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A small-gain approach is presented for analyzing exponential stability of a class of (dynamical) hybrid systems. The systems considered in the paper are composed of finite-dimensional dynamics, represented by a linear Ordinary Differential Equation (ODE), and infinite-dimensional dynamics described by a parabolic Partial Differential Equation (PDE). Exponential stability is established under conditions involving the maximum allowable sampling period (MASP). This new stability result is shown to be useful in the design of sampled-output exponentially convergent observers for linear systems that are described by an ODE-PDE cascade. The new stability result also proves to be useful in designing practical approximate observers involving no PDEs.

have proved to be useful in continuous-time observer design for systems that are (entirely or partially) described by PDEs. Inspired by the above approach, a new design method is presently developed to get exponentially convergent observers in the case where only sampled-output measurements are available. The new design approach is built on a stand-alone exponentialstability result that we present for a class of hybrid systems consisting of an autonomous parabolic PDE connected with an ODE through a ZOH-sampler set. The stability analysis is performed making use of the small-gain technique. A second contribution of this study consists in developing a sampledoutput, version of the backstepping-based observer design of [START_REF] Krstic | Compensating actuator and sensor dynamics governed by diffusion PDEs[END_REF] and showing that the resulting error system fits the class of hybrid systems that is analyzed in the aforementioned technical stability result. The observer design is based on emulation principles. Invoking this proposition, we get sufficient conditions for the observer to be exponentially stable. Interestingly, the sufficient conditions allow an explicit determination of the MASP. Another contribution of this work is the development of an ODE-based approximation of the above sampled-output observer. Since it is only defined by ODEs, the approximate observer will prove to be more suitable for practical use. Interestingly, the approximate observer accuracy is also formally evaluated using the preliminary technical stability result. A part of the above contributions, including those in Sections 2 and 3, will be presented in the 2016 MTNS conference [START_REF] Ahmed-Ali | Stability Result for a Class of Sampled-Data Systems and Application to Observer Design for Cascade ODE-PDE systems[END_REF]. The paper is organised as follows: in Section 2, the new standalone technical stability result for hybrid systems is established; the sampled-output observer problem for ODE-PDE systems is formulated and dealt with in Section 3; an ODE-based approximation of the sampled-output observer is developed in Section 4; a conclusion and reference list end the paper.

Notation. The n dimensional real space is denoted n R and the corresponding Euclidean norm is denoted . 

0 0 = t , +∞ = ∞ → k k t lim , and 
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with these properties is called a partition of + R and the associated smallest real constant

T is its diameter. ) , ( F E C k
denotes the set of functions, from some set E to some F , that are k times continuously differentiable (for some N ∈ k

). The 2 L -norm of a function

defined on the interval ] 1 , 0 [ is denoted ⋅ and ] 1 , 0 [ 2 L
is the Hilbert space of square integrable functions. Accordingly, 
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II. PRELIMINARY STABILITY RESULT FOR A CLASS OF HYBRID SYSTEMS

In this section, we analyze the class of systems composed of a parameter distributed subsystem and a finite-dimensional subsystem interacting as follows:

) ( ) , 0 ( ) ( ) ( ) ( 1 0 t Gz t bw t X A t X A t X k k + + + = & , for all ) , [ 1 + ∈ k k t t t
a.e. and all integers 0 

≥ k , ( 1) 
≥ t (3) with initial conditions, 0 ) 0 ( X X = and ) ])( 0 [ ( ) 0 , ( x w x w = for ] 1 , 0 [ ∈ x ( 4 
)
where

n t X R ∈ ) ( denotes a finite-dimensional state vector, R ∈ ) , ( t x w
a distributed state variable, and

m t z R ∈ ) (
is its external signal that is measurable and locally essentially bounded;

n n A A × ∈ R 1 0 ,
and

m n G × ∈ R are constant matrices and n b R ∈ is vector; { } ∞ =0 k k t is a partition of + R .
It is seen that the subsystem represented by the linear parabolic PDE ( 2)-(3), is continuous-time, autonomous and acts on the finite-dimensional subsystem represented by the linear ODE (1), through a ZOHsampler leading to a hybrid system. The system described by ( 1), ( 2) and ( 3) results from the cascade connection of the infinite-dimensional system (2), ( 3) with the finite-dimensional hybrid system

) ( ) ( ) ( ) ( 1 0 t z t X A t X A t X a k + + = & (5) where ) ( ) , 0 ( : ) ( t Gz t bw t z k a + = , for all ) , [ 1 + ∈ k k t t t and 0 ≥ k (6)
For the infinite-dimensional system (2), (3), we have the following lemma, whose proof can be found in Appendix A.

Lemma

1.

For every

] 1 , 0 [ ] 0 [ 2 C w ∈ with 0 ) 0 ])( 0 [ ( ) 1 ])( 0 [ ( = = x w w , the initial value problem (2), (3) has a unique solution ] 1 , 0 [ ] [ 2 C t w ∈
defined for all 0 ≥ t , which satisfies the following inequalities, for all

0 ≥ t : ] 0 [ 4 exp ] [ 2 w t t w         - ≤ π , ] 0 [ 4 exp ] [ 2 x x w t t w         - ≤ π (7)
The Input-to-State Stability (ISS) property of the finitedimensional hybrid system (5) is established in the following lemma. ( )

Lemma 2. Consider the hybrid system (5) and suppose the matrix

1 0 A A + is Hurwitz. Let 0 , > λ
) exp( ) ( exp 1 0 t R t A A λ - ≤ + and ( 
)

) ( exp 0 t t A φ ≤ (8)
Also, let 0 > T and ) , 0 ( λ σ ∈ be any real constants satisfying:

( ) ∫ + + > T ds s A A T A R 0 1 0 1 ) ( ) exp( φ σ σ λ (9)
Then, there exist real constants 0 , > γ K such that for every ( ) (  )

m loc a L z R R ; + ∞ ∈ , n X R ∈ 0 , and any T -diameter partition { } ∞ =0 k k t of + R ,
) ( exp ) ( sup ) exp( ) ( 0 0 s t s z X t K t X a t s - - + - ≤ ≤ ≤ σ γ σ . ( 10 
)
The proof of Lemma 2 is performed by means of a small-gain argument, which gives the sufficient small-gain condition [START_REF] Arcak | A framework for nonlinear sampled-data observer design via approximate discrete-time models and emulation[END_REF].

Proof. Existence and uniqueness of the initial value problem (5) with 0 ) 0 ( X X = is a direct consequence of the step-by-step construction of the solution of (5

) in each interval ] , [ 1 + k k t t .
To establish [START_REF] Beikzadeh | Input-to-Error Stable Observer Design for Nonlinear Sampled-Data Systems with Application to One-Sided Lipschitz Systems[END_REF], introduce the following auxiliary variables:

k t t q = : ) ( , for all ) , [ 1 + ∈ k k t t t
and all integers 0 ≥ k (11) On the other hand, using definition [START_REF] Dashkovskiy | Input-to-State Stability of Infinite-Dimensional Control Systems[END_REF], equation ( 5

) rewrites ) ( )) ( )) ( ( ( ) ( ) ( ) ( 1 1 0 t z t X t q X A t X A A t X a + - + + = & , with initial condition 0 ) 0 ( X X = .
It follows that the solution of (5) satisfies the following equation:

( ) 0 1 0 ) ( exp ) ( X t A A t X + = ( ) ∫ - - + + t ds s X s q X A s t A A 0 1 1 0 )) ( )) ( ( ( ) )( ( exp 
( ) ∫ - + + t a ds s z s t A A 0 1 0 ) ( ) )( ( exp (12) 
Since ) , 0 ( λ σ ∈ , one gets from ( 8) and ( 12) that, for all 0 ≥ t :
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By [START_REF] Karafyllis | ISS with Respect to Boundary Disturbances for 1-D Parabolic PDEs[END_REF], one has

∫ ≤ - t ds s A I t A 0 0 0 ) ( ) exp( φ for all 0 ≥ t . Also,
applying the variation of constants formula one gets, using (5): ( )
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Using the inequality

( ) T t t k k k ≤ - + ≥ 1 0 sup
and definition [START_REF] Dashkovskiy | Input-to-State Stability of Infinite-Dimensional Control Systems[END_REF], it follows from ( 14) that, for all 0 ≥ t :
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Combining ( 13) and (15), one gets for all 0 ≥ t :
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Using [START_REF] Arcak | A framework for nonlinear sampled-data observer design via approximate discrete-time models and emulation[END_REF], inequality (16) yields:
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which establishes [START_REF] Beikzadeh | Input-to-Error Stable Observer Design for Nonlinear Sampled-Data Systems with Application to One-Sided Lipschitz Systems[END_REF] for certain constants 0 , > γ K

. The proof of Lemma 2 is complete. <

The ISS property of the system (1)-( 3) is described in Proposition 1, which constitutes an instrumental tool in the subsequent observer design.

Proposition 1. Consider the hybrid system ( 1)-( 3) and suppose the matrix

1 0 A A + is Hurwitz. Let 0 , > λ R
be any real constants and

+ + → R R : φ be any continuous function satisfying (8) for all 0 ≥ t . Also, let 0 > T and ] 4 / , 0 ( ) , 0 ( 2 π λ σ ∩ ∈
be any real constants satisfying [START_REF] Arcak | A framework for nonlinear sampled-data observer design via approximate discrete-time models and emulation[END_REF]. Then, there exist real constants 0 , > γ K such that for every ( )

m loc L z R R ; + ∞ ∈ , n X R ∈ 0 , ] 1 , 0 [ ] 0 [ 2 C w ∈ with 0 ) 0 ])( 0 [ ( ) 1 ])( 0 [ ( = = x w w
, and any T -diameter partition

{ } ∞ =0 k k t of + R ,

the unique solution of the initial value problem

(1)-( 4) exists for all 0 ≥ t and satisfies the following inequalities for all 0 ≥ t :

( ) ( 
)

) ( sup ] 0 [ ) exp( ) ( 0 0 s z w X t K t X t s x ≤ ≤ + + - ≤ γ σ , (17) 
Proof. By virtue of (3) one has 

∫ - = 1 0 ) , ( ) ,
] 0 [ 4 exp ) , 0 ( 2 x k k w t t w         - ≤ π , for all integers 0 ≥ k (19) Using (19) and the fact that 4 / 2 π σ ≤ and ( ) T t t k k k ≤ - + ≥ 1 0 sup , it
follows from (6) that: [START_REF] Beikzadeh | Input-to-Error Stable Observer Design for Nonlinear Sampled-Data Systems with Application to One-Sided Lipschitz Systems[END_REF] and inequality (20). The proof of Proposition 1 is complete. < Remark 1. Inequalities (17) and [START_REF] Zheng | Nonlinear Evolution Equations[END_REF] guarantee that the overall infinite-dimensional hybrid system (1)-( 3) satisfies the ISS property with respect to the input z with linear gain and exponentially decaying effect of the initial conditions. The reader can also see [START_REF] Dashkovskiy | Input-to-State Stability of Infinite-Dimensional Control Systems[END_REF] 
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m t v R ∈ ) ( is an external input signal of class ( ) m C R R ; 1 + ; R ∈ ) , ( t x u
is the state of the infinite-dimensional subsystem described by the parabolic type PDE (22) with boundary conditions ( 23)-( 24). The quantities , at a position x along the bar. In this setting, the external input signal is , continuous-time exponentially stable observers are obtained using the backstepping-like design method developed in [START_REF] Krstic | Compensating actuator and sensor dynamics governed by diffusion PDEs[END_REF]. An extension of this observer design has been developed in [START_REF] Ahmed-Ali | Observer Design for a Class of Nonlinear ODE-PDE Cascade Systems[END_REF] for ODE-PDE systems involving a Lipschitz nonlinearity in the ODE while 0 ) , ( ≡ v x g

n n A × ∈ R , m n B × ∈ R , n C × ∈ 1 R are constant matrices and ) , ( v x g is a function of class ( ) R R ; ] 1 , 0 [ 1 m C × .
T t v t v t v )] ( ) ( [ ) ( 2 1 = . < Remark 3.
. Presently, a sampled-output version of the observer of [START_REF] Krstic | Compensating actuator and sensor dynamics governed by diffusion PDEs[END_REF] will be developed. <

B. Observer design and analysis

Inspired by [START_REF] Krstic | Compensating actuator and sensor dynamics governed by diffusion PDEs[END_REF], the following backstepping transformation is considered, for

) , 0 [ ] 1 , 0 [ ) , ( +∞ × ∈ t x : ) ( ) 1 ( ) ( ) , ( ) , ( 1 t X M x CM t x u t x p - - = , ( 26 
)
where

n n x M × ∈ R ) (
undergoes the following ODE equation:

A x M x dx M d ) ( ) ( 2 2 = , I M = ) 0 ( , 0 ) 0 ( = dx dM ( 27 
)
The matrix gain ) (x M plays an instrumental role in the considered observer. For convenience, some of its properties are provided in Appendix B. Using ( 27 29)-( 32) is an equivalent representation of the initial system model ( 21)-(24). A key feature of the new representation is that the infinitedimensional subsystem, here defined by (30)-(31), is decoupled from the finite-dimensional subsystem described by (29) (while a coupling existed in the initial model ( 21)-( 24)). This decoupling will prove to be useful to make easier the observer design and analysis. The well-posedness of ( 22)-( 24) is also better analysed based on (30)-(31). This is first made precise in the following Remark:

) , 0 ( ) 1 , 0 ( ) , ( +∞ × ∈ t x a.e.: ) ( ) ( ) ( t Bv t AX t X + = & , (29) ) ( ) 1 ( ) ( )) ( , ( ) , ( ) , ( 1 
t Bv M x CM t v x g t x p t x p xx t - - + = , (30) 0 ) 
Remark 4. The well-posedness of the initial value problem (30)-(31) can be analyzed using e.g. Theorem 3.1 in [START_REF] Karafyllis | ISS with Respect to Boundary Disturbances for 1-D Parabolic PDEs[END_REF]. To this end, introduce the set 48) is a particular case of equation (2.6) in [START_REF] Karafyllis | ISS with Respect to Boundary Disturbances for 1-D Parabolic PDEs[END_REF] and the boundary conditions (31) are also particular cases of (2.7) in [START_REF] Karafyllis | ISS with Respect to Boundary Disturbances for 1-D Parabolic PDEs[END_REF]. Then, applying Theorem 3.1 in [START_REF] Karafyllis | ISS with Respect to Boundary Disturbances for 1-D Parabolic PDEs[END_REF] it follows that the evolution equation ( 48 

( ) { } 0 ) 1 ( ) 0 ( ' : ]; 1 , 0 [ 2 = = ∈ = f f C f P R
n n C M × ∞ ∈ R ]; 1 , 0 [ . It readily follows that ( ) R R ; ] 1 , 0 [ 1 + × ∈ C χ . It turns out that equation (
( ) R R ; ] 1 , 0 [ 1 m C g × ∈ and
( )

n n C M × ∞ ∈ R ]; 1 , 0 [ . <
We now focus ourselves on the observer design and analysis. To this end, we start with the following sampled-output observer structure for the system (29)-(32): 

)) ( ) ( ( ) 1 ( ) ( ) ( ) ( ˆk k t y t y L M t Bv t X A t X - - + = & , for all ) , [ 1 + ∈ k k t t
) ( ) ( ) ( ~t X t X t X - = , ) , ( ) , ( ) , ( ~t x p t x p t x p - = (37) ) , ( ) , ( ) , 
( ~t x u t x u t x u - = (38 
) Then, using (29)-( 32) and ( 33)-(36), one gets the following error system: then, the error system (39)-(42) fits the form of the hybrid system ( 1 
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( ) 1 ( 1 1 - - = LCM M A , L M b ) 1 ( - = and 0 ) ( = t z . Then,
) 1 ( ) )( 1 ( ) 1 ( ) 1 ( 1 1 1 0 - - - = - = + M LC A M LCM M A A A , using the fact that A AM M = - ) 1 ( ) 1 (
-diameter partition { } ∞ =0 k k t , ( ) m C v R R ; 1 + ∈ , n X X R ∈ 0 0 , , ] 1 , 0 [ ] 0 [ ], 0 [ 2 C p u ∈ , with ( ) 0 ) 0 ( ] 0 [ ) 1 ])( 0 [ ( = = x p p , ( ) 
0 ) 0 ( ] 0 [ = x u , 0 ) 1 ])( 0 [ ( CX u =
, the initial value problem defined by ( 21)-( 24) and ( 33)-( 36 

initial conditions 0 ) 0 ( X X = , 0 ) 0 ( ˆX X = , ) ])( 0 [ ( ) 0 , ( x u x u = , ) ])( 0 [ ( ) 0 , ( ˆx p x p = for ] 1 , 0 [ ∈ x
, has a unique solution that satisfies, for all 0 ≥ t :

( )

] 0 [ ) exp( ] [ ] [ ) ( ~0 0 x x p X X t t u t u t X + - - ≤ + + σ ρ (43) where ) ( ~t X , ] 1 , 0 [ ] [ ~2 C t u ∈ and ] 1 , 0 [ ] [ ~2 C t p ∈ (with 0 ≥ t
) are defined by (37)-(38).

Proof. It has already been pointed out that Proposition 1 is applicable to the system (39)-( 40 

] 0 [ 4 exp ] [ ~2 p t t p         - ≤ π , ] 0 [ 4 exp ] [ ~2 x x p t t p         - ≤ π (44) ( ) ] 0 [ ) 0 ( ) exp( ) ( ~x p X t K t X + - ≤ σ (
( max ] [ ] [ ~1 1 0 t X M x CM t p t u x - ≤ ≤ + ≤ ( ) ) ( ) 1 ( ) ( max ] [ ~1 1 0 t X M x CM t p x x - ≤ ≤ + ≤ ( ) ) ( ) 1 ( ) 
[ ] [ ~1 1 0 t X M x dx dM C t p t u x x x         + ≤ - ≤ ≤ (47) It follows from (44)-(47) that there is a 0 > ρ such that, ( ) ] 0 [ ) 0 ( ) exp( ] [ ] [ ) ( ~x x p X t t u t u t X + - ≤ + + σ ρ (46) ) ( ) 1 ( ) ( max ] 
) exp( ) 1 ( ) ( exp ) 1 ( ) ( exp 1 1 t R M t LC A M t A A λ - ≤ - = + - , for all 0 ≥ t , with ) 1 ( ) 1 ( 1 1 - 
- = LCM M A
. Then, 0 > T is selected so that (9) holds where

+ + → R R : φ is any continuous function satisfying ( ) ) ( exp t At φ ≤ , for all 0 ≥ t
. However, it should be noticed that inequality (9) provides a conservative upper bound for the diameter 0 > T of the sampling partition

{ } ∞ =0 k k t
. That is, in practice, the observer (33)-(36) works well even with some values of 0 > T not satisfying inequality [START_REF] Arcak | A framework for nonlinear sampled-data observer design via approximate discrete-time models and emulation[END_REF]. Remark 6. Notice that the exponential convergence (43) holds

for every sampling partition { } ∞ =0 k k t with diameter 0 > T
. It turns out that performance (43) is robust to sampling schedule. For example, if the measurement device is set to provide measurements every m T / time units, for some positive integer m , it is guaranteed that the performance (43) will be preserved even if 1 m consecutive measurements are periodically lost.

IV. APPROXIMATE SAMPLED-OUTPUT OBSERVER FOR ODE-PDE CASCADES

The practical difficulty with the observer (33)-( 36) is that its realtime implementation necessitates an online numerical solution of a PDE, i.e. ( 34)-( 35). This will now be coped with using a finite-dimensional approximation of PDE (34)-( 35), based on eigenfunction expansion. First, it is checked that the feedback term in (33) is expressed, in terms of ) , 0 ( ˆt p , as follows:

( )

) ( ) ( ) 1 ( ) , 0 ( ) 1 ( )) ( ) ( ( ) 1 ( 1 k k k k k t y t X CM t p L M t y t y L M - + = - -
where we have used (36), ( 27) and the fact that ) , 0 ( ) ( ˆk k t u t y = . Then, (33) rewrites as follows:

) ( ) ( ) ( ˆt Bv t X A t X + = & ( ) ) ( ) ( ) 1 ( ) , 0 ( ) 1 ( 1 k k k t y t X CM t p L M - + - - (49) for all ) , [ 1 + ∈ k k t t t
and all integers 0 ≥ k . Then, the following approximate observer, inspired by the exact observer described by ( 33)-( 36) and (49), is considered:

) ( ) ( ) ( t Bv t X A t X + = & ( 
)

) ( ) ( ) 1 ( ) , 0 ( ) 1 ( 1 k k k t y t X CM t p L M - + - - for all ) , [ 1 + ∈ k k t t t and all integers 0 ≥ k (50) ∑ =       + = N l l def x l t c t x p 0 2 ) 1 2 ( cos ) ( 2 ) , ( π (51) ( 
)

) ( 4 1 2 ) ( 2 2 t c l t c l l π + - = & ∫       + + 1 0 2 ) 1 2 ( cos )) ( , ( 2 dx x l t v x g a π (52) ) ( ) 1 ( ) ( ) , ( ) , ( 1 t X M x CM t x p t x u def - + = (53) for all ) , 0 [ ] 1 , 0 [ ) , ( +∞ × ∈ t x and N l ,..., 2 , 1 , 0 = , with v M x CM v x g v x g a ) 1 ( ) ( ) , ( ) , ( 1 - 
- = , for m v x R × ∈ ] 1 , 0 [ ) , ( (54) 
The following theorem states that system (50)-( 52) is an approximate exponential observer for system (21)-( 24), provided that the sampling period is sufficiently small. Theorem 2. Consider the system (21)-( 24) and the approximate observer, described by ( 50 

( ) m C v R R ; 1 + ∈ , n X X R ∈ 0 0 , , 1 ) 0 ( 
+ ∈ N c R , ] 1 , 0 [ ] 0 [ 2 C u ∈ with 0 ) 0 ])( 0 [ ( = x u and 0 ) 1 ])( 0 [ ( CX u =
, the initial value problem defined by ( 29)-( 32) and ( 50)-( 54) with initial conditions

) 0 ( )) 0 ( ),..., 0 ( ( 0 c c c N = , 0 ) 0 ( X X = , 0 ) 0 ( X X = , ) ])( 0 [ ( ) 0 , ( x u x u = for ] 1 , 0 [ ∈ x
, has a unique solution satisfying:
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) , ( ) , ( max ) ( ) ( 1 0 t x u t x u t X t X x - + - ≤ ≤ ( ) ( ) ) ( sup 1 ) exp( 0 0 0 s v N X X t s x ≥ + + + - - ≤ β ϕ σ ρ (55) for all 0 ≥ t
, where

∑ =       + = N l l def x l c x 0 2 ) 1 2 ( cos ) 0 ( 2 ) ( π ϕ 0 1 ) 1 ( ) ( ) ])( 0 [ ( X M x CM x u - + - , for ] 1 , 0 [ ∈ x .
Proof. 

0 ≥ k ), A A = 0 , ) 1 ( ) 1 ( 1 1 - 
- = LCM M A , L M b ) 1 ( - = , L M G ) 1 ( = .
Applying Proposition 1, it follows that for any (sufficiently small) 0 , > T σ there exist constants 0 , > γ K such that (7) holds as well as the following estimate, for all 0 ≥ t :

( ) ( )

∑ ∞ + = ≤ ≤ + + - ≤ 1 0 ) ( 2 sup ] 0 [ ) 0 
) ( sup )) ( , ( 0 s v P t v x g s a a ≥ ≤ , for all + × ∈ R ] 1 , 0 [ ) , ( t x (66)
Then, it follows from (60) and (66) that the following inequalities hold, for all 0 ≥ t :

( )

) ( sup ) 1 2 ( 2 4 ) ( 0 2 2 s v P l t c s a l ≥ + ≤ π , with ... 2 , 1 + + = N N l (67)
It is readily checked that:

∫ ∑ ∑ ∞ + ∞ + = ∞ + = + = ≤ ≤ + 2 2 2 3 2 2 1 2 2 2 1 1 1 ) 1 2 ( 1 N N k N l N dx x k l (68)
Then, it follows from (67) and (68) that:
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Using (69), one gets from (65) that, for all 0 ≥ t :

( ) ( 
)

) ( sup ) 1 ( 4 ] 0 [ ) 0 ( ) exp( ) ( 0 2 s v N P w e t K t e s a x ≥ + + + - ≤ π γ σ (70)
On the other hand, it follows from (53), (59), ( 62) and (63) that, for all

+ × ∈ R ] 1 , 0 [ ) , ( t x : ) ( ) 1 ( ) ( ) , ( ) , ( ) , ( ) , ( ) , ( 1 t e M x CM t x w t x q t x p t x u t x u - + + - = - ) ( ) 1 ( ) ( ) , ( 1 t e M x CM t x w - + =       + - ∑ ∞ + = 2 ) 1 2 ( cos ) ( 2 1 x l t c N l l π (71)
where the last equality is obtained using (51) and (59). It follows from (71) that: depends on the truncation order N in (51) (compared to (59)). The larger N the better the estimate accuracy. However, a large N entails an increase of computational load. Practically, a trade-off between estimate accuracy and computational load is made. which proves the first inequality in [START_REF] Zheng | Nonlinear Evolution Equations[END_REF]. On the other hand, differentiating both sides of (A1) with respect to x one gets: 

∑ ∞ + = ≤ ≤ ≤ ≤ + + ≤ - 1 1 0 1 0 ) ( 2 ) ( ) , ( 
∑ ∞ =         + -       + + - = sin ) ( ] 0 [ 4 ) 1 2 ( exp 2
        - ≤               +         - ≤               +         + - = ∑ ∫ ∑ ∫ ∞ = ∞ = π π π π π
which proves the second inequality [START_REF] Zheng | Nonlinear Evolution Equations[END_REF] for 0 > t .

Appendix B. Additional properties of ) (x M

The function ) (x M defined by (27) has the following properties, see proof in [START_REF] Ahmed-Ali | Observer Design for a Class of Nonlinear ODE-PDE Cascade Systems[END_REF]:

1) ∑ ∞ = + = 1 2 )! 2 ( ) ( k k k A k x x M I 2) ) ( ) ( x AM A x M = 3) ) ( ) ( 1 1 x AM A x M - - = 4) ( ) n n def x A e x M ×           ∈         = R I I I 0 0 ) ( 0 0 , R ∈ ∀x 

1 (Theorem 1 .

 11 due to Property 3 of Appendix B). Then, Proposition 1 can be applied to the error system (39)-(42). Doing so, one gets the following result: Consider the system (21)-(24) and the observer (33)-(36) where the gain n L R ∈ is selected so that the matrix n n LC A × ∈ -R is Hurwitz. Then, there exist real constants 0 , , > σ ρ T such that, for any T
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	refer to the functions defined on	0	≤ x	≤	1	by	(	[ t w	])(	x	)	=	( w	x	,	t	)
	and	(	w x	t [	])(	x	)	=	w ∂ (	x	,	t	)	/	x ∂	.								
																									∞	R +	denotes
																									the space of measurable and locally essentially bounded
																									functions	.	Given	a	function
																									w	:	[	] 1 , 0	× + R	→	R	;	(	x	,	t	)	→	( w	x	,	t	)	, the notations	w x	, ( t x	)	and
																									w t	, ( t x	)	refer to its partial derivatives while	[t w	]	and	w x	[t	]

m R R → + : η

  for the ISS property for general infinitedimensional systems. <

	III. SAMPLED-OUTPUT OBSERVER DESIGN FOR ODE-PDE
																									CASCADES
	A. Class of observed systems
	In this section, we are interested in a class of continuous-time
	systems assuming the following ODE-PDE cascade structure:
	X &	( t	)		=	AX	(	t	)	+	Bv	(	t	)	, for	t	≥	0	(21)
	u	t	(	x	,	t	)		=	u	xx	(	x	,	t	)	+	g	(	x	,	v	( t	))	,
																									for	(	x	,	t	)	∈	(	) 1 , 0	×	(	, 0	+∞	)	a.e.	(22)
	u x	(	, 0	t	)		=	0	, for all	t	≥	0	(23)
	u	, 1 (	t	)	=	CX		( t	)	, for all	t	≥	0	(24)
	with	X	(	) 0	=	X	0		where	X	t (	)	∈	R	n	denotes the state vector of the
	finite-dimensional subsystem described (21), and

  , and completes the proof of Theorem 2. <

			max x	u	(	x	,	t	)			u	(	x	,	t	)	max x	w	x	t	µ	e	t	l	N	c	l	t
																												(72)
	where		µ		=		max 1 0 ≤ ≤ x	CM	(	x	)	M	1 -	) 1 (	exists by Property 4 in Appendix
	B. In view of (3), one has	w (	x	,	t	)	=	-	x ∫	w	x	(	s	,	t	)	ds	, for all	t	≥	0
																												0
	and	x	∈	[	] 1 , 0	. Using the Cauchy-Schwarz inequality, one gets for
	all	t	≥		0		and		x	∈	[	] 1 , 0	:
				w (	x	,	t	)		=		∫ x	w	x			(	s	,	t	)	ds	≤	∫ x	w	x	(	s	,	t	)	ds
																		0									0
																	≤			x						x ∫	w	x	(	s	,	t	)	2	ds	≤	w	x	[	t	]
																												0
	This, combined with the second inequality in (7), gives
	max 1 0 x ≤ ≤	( w	x	,		t	)		≤	exp(	-	4 2 π	t	)	w	x	[	0	]	≤	exp(	t σ -	)	w	x	[	0	]	, for all
	t	≥	0	, using the fact that	σ ≤	π	2	/	4	(by Proposition 1). Then, it
	follows from (72), (70), (69) and (67), that
			) -t exp( , ( x u ≤ max 1 0 x ≤ ≤ σ -t u )	) 0 [ t x , w ( x	]	+	K	µ	exp(	t σ -	)	(	e	(	0	)	+	w	x	[	] 0	)
											+ π		( 4 2 γµ N P a +	) 1	sup 0 s ≥	( ) ) ( s v	+ π	2	( 4 γ N P a +	) 1	sup 0 s ≥	( ) ) ( s v	(73)
	Combining (73) and (70) gives (55), for some constants 0 , > β ρ
	Remark 7. Theorem 2 shows that the accuracy of the
	approximate estimates	X	(t	)	and	u	, ( t x	)

with initial condition

Its solution writes as follows, for ( )

Also, one immediately gets comparing (60) and (51):

Next, we define for 63), ( 56), (57), (30), (31), it follows that equations ( 2), (3) hold. Subtracting both sides of (29) from corresponding sides of (50), it successively follows, for all ) , [

and all 0 ≥ k :

( ) 

where

Clearly, the system (74)-( 77) fits the form ( 21)-( 24) with

It is checked that the solution of equations ( 27) is:

By Theorem 1, an exponential observer for system (74)-( 77) is: 

)

Then, with the notations of Theorem 1, one gets the estimates: 

is not large then, the following set of equations defines an approximate exponential observer for system (74)-( 76) provided that 00924 . 0 < T :

VI. CONCLUSION

The contribution of this work is threefold. First, the exponential stability result of Proposition 2 is established for hybrid systems composed of an ODE and a PDE interacting according to equations ( 1)-( 4). Then, the problem of sampled-output observer design for the ODE-PDE cascade (19)-( 22) is dealt with using the backstepping-like transformation (24). The obtained observer (33)-( 36) is shown in Theorem 1 to be exponentially stable. Finally, the practical observer (48)-(52) that includes no PDEs is derived and shown in Theorem 2 to be a suitable approximation of (33)-(36). Proposition 1 plays an instrumental role in the proofs of Theorem 1 and Theorem 2 because both result in an observation error system fitting the hybrid system structure (1)-( 4). As a matter of fact, Proposition 1 can as well constitute a suitable framework for sampled-data output-feedback control of linear ODE-PDE cascades. This perspective is currently under investigation.

APPENDICES

Appendix A. Proof of Lemma 1.

The solution of (2)-( 3) is well-defined satisfying, for all 0 > t : where the last equality has been obtained using an integration by parts and the fact that 0 Parseval's identity to ) , ( t x w x one gets, using the right side of (6):