

where the right side of this equation is the size of the perturbation neighborhood around the optimal

point. In Section 4, it is established that the neural identifier error vanishes asymptotically; also in

Section 5, it is shown that the tracking error Qx3 vanishes in the same way; therefore, it yields

lim
t!1

eh.e; Qx3/ D 0

and

lim
t!1

Oh.e; Qx3/ D h

which means that the power coefficient gradient will reduce until enter in the perturbation region in

finite time, and then it will vanish asymptotically. �

Remark 2

It seems that the assumption about the known �x3�
bound is too strong; in addition, we need this

bound to set the adaptive gains kg i to a bigger value. To explain the significance of this assumption,

first, we need to recall that the physical nature of wind makes that the bound on k Px3�k exists;

second, this bound can be very high —because of strong gusts—; however, we are not interested

on track these high-frequency components of the wind; therefore, the �x3�
bound is not a need for

the knowledge of the maximal value of k Px3�k, but it is a threshold value of k Px3�k under which

convergence is achieved as the preceding analysis has demonstrated it. In other words, when the

magnitude of the derivative of x3� is smaller than kg i , then, convergence is guaranteed; so we need

to set the kg i gains properly, to cover the desired wind spectrum, but not too high, because this will

increase the chattering problem.

4. WIND SPEED CALCULATION

In this section, the procedure to calculate the wind speed signal is described. The wind speed can be

estimated using the mechanical power (1) or the mechanical torque (3). With the knowledge of the

mechanical torque value, the wind speed can be calculated solving the mechanical torque equation

10



for vw . In this paper, instead of solving the equation on-line with an iterative algorithm, the scaled

mechanical torque (12) evaluated at its optimal point

Tsm�.x3�; vw/ D
s3��r2Cp�v2

w

3��

—where Cp� D Cp.x3�; vw/ and �� are well known values— is used to solve the wind speed with

a direct relationship

Ovw D
1

�s C 1

s

3 OTs��
s3��r2Cp�

where � is the time constant of the low-pass filter and s is the Laplace variable;

OTs ,

²

OTsm.t; x3; Ox3; Ow/ if OTsm.�/ > 0

0 otherwise

OTsm.t; x3; Ox3; Ow/ is the approximation of the scaled mechanical torque given by the neural network

identifier, and its definition is given in (18).

This approach presents two inconveniences:

1. The system needs to operate at its optimal mechanical torque/rotor speed point,

2. The mechanical torque needs to be measured or estimated.

But the first point is also the main control objective of this system, so it results in the derivation

of a good controller that is able to satisfy this objective. In Section 5, this controller is presented,

and uniform asymptotic stability of a small neighborhood of the tracking error origin is proved. In

Section 6, the numerical simulations show the good performance of this controller and the validity

of this wind speed calculation.

For the second point, a neural network identifier is proposed to estimate the scaled mechanical

torque Tsm. This signal can be expressed as follows

Tsm.t; x3/ D Tsmn.x3/ C ı.t/

where Tsmn.x3/ is the nominal value of the signal Tsm, which is continuous and bounded on a

compact set �n; ı.t/ is the uncertain part of the signal because of changes in the wind speed, and it

is assumed to be bounded too. The nominal part of this signal is continuous and can be approximated

by a radial basis function neural network (RBFNN) [5, 6]. Thus, the scaled mechanical torque can

be described as follows [8]

Tsm.t; x3/ D ‰.x3; w�/ C ef .x3/ C ı.t/

with

‰.x3; w�/ D

N
X

j D1

w�
j �T .jjx3 � Cj jj; v/ (17)

where �T .�/ denotes a nonlinear function; Cj and v, j D 1; : : : ; N are the center and the width of

the j th hidden unit, respectively; N is the number of the hidden nodes or RBFNN units; w� is the

optimal weight vector that satisfies jjw�jj 6 Rw , with Rw a positive constant; x3 is the input of the

RBFNN; ef .x3/ is the optimal approximation error, which is unknown and bounded 8x3 2 �n.

Proportional error terms are introduced to improve the convergence of the neural network in the

presence of the uncertainty ı. The function Tsm.t; x3/ is approximated assuming that the terms ı

and ef are bounded by an unknown positive constant.

11



The following identifier is proposed to approximate the Tsm signal,

POx3 D OTsm.t; x3; Ox3; Ow/ � g3vx2 (18)

with

OTsm.t; x3; Ox3; Ow/ , b.t; x3; Ox3/ C ‰.x3; Ow/:

The nonlinear function �T .�/ in (17) is the gaussian function and has the following form

�T .x3; v; C / D exp

�

�jjx3 � Cj jj2

v2

�

the centers Cj and the width v of the j th hidden unit are chosen as follows

v D
x3max

� x3min

N

Cj D x3min
C

2j � 1

2
v

where x3min
and x3max

are the lower and upper bounds of the RBFNN input x3, respectively.

In order to get asymptotic convergence of the neural identifier, let the term b.t; x3; Ox3/, the

learning rule of the weight vector Ow, and the adaptive law O�T be chosen as follows

b.t; x3; Ox3/ D �O�T e (19)

with

PO�T D

²

�k�T
O�T if e D 0

˛ otherwise
(20)

where e D Ox3 � x3, k�T
and ˛ > 0,

POwj D Proj

"

�.kwe/3 @‰

@wj

ˇ

ˇ

ˇ

ˇ

wj D Owj

#

D

8

<

:

�.kwe/3 @‰
@wj

ˇ

ˇ

ˇ

ˇ

wj D Owj

if j Owj j 6 Rw

0 otherwise

(21)

with kw > 0 and Proj.�/ the projection function on the compact set �w D ¹w W jjwjj 6 Rwº, it

guarantees that the estimates Owj remain bounded.

The dynamics of the neural identifier error e is given by

Pe D ‰.x3; Ow/ � ‰.x3; w�/ C b.t; x3; Ox3/ � ef .x3/ � ı.t/:

Using Taylor series expansion and the fact that the neural network is a linear function of Ow, the

last equation can be rewritten as

Pe D b.t; x3; Ox3/ C

N
X

j D1

@‰

@wj

ˇ

ˇ

ˇwD Owj
Qwj � ef .x3/ � ı.t/

where Qwj D Owj � w�
j .

12



Now, let us consider the following assumptions.

Assumption 3

The optimal approximation error and the uncertainty in the Tsm signal are bounded, that is,

jef .x3/ C ı.t/j 6 �T (22)

where �T is an unknown positive constant.

Remark 3

The optimal approximation error of the neural network is bounded [5, 6], and the uncertainty in the

Tsm signal is bounded because of its physical nature.

Assumption 4

All the trajectories x.t/ of the system (4) belong to a compact set �x ; the trajectories Ox3.t/ of the

neural network identifier belong to a compact set � Ox ; the control signal u is such that .x.t/; Ox3.t//

exist for all t > 0.

Remark 4

In Section 5, a block-backstepping controller is derived such that the aforementioned conditions on

x.t/ are satisfied. The proof that Ox3.t/ is bounded is shown subsequently.

Lemma 2

Consider the system given by (4) and the neural network identifier (18), with the term b.t; x3; Ox3/,

the adaptive law of the unknown bound O�T and the learning rule of the weights Owj given by (19),

(20), and (21), respectively; satisfying Assumptions 3 and 4; and for all .x.0/; Ox3.0// 2 �x � � Ox ,

then the neural identifier error e converges to the origin uniformly asymptotically.

Proof

Let us propose the following Lyapunov function candidate

Vo.e; Qw/ D
1

4
e4 C

1

2k3
w

N
X

j D1

Qw2
j :

Its time derivative is

PVo D e3 Pe C
1

k3
w

N
X

j D1

POwj Qwj

D e3b.t; x3; Ox3/ � e3Œef .x3/ C ı.t/�

C

N
X

j D1

Qwj

POwj

k3
w

C e3 @‰

@wj

ˇ

ˇ

ˇ

ˇ

wD Owj

!

:

Considering (19), (21), and (22) yields

PVo 6 �O�T e4 C �T je3j: (23)

This can be rewritten as

e3 Pe 6 �O�T e4 C �T je3j C
1

k3
w

N
X

j D1

ˇ

ˇ

ˇ

POwj Qwj

ˇ

ˇ

ˇ
:

From (20), it is clear that

O�T .t/ D ˛t C O�T .0/ if e ¤ 0

13



thus, the adaptive gains O�T will always increase while the error e is not null. Also, the estimates Owj

are bounded by construction; therefore, the following inequality holds

lim
t!1

O�T e4 > �T je3j C
1

k3
w

N
X

j D1

ˇ

ˇ

ˇ

POwj Qwj

ˇ

ˇ

ˇ

and the identifier error e will converge uniformly asymptotically to the origin. �

5. CONTROLLER

In this section, a controller is derived for the analyzed plant. From (4)–(11), it is clear that the control

signal does not drive the third state directly. Backstepping technique [39] seems to be a natural

choice for this problem, using the second state x2 as the virtual control input for the dynamics of x3.

The following assumption is necessary to derive the block-backstepping controller.

Assumption 5

The wind speed signal vw vary slowly such that its time derivative can be negligible with respect to

other existing dynamics.

Remark 5

This assumption is to keep a simpler controller as it implies that the references are constants too.

The third state dynamics is controlled using x2 as virtual control:

Px3 D Tsm.x3; vw/ � g3vx2u;

x2u is proposed as follows

x2u , g�1
3v

h

Tsm .x3; Ovw/ C
�

k3 C O�3

�

Qx3

i

with k3 > 0, Qx D x � x� and

PO�i ,

²

�k�i
O�i if e D 0

˛i otherwise

where k�i
and ˛i > 0; i D 2; 3. e is the neural identifier error.

The derivative of x2u can be computed as follows

POx2u D g�1
3v

h

POTsm .x3; Ovw/ C Qx3
PO�3

i

C g�1
3v

�

k3 C O�3

�

ŒTsm .x3; Ovw/ � g3vx2� :

To approximate the derivative of Tsm, the robust exact differentiation technique proposed in [40]

is used,

POTsm D u1 � 
 jy � Tsmj1=2
signy � Tsm;

Pu1 D ��T signy � Tsm

with the auxiliary state Py D
POTsm; where 
 , �T > 0. It was proved that the difference between the

PTsm and the
POTsm signals is bounded in finite time when the input signal presents noise. In the case

when the signal has no noise, then, this difference is zero in finite time.

Now, let us propose the following Lyapunov candidate function

Vd D
1

2
Qx2
3 C

1

2
´2

1 C
1

2
´2

2 C
1

4
e4 C

1

2k3
w

N
X

j D1

Qw2
j

14



where ´ , Œ Qx1; x2 � x2u�T is the block of variables to be stabilized through the u signal directly.

The time derivative of Vd is

PVd D Qx3
PQx3 C ´1 Ṕ1 C ´2 Ṕ2 C e3 Pe C

1

k3
w

N
X

j D1

POwj Qwj

D Qx3 ŒTsm.x3; vw/ � g3vx2 C g3vx2u � g3vx2u�

C ´1 Œf1 C g1u� C ´2 .f2 C g2u � Px2u/ C e3 Pe

C
1

k3
w

N
X

j D1

POwj Qwj

D Qx3

h

eT � k3 Qx3 � O�3 Qx3 � g3v´2

i

C f1´1

C ´2

h

f2 � . POx2u C e2u/
i

C u.g1´1 C g2´2/

C e3 Pe C
1

k3
w

N
X

j D1

POwj Qwj

where the estimation errors are eT D Tsm.x3; vw/ � Tsm.x3; Ovw/, and e2u D Px2u � POx2u. In order

to stabilize the system, the control signal u can be chosen as follows

ud ,
g3v Qx3´2 � f1´1 �

�

f2 � POx2u

�

´2 � �.´/

g.´/
(24)

where �.´/ D k1´2
1 C

�

k2 C O�2

�

´2
2, g.´/ D g1´1 C g2´2 and u D ud . However, the denominator

of the control law (24) can be zero or have a small value, resulting in infinite or big input control

values. To avoid this problem, the gradient dynamics technique, recently proposed in [34], will be

applied to the derived expression.

From (24), the following expression can be written

g.´/ud � g3v Qx3´2 C f1´1 C
�

f2 � POx2u

�

´2 C �.´/ D 0:

Following the gradient dynamics method, the following square-based nonnegative function is

proposed:

' ,
�2

2

where � , g.´/u � g3v Qx3´2 C f1´1 C
�

f2 � POx2u

�

´2 C �.´/.

Now, the control dynamics can be designed as follows

Pu , �ku

@'

@u
D �kug.´/� (25)

where ku > 0 is the convergence rate parameter.

Choosing the convergence rate as follows

ku >

ˇ

ˇ

ˇ

ˇ

ˇ

g � Pud

@'
@u

ˇ

ˇ

ˇ

ˇ

ˇ

(26)

then, the main result follows.
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Theorem 1

Consider the system given by (4)–(5), the controller given by (25), and the identifier given by (18)–

(21), satisfying Assumptions 1–5 and condition (26); then, uniform asymptotic stability of a small

neighborhood of the origin of the variables . Qx3; ´; e; Qw; Qu/ for the overall system is achieved.

Proof

Let us propose the following Lyapunov candidate function

V D Vd C
1

2
Qu2

where Qu , u � ud . Its time derivative is

PV D PVd C Qu. Pu � Pud /

D Qx3

h

eT � k3 Qx3 � O�3 Qx3 � g3v´2

i

C f1´1

C ´2

h

f2 � . POx2u C e2u/
i

C . Qu C ud /g.´/

C e3 Pe C
1

k3
w

N
X

j D1

POwj Qwj � Qu

�

ku

@'

@u
C Pud

�

D Qx3

h

eT � k3 Qx3 � O�3 Qx3

i

C e2u´2 � �.´/

C e3 Pe C
1

k3
w

N
X

j D1

POwj Qwj � Qu

�

ku

@'

@u
C Pud � g.´/

�

:

Using (23) and the fact that the signs of Qu and
@'
@u

are equal due to the convex shape of ', it yields

PV 6 ��.´/ � k3 Qx2
3 � O�3 Qx2

3 C eT Qx3 C e2u´2

� O�T e4 C �T je3j � kuj Quj

ˇ

ˇ

ˇ

ˇ

@'

@u

ˇ

ˇ

ˇ

ˇ

C QuŒg.´/ � Pud �:
(27)

When the condition (26) is satisfied, and from the fact that the adaptive gains O�i and O�T increase

when the e error is not null; and that eT , e2u are bounded; and also because eT .e/, e2u.e/ are

functions of the e error, then the following inequality holds

lim
t!1

O�2´2
2 C O�3 Qx2

3 C O�T e4 > �.�/ C �T je3j C
1

k3
w

N
X

j D1

ˇ

ˇ

ˇ

POwj Qwj

ˇ

ˇ

ˇ

with �.�/ D eT Qx3 C e2u´2 and because the rest of the terms in (27) are negatives, then a small

neighborhood of the origin of . Qx3; ´; e; Qw; Qu/ is uniformly asymptotically stable.

Remark 6

Condition (26) can be satisfied when the right side of that equation is bounded. If the system is stable,

then the only term that can make the equation unbounded is Pud ; and it happens when g.´/ � 0.

There are three ways that this can happen:

1. when g1´1 � �g2´2

2. when x1 � 0 and x2 � 0

3. when ´1 � 0 and ´2 � 0 .
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Because the first two conditions do not represent equilibrium points, as soon as they are reached,

the system leaves them and reaches a different operation point. The third condition is the critical

one, because it is precisely the desired equilibrium point—tracking errors and virtual control error

equal to zero. This is the reason why the error origin cannot be uniformly asymptotically stable, but

a small neighborhood of it. The system trajectories cannot reach this point —the error origin— but

they will oscillate around it. At first glance, this would be like an inconvenience, but because the

external input signal —the wind speed— is always varying, the third condition cannot be reached

—permanently— in this kind of systems.
�

6. COMPUTER SIMULATIONS

In order to show the performance of the controller and the identification algorithms proposed in

this work, numerical simulations were made in the Simulink/Matlab environment. A wind speed

profile with low-frequency and high-frequency components (Figure 5) was used for carrying out

simulations on three adaptive schemes:

1. the GD-BBSC and the optimal mechanical torque point-based wind speed estimator proposed

in this paper,

2. a PI controller and the I&I wind speed estimator,

3. the SPBC proposed in [2], and the I&I wind speed estimator.

The system parameters are the same in this last work and are shown in Table I. The nominal

power of the considered wind turbine is 5 kVA.

The scaling factors in GD-BBSC were s1 D 1; s2 D 10, and s3 D 0:005.

The initial conditions of the three controllers are shown in Table II. For the GD-BBSC, presetting

(off-line training) of the weight vector was not necessary, and five nodes in the neural network

were used to approximate Tsm. Special requirements in the initial conditions of the first two plant

Figure 5. Reference tracking and wind speed estimation.
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Table I. Wind turbine system parameters.

Parameter/element Value

Nominal power Sn D 5000 (VA)

Rotor inertia J D 7:856 (kg m2)
Blades radius r D 1:84 (m)
Stator resistance R D 0:3676 .�/
Stator inductance L D 0:00355 (H)
Flux � D 0:2867 (Wb)
Pole pairs P D 28
Battery voltage vb D 400 (V)

Table II. Initial conditions.

GD-BBSC PI controller SPBC

Plant

x.0/ D Œ0; 0; 0:62�T x.0/ D Œ0; 0; 80�T x.0/ D Œ1; 10; 81�T

Controller

u.0/ D 0 �.0/ D 0 xd .0/ D Œ1; 10; 81�T

O�i .0/ D 0

Estimator

Ovw .0/ D 10 OvI
w .0/ D 10 � 
x3.0/ OvI

w .0/ D 10 � 
x3.0/
Ox3.0/ D 0:62
O�T .0/ D 0

Ow.0/ D Œ0; 0; 0; 0; 0�T

Rotor speed reference
ONx3�.0/ D 0

GD-BBSC, gradient dynamics-block-backstepping controller; SPBC, standard
passivity-based controller.

states Œx1; x2�, the adaptive gains O�i , O�T , and the weight vector Ow of the neural network are not

necessary as they can start far away from the optimal point. But the third state x3, the identifier

state Ox3, and the low-pass filter state Ovw need initial conditions near to the optimal point to make

the system work properly. With these initial conditions, the wind speed estimator and the controller

are able to drive and keep the system in a neighborhood of its optimal power point, despite of fast

and noisy wind speed signals as it can be appreciated in the next graphs. For the PI controller, the

initial conditions on the first two plan states Œx1; x2� and the state of the integral part � can start

in almost any condition. The third plant state x3 and the estimator state OvI
w need to start relatively

close to the optimal condition. This controller has the wider range of initial conditions for x3. For

the SPBC, this controller is not very sensitive to the initial conditions in the first two plant states

Œx1; x2� and the controller states xd , as they can start almost in any condition and the performance

will be similar; however, the third plant state x3 and the estimator state OvI
w need to start relatively

close to the optimal condition. The initial condition of one of these states can be relaxed (start less

closer to the optimal point), but not the initial conditions of both.

In order to test the reliability and robustness of the adaptive scheme proposed in this work,

an additional simulation scenario was carried out for this scheme. This scenario consists in

measurements with white noise in the id and iq currents, that is, states Œx1; x2�, and a linear variation

in the stator resistance up to 20% in its nominal value.

In graphs (a), (b), and (c) of Figure 5, the third state reference x3� and the third state x3 for the

GD-BBSC, the PI controller, and the SPBC, respectively, are shown. The GD-BBSC and the PI

controller track in a precise way this reference. In contrast, the performance of the SPBC is not very

good. This controller is not able to track medium and fast wind speed signals very well. Moreover,

this controller not only cannot track fast wind speed signals, but with faster signals, the performance
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degrades more. So the bandwidth of the input signal needs to be tuned carefully (with the adaptive

gain of the I&I estimator), in order to get the optimal operation for this controller. However, even

in its optimal operation, the deviations from the maximum power point are considerable as it can

be seen in the next graphs. In graphs (d), (e), and (f) of the same figure, the wind speed profile

and its estimations are shown. The low (shape) and high-frequency (boldness) components can be

appreciated. Also, it can be appreciated in graph (d) that the performance of the estimation algorithm

based in the optimal mechanical torque point, proposed in this paper, is good. In graph (e) we can

observe the performance of the PI controller–I&I estimator; as it is well known, the performance of

this estimator is good too. In graph (f), the performance of the SPBC–I&I estimator is shown; this

time, the adaptive gain of the estimator was tuned conservatively in order to limit the bandwidth of

the input signal in the SPBC.

Figure 6 shows the power coefficient function and the tip-speed ratio for the three schemes.

Graphs (a), (b), and (c) show Cp for GD-BBSC, PI controller, and SPBC, respectively. The tip-speed

ratio is shown in graphs (d), (e), and (f) for the same schemes. It can be noted that the deviations from

their optimal points are small in the GD-BBSC and PI controllers. On the other hand, one can note

that the deviations from their optimal points for the SPBC are big, especially in the sharpest parts of

the wind speed profile. The deviations from the optimal point in � are caused by the regulation of

the third state x3.

In graphs (a), (b), and (c) of Figure 7, the deviations from the maximum power point are shown

for the three controllers. These comparative graphs reflect well the performance of the adaptive

schemes. Small deviations can be noted in GD-BBSC, graph (a). The PI controller (graph (b))

presents deviations slightly bigger; whereas the biggest deviations can be appreciated in SPBC,

graph (c). These deviations are caused by the deviations on the optimal �, because the power

Figure 6. (a), (b), and (c) power coefficient Cp in gradient dynamics-block-backstepping controller, PI
controller, and standard passivity-based controller, respectively. (d), (e), and (f) TSR � in the same

controllers.
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Figure 7. (a), (b), and (c) deviations from optimal power point in the gradient dynamics-block-backstepping
controller, PI controller, and standard passivity-based controller, respectively. (d), (e), and (f) duty ratio D

in the same controllers.

Figure 8. Optimal reference x3� and estimated optimal reference ONx3�.

coefficient is function of �. Graphs (d), (e), and (f) show the duty ratio D of the DC–DC converter

in the GD-BBSC, PI controller, and SPBC, respectively. All signals are in the Œ0; 1� interval.

Figure 8 shows the optimal reference x3� for the third state and its estimation ONx3� given by the

adaptive extremum-seeking algorithm. It can be seen that this estimation follows very well the true

value of x3�.
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Figure 9. (a) and (b) measurements of the first two plant states x1, x2 with white noise: x1m, x2m. (c) linear
variation in the nominal value of the stator resistance R.

Figure 10. Reference tracking in the proposed adaptive scheme with noisy measurements and parameter
uncertainties.
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Figure 11. Deviations from optimal power point in the proposed adaptive scheme with noisy measurements
and parameter uncertainties.

The robustness simulation scenario for the adaptive scheme proposed in this work is shown in

Figures 9–11.

The measurements of the first two plant states (x1, x2) with white noise, x1m, x2m, are shown

in graphs (a) and (b) of Figure 9. The linear variation in the stator resistance is shown in graph (c).

This variation is up to 20% in its nominal value. The plant model includes the real values x1, x2,

and R, whereas the controller and the identification algorithms use the measurements with white

noise x1m, x2m, and the nominal value of the stator resistance Rnom.

Figure 10 shows the tracking of the three references in the proposed adaptive scheme, with noisy

measurements and parameter uncertainties. It can be seen that despite the noisy measurements, the

first two plant states follow the shape of their respective references. Also, it can be noted that the

tracking of the rotor speed reference (x3�) is good.

The deviations from the optimal power point in this simulation scenario are shown in Figure 11.

It can be appreciated that these deviations remain small, even with the noisy measurements and the

parameter uncertainties introduced in the system.

7. CONCLUSIONS

Wind speed and optimal reference estimation algorithms as well as GD-BBSC were presented in

this work. The proposed adaptive scheme was able to follow very close the maximum power point

of a stand-alone wind turbine system with a fast and noisy wind speed input signal.

The optimal reference estimation algorithm was derived using the sliding mode technique in an

adaptive extremum-seeking framework. Uniform asymptotic stability of the error origin was proved

using Lyapunov theories.

The procedure to calculate the wind speed signal was made using the mechanical torque equation

evaluated at its optimal point. An artificial neural network with a dynamic nonlinear learning law of

the weight vector was derived to estimate the mechanical torque signal. Uniform asymptotic stability

of the error origin was proved using Lyapunov arguments.

A block-backstepping controller was derived to regulate the optimal equilibrium point. In order to

avoid the singularities that can be present with the structure of this controller, the gradient dynamics

technique was applied to this controller. Uniform asymptotic stability of a small neighborhood of

the error origin was proved using Lyapunov theories for the overall system.

Computer simulations were carried out to show the performance of the proposed algorithms and to

make comparisons with classical and passivity-based controllers. In addition, a numerical simulation
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with noisy measurements and parameter uncertainties was made for the adaptive scheme proposed

in this work. The simulated wind turbine was a stand-alone system with a nominal power of 5 kVA.

The numerical simulations showed the good performance of both estimation algorithms. The

numerical simulation with noisy measurements and parameter uncertainties in the proposed adaptive

scheme showed its reliability and robustness on these inconveniences.

Future work will be made to extend the range in the initial conditions in the third state of the

system. Another future research direction is to extend this work to utility-scale wind turbine systems.
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