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Exponential Stability Analysis of Sampled-Data ODEPDE Systems
and Application to Observer Design
Tarek Ahmed-Ali, lasson Karafyllis, Fouad Giri, M#lav Krstic, and F. Lamnabhi-Lagarrigue

Abstract— A small-gain approach is presented for analyzing
exponential stability of a class of (dynamical) hylid systems. The
systems considered in the paper are composed ofifardimensional
dynamics, represented by a linear Ordinary Differetial Equation
(ODE), and infinite-dimensional dynamics described ¥ a parabolic
Partial Differential Equation (PDE). Exponential stability is
established under conditions involving the maximumallowable
sampling period (MASP). This new stability result isshown to be
useful in the design of sampled-output exponentiall convergent
observers for linear systems that are described bgan ODE-PDE
cascade. The new stability result also proves to baseful in
designing practical approximate observers involvingho PDEs.

Index Terms—ODE-PDE cascade systems, sampled-data
approach,

systems, observer design, backstepping
exponentially convergent observers.

I. INTRODUCTION

A great deal of interest has been paid to desigs@gpled-
output exponentially convergent observers for ésdtmensional
continuous-time systems described by nonlinear ODMasious
approaches have been proposed that differ from ethehn in the
way data-sampling is accounted for in the obsedesign and
analysis, see e.g. [1,2,3,9,10]. Considerably &ff&st has been
devoted to the problem of designing sampled-outagervers
for systems involving PDEs. In [4], an observerwiero-order-
hold (ZOH) sampled innovation term has been progpdse a
class of semi-linear systems described by a scddiffmsion
equation. Using Lyapunov-Krasovskii functional, feiént
conditions for exponential stability have been eagited in
terms of Linear matrix Inequalities (LMIs) allowindhe
determination of the observer gain and samplingruat. In [5],
a sampled-output observer featuring time-varyinip dgs been
proposed for a class of semilinear systems desthlipgarabolic
PDEs. The time-varying gain was shown to be beiafio
achieve larger MASPs. Again, Lyapunov-Krasovskindtional

have proved to be useful in continuous-time obsedesign for
systems that are (entirely or partially) describgd®DEs.
Inspired by the above approach, a new design meikod
presently developed to get exponentially convergéservers in
the case where only sampled-output measurementsv/ailable.
The new design approach is built on a stand-alomperential-
stability result that we present for a class of rig/bsystems
consisting of an autonomous parabolic PDE connegi#d an
ODE through a ZOH-sampler set. The stability analyis
performed making use of the small-gain techniquese&ond
contribution of this study consists in developingsampled-
output, version of the backstepping-based obsetgsign of [6]
and showing that the resulting error system fiesdlass of hybrid
systems that is analyzed in the aforementionechteghstability
result. The observer design is based on emulatinciples.
Invoking this proposition, we get sufficient condlits for the
observer to be exponentially stable. Interestinghg sufficient
conditions allow an explicit determination of theA8IP. Another
contribution of this work is the development of @DE-based
approximation of the above sampled-output obselSerce it is
only defined by ODEs, the approximate observer gritlve to be
more suitable for practical use. Interestingly, tq@proximate
observer accuracy is also formally evaluated usitng
preliminary technical stability result. A part ohet above
contributions, including those in Sections 2 andwall be
presented in the 2016 MTNS conference [12].

The paper is organised as follows: in Section &,nbw stand-
alone technical stability result for hybrid systeimsestablished;
the sampled-output observer problem for ODE-PDHesys is
formulated and dealt with in Section 3; an ODE-base
approximation of the sampled-output observer isetigped in
Section 4; a conclusion and reference list engéper.

Notation. The n dimensional real space is denoted and the
corresponding Euclidean norm is denote{d R™™ is the set of

all nxm real matrices an4i| designates matrix norm induced

and LMis have been resorted to establish the obser\by vector Euclidian norm. The continuous-time inated t

exponential stability and characterizing the MASP.
This paper is focused on cascade systems introdircdé],

composed of an ODE connected in series with a PBE that t, =0,

parabolic type, which might account for diffusiorensor
dynamics. We seek the development of an obseratigtable to
provide accurate online estimates of both the ODiESgstem
state and the PDE-subsystem state, making usenpiiaa output
measurements.
measurements are available, exponentially convergeservers
are obtained using the backstepping design apprdectloped
in [6]. Key design aspects of this approach incl\idé¢erra-type
state transformations and a Lyapunov functionalesehtools
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In the case where continuous-timgubut

while {t, }"

o refers to any real increasing time sequence such

|I(imtk =+, and sup(tk+l—tk)=T, for some
- k=0

0<T <o. A time sequence{tk}“:=0 with these properties is
called a partition ofR, and the associated smallest real constant
T isits diameter.Ck(E, F) denotes the set of functions, from
some setE to some F, that are k times continuously
differentiable (for somek ON). The L?-norm of a function
defined on the interval01] is denoted)| [ and L*[0,1] is the
Hilbert space of square integrable functions. Adoagly,

def /4 1/2
P01 = ] =[] de) < L5(R,R™) denotes
the space of measurable and locally essentially nded
functions n:R, - R™. Given a function
w:[01]xR, - R;(xt) - w(x,t), the notationsw, (x,t) and
w, (x,t) refer to its partial derivatives whileft] and w,[t]



refer to the functions defined dh< x <1 by (Wt])(x) = w(x,t)
and (w,[t])(x) = ow(x,t)/ox.

1. PRELIMINARY STABILITY RESULT FOR ACLASS OFHYBRID
SYSTEMS

In this section, we analyze the class of systenmposed of a
parameter distributed subsystem and a finite-dileas
subsystem interacting as follows:

X(t) = A X () + A X (t,) +bw(0,t,) +Gz(t) ,

for all tO[t,,t,,,) a.e. and all integerk >0, (1)
w, (X,t) =w,, (x,t), for (x,t) 0 (01)x (0,+), a.e. (2)
with boundary conditions,
w, (O,t) =0andw(Lt) =0, forallt=0 3)
with initial conditions,
X(©0) =X, and w(x,0) =(WO0])(x) for xO[01] (4)

where X(t)OR" denotes a finite-dimensional state vector,

w(x,t)OR a distributed state variable, ang{t)OR™ is its
external signal that is measurable and locally ressby

bounded;A,, A OR™ and GOR™™ are constant matrices and

bOR" is vector;{tk}f:0 is a partition ofR, . It is seen that the

subsystem represented by the linear parabolic PDE3], is
continuous-time, autonomous and acts on the fitiitgensional
subsystem represented by the linear ODE (1), thraug@OH-
sampler leading to a hybrid system.

The system described by (1), (2) and (3) resuttsfthe cascade

connection of the infinite-dimensional system (@) with the
finite-dimensional hybrid system

X() = A X (1) + AX (1) + 2, (1)
where

z,(t) :=bw(0,t,) + Gz(t) , for all tO[t, ,t,,,) andk=0 (6)
For the infinite-dimensional system (2), (3), wevédathe
following lemma, whose proof can be found in Appierl
Lemma 1  For  every w0] 0 C?[0]] with
(W0 @ = (w,[0])(0) =0, the initial value problem (2), (3) has
a unique solution Wt]JC?[01] defined for all t=0, which
satisfies the following inequalities, for all t=0:

ol = e 1 ot ot = e -7t ] 7

The Input-to-State Stability (ISS) property of tHanite-
dimensional hybrid system (5) is established in fibowing
lemma.

(®)

Lemma 2 Consider the hybrid system (5) and suppose the
matrix A, +A is Hurwitz. Let R,A >0 be any real constants

and ¢: R, - R, beany continuous function satisfying, for all
t=0:
lexp(A, + A)t) < RexpAt) and [expAt)<at)  (8)
Also, let T >0 and o0 (0,1) beany real constants satisfying:
T
2> g+ RalexpET)(A] +]Al)]] #s)ds (9)
Then, there exist real constants K,y >0 such that for every

zaDLf‘(’)C(R+;Rm), X, OR", and any T -diameter partition

ftdo

of R, , the unique solution of the initial value problem

(5) with X(0) = X, exists for all t=0 and satisfies the

following inequality, for all t=0:

|X ()] < K exp-at)| Xo|+7 supqza ) expl- ot —s))). (10)
Oss<t

The proof of Lemma 2 is performed by means of allsgaén
argument, which gives the sufficient small-gaindition (9).

Proof. Existence and uniqueness of the initial value [emb(5)
with X (0) = X, is a direct consequence of the step-by-step
construction of the solution of (5) in each intér{& ,t,.,] -

To establish (10), introduce the following auxijiafariables:

q(t) =t,, for all tO[t, ,t,,;) and all integerk =0 (11
On the other hand, using definition (11), equat{bh rewrites
X (1) = (A + A)X (D) + A (X(A()) = X (D) +2,(t) . with initial
condition X (0) = X, . It follows that the solution of (5) satisfies
the following equation:

X () = expl(A, + A))X,
+ [ expl(A, + A)(E-9)A(X(A(S)) - X(8))ds

+[Lexpl(Ay + ANt - 9)z.(s)ds (12)
Sinceo [0 (0,1) , one gets from (8) and (12) that, for att O ;
iliqu(s)| exp(os))s RX,| + R supﬂza(s)| exp(as))

A =0 ossst
+% sup(X (a(9) - X (9] exp@s) (13)

U Ossst

By (8), one hagexp(Ayt) —I|s|AO|j'qo(s)ds for all t=0. Also,

applying the variation of constants formula onesgasing (5):
t
X (1) = exp(Ay(t ) X (t,) + [exp(Ay(t - ) AX(t,)ds
t

t
+ [ exp(ay(t - 9)bz,(s)ds

b
for all tO[t,,t,,,) and all integersk = 0. From the above facts
it follows that, for alltO[t, ,t,,,) and all integerk =0:

t—

X O - X)) < (& +|A]) [@9dgx @)

t—t,

+ exp(at) jw(s) exp(as)dstsuRQZa(s)| exp(as)) (14)
0 Kk SSS
Using the inequalitysup(tk+l—tk)sT and definition (11), it
k=0

follows from (14) that, for alt > 0:
sup{X ()~ X (a()| exp(es))
< exp(aT)QA)| + |Ai|)j qo(s)dsos:squx (9) exp(as))

+ }qo(s) exp(as)dssupﬂza(s)|exp(as)) (15)

Combining (13) and (15), one gets for ait O:
ésuthQX (s exp(as))s RX(0)

<s<

. RA

A-0

expeT)(Ay|+|Al)] ds)dssup( (s)expcs)



R
A-0

+

[1+|A|j <o(s)exp(os)dsjos(ugﬂza(s>|exp(as)) (16)

Using (9), inequality (16) yields:

Os<u<eq X(9) exp(as))

(A-o)x©)]+ (1+ | Al‘]' o) exp(as)ds] suplz, (s) exp@s))
<R 0 Ossst

2 -0 -RA|expm)(A|+|A)] d9)ds

which establishes (10) for certain constaktsy > 0. The proof

of Lemma 2 is complete<t

The ISS property of the system (1)-(3) is describied
Proposition 1, which constitutes an instrumentadl t;m the
subsequent observer design.

Proposition 1 Consider the hybrid system (1)-(3) and suppose
the matrix Ay +A is Hurwitz Let RA>0 be any real
constants and @:R, - R, be any continuous function
satisfying (8 for al t=0. Also, le¢e T>0 and
o0(0,4) n (0,77 /4] be any real constants satisfying (9). Then,
there exist real constants K,y >0 such that for every
200 RGR™), X, OR",  wo]OC2[01]  with
WoD@ = (w,[0)(0) =0, and any T -diameter partition
{tk}“::0 of R, , the unique solution of the initial value problem

(1)-(4) existsfor all t=0 and satisfies the following inequalities
forall t=0:

XM <K exp(—at)QX0| +||WX[O]||)+ yos<l:<pt)(]z(s)|), (17)

Proof. By virtue of (3) one hasw(o,t)=—jgwx (s,t)ds for all

t=0. Using the Cauchy-Schwarz inequality, one gets dibr
t=0 and xO[0]]:

w(o,t) = (18)

1 1
j w, (s,t)ds{ < j [y (s, t)|ds < |w, 1]
0 0

exponentially decaying effect of the initial conalits. The reader
can also see [11] for the ISS property for geneéndihite-
dimensional systemssl

[ll. SAMPLED-OUTPUT OBSERVERDESIGN FORODE-PDE
CASCADES
A. Class of observed systems

In this section, we are interested in a class oftinaous-time
systems assuming the following ODE-PDE cascadetsirer

X(t) = AX(t) +Bv(t), fort=0 (21)
U (%, 1) = U (X ) + g (X, V(1)) ,

for (x,t) 0 (0D x (0,+0) a.e. (22)
u,(0t)=0, forallt=0 (23)
u@t) =CX(t), forallt=0 (24)

with X (0) = X, where X(t) OR" denotes the state vector of the
finite-dimensional subsystem described (21), &t JR™ is an

external input signal of clas€1(R+;R"‘); u(x,t)OR is the

state of the infinite-dimensional subsystem desdtilby the
parabolic type PDE (22) with boundary condition8)(®24). The

quantities AOR™", BOR™™, COR™ are constant matrices
and g(x,v) is a function of clasi:l([o,l]XRm;R). The pair
(A,C) is observable and the whole system is observexighr
ZOH sampling of the signal(0,t) , i.e. the system output is:

y(t) =u(0t,) , for all tO[t,,t,,,) andk=0 (25)
where {tk}“::0 denotes the sampling time sequence, supposed to
be a partition ofR, with diameterT . We seek an observer that

provides accurate online estimates of both the it¢fin
dimensional) state vectoX (t) and the distributed state(x,t) ,

0< x<1, based the system inpuft) and the outputy(t) . The
signal u(l,t) is not accessible to measurements.

Remark 2. An illustrating example of the infinite-dimensain
subsystem (22)-(24) is shown by Fig. 1. The LTIsysltem is a

for all t>0, which together with the second inequality in (7°WM DC-DC static power converter of the buck typeglying

gives:
lw(O,t,)| < ex;{—étk ]||WX[O]||, for all integersk =0 (19)

Using (19) and the fact that < 772 /4 and suft,., —t, )< T, it
k=0

follows from (6) that:

Os;linga (sjexdas))s I sup exp{os—étk]"wx[O]”

N
+/g| expat) susz(s)|)
O<s<t

<|f sup exdo(t. —t))wol] +|G expot) OEUEGZ(S)D

i <S<tyy
ki

<lexdor)mollfcledo)supls) 0

Inequality (17) with appropriate constanks,y >0 is a direct

consequence of estimate (10) and inequality (2@g proof of
Proposition 1 is complete<

a heating resistor. The back converter is well kmotw be
modelled by a second-order linear ODE, e.g. [184l is control
input is v;(t) is the duty ratio function. The generated heat is

diffused along a bar, withu(,t) and u(0t) denoting the
temperatures at the bar extremities agk,v) reflecting the
effect of the ambient temperature, denotgd) , at a positionx

along the bar. In this setting, the external inmignal is

v(t) =[vi(t) V()] . <

Remark 3. In the case where the continuous-time output
u(0,t) =CX(t) is accessible to measurements agk,v) =0,
continuous-time exponentially stable observers algained
using the backstepping-like desigh method develapdé]. An
extension of this observer design has been dewelopfl4] for
ODE-PDE systems involving a Lipschitz nonlineaiitthe ODE
while g(x,v) =0. Presently, a sampled-output version of the

observer of [6] will be developed

Remark 1. Inequalities (17) and (7) guarantee that the dliera

infinite-dimensional hybrid system (1)-(3) satisfighe ISS
property with respect to the input with linear gain and

3



Buck PWM heat diffusion bar
DC-DC power

converter

u(Lt) u@©t)

vi(t)

Fig. 1. Exampleillustrating th¢ system (21-(24).

B. Observer design and analysis

Inspired by [6], the following backstepping transf@tion is
considered, for(x,t) [0 [01] x [0,+00) :

p(x,t) = u(xt) =CM (XM * (D) X(t), (26)
where M (x) OR™" undergoes the following ODE equation:

d?M
dx?

(x) =M (A, M©O) =1, ‘2-“)’('(0):0 27)

The matrix gain M(x) plays an instrumental role in the

considered observer. For convenience, some ofdgepties are
provided in Appendix B. Using (27), (21) and (2&)follows

that the new statg(x,t) defined by (26) undergoes the following

PDE, for (x,t) 0 (01 % (0,+) a.e.:

P, (X,t) = p, (%) + g(x, V(1)) ~CM (x)M () Bv(t), (28)
For convenience, the new system representationessed in

terms of the states (X(t), p(x,t)) is rewritten, for all
(x,t) O (01)x (0,+) a.e.:
X (t) = AX(t) + Bv(t) (29)
P (%) = P (%,1) + g(x, V(1)) ~CM ()M * (@)Bv(t),  (30)
p,(Ot)=p@t)=0,forallt=0 (32)
u(x,t) = p(x,t) +CM (x)M (@) X(t), (32)

where the boundary conditions (31) are immediatdiyained
from (26) using (23), (24) and (27). Equations (£3) is an
equivalent representation of the initial system eld@1)-(24). A
key feature of the new representation is that thnite-

dimensional subsystem, here defined by (30)-(3lgdcoupled
from the finite-dimensional subsystem described29) (while a
coupling existed in the initial model (21)-(24))hi$ decoupling
will prove to be useful to make easier the obsedesign and
analysis. The well-posedness of (22)-(24) is alstieb analysed
based on (30)-(31). This is first made precisehi@& following

Remark:

Remark 4. The well-posedness of the initial value problei){3
(31) can be analyzed using e.g. Theorem 3.1 inT8]this end,
introduce the set

P={f 0C?(l0};R): f'(0) = f ) = O}

and let equation (30) be rewritten in the more caohfiorm,

P (X 1) = P (X 1) + X (X, 1) (48)
with y(x,t) dj g(xv(t)) —CM ()M (@)Bv(t) is acting as an
input of (48). By assumption, we haveg DCl([O,l]XRm;R)
and vDCl(R+;Rm) and, by Appendix BM DC°°([O,1]; R”x“).
It readily follows that)(Dcl([O,l]XR+;R). It turns out that

equation (48) is a particular case of equation)(th§8] and the
boundary conditions (31) are also particular ca$€®.7) in [8].
Then, applying Theorem 3.1 in [8] it follows thé&tet evolution

equation (48) with (31) and initial conditiop[0]0OP has a
unique solution pOC°([01] xR, ;R)n C}([04]x (0,+);R) for
which gt]OP for all t=0. This result also applies to
u(x,t) = p(x,t) + CM (x)M @) X (), using (21) and the fact that
g0C(joa1xR™R) and M DOC™([01); R™"). <

We now focus ourselves on the observer design nalysis. To
this end, we start with the following sampled-outmiserver
structure for the system (29)-(32):

X (t) = AX(t) + Bv(t) - M @L(J(t,) - Y(t,)).

for all tO[t, ,t,,,) and all integerk =0 (33)
P (% 1) = P (X, 1) + g(X, (1)) —CM ()M @ Bv(t) ,

for (x,t) 0 (0 x (0,+) a.e. (34)
p,(0t)=p@Et)=0,foralt=0 (35)
G(xt) = P(x,t) +CM (M @)X (1),

for (x,t) 0 [01] % [0,+0) (36)

with ¥(t,) =G(0,t,), where LOJR" is arbitrary vector such that

A-LC is a Hurwitz matrix. The last requirement is notissue
since the pair{A C) is observable. In fact, the observer is a copy

of the system (29)-(32) with an additional innogatiterm in
equation (33). To analyse this observer, the fdhgwstate
estimation errors are introduced:

X(6) = X(1) = X(t), P(xt) = p(xt) - p(x,t) (37)

u(x,t) =G(x,t) —u(x,t) (38)
Then, using (29)-(32) and (33)-(36), one gets dileing error
systgm:

X(t) = AX(t)-M @OLCM @)X (t,) -M QL PO.L,) ,

for all tO[t,,t,,,) and all integerk =0 (39)
P (Xt) = P, (X,t), for (x,t)0 (01)x (0,+) a.e. (40)
P.(0t)=p@Lt)=0, forallt=0 (41)
G(xt) = p(x,t) +CM (M W)X (1),
for all (x,t) 0 [0:1] x [0, +c0) (42)

where the first equation is obtained using the falcat
y(t,) - y(t,) =u(0t,) and equations (33) and (36). It is readily
seen that, if (X,w) is substituted to()?,'ﬁ) then, the error
system (39)-(42) fits the form of the hybrid systéhj(3) with
A=A, A=-M@OLCM™@), b=-M@L and z(t)=0.
Then, Proposition 1 can be invoked to analyze thenér,
provided that A+ A is Hurwitz. This actually is the case

because A-LC is Hurwitz and
A, +A =A-MQLCM @) =M @Q(A-LC)M (), using the
fact that M 1) AM (1) = A (due to Property 3 of Appendix B).
Then, Proposition 1 can be applied to the errotesy439)-(42).
Doing so, one gets the following result:

Theorem 1 Consider the system (21)-(24) and the observer
(33)-(36) where the gain LOR" is selected so that the matrix
A-LCOR™" is Hurwitz. Then, there exist real constants
T,p,0 >0 such that, for any T -diameter partition {tk}”

k=0 "
vOCHR,:R™), X, X, OR", u[0], pO]OC2[0], with

(PLON® = (A,[01)©) =0, (u,[01)(0) =0, (U[O))(V) =CX,, the
initial value problem defined by (21)-(24) and (33)-(36) with



initial conditions X (0) = X,, X(0)=X,, u(x0)=(u[0])(x), dimensional approximation of PDE (34)«(35), based o
eigenfunction expansion. First, it is checked ttiet feedback

P(0)=(PON(x) for xT[01], has a unique solution that term in (33) is expressed, in terms p0,t) , as follows:

e oAl = : M OLEE) - vt) = MOLBOL) + M2 OX 6, - y(t,)
X (0| +[at]] +[.[01] < pexpe-a)|X, - Xo| +[B,00]]) (43) )~ = 7 I )

! where we have used (36), (27) and the fact §{&t) =0(O,t, ) .
where X(t), O[t]0C?[01] and Ft]IC?[01] (with t=20) are Then, (33) rewrites as follows:
defined by (37)-(38) )A( (t) = A)Z(t) +By(t)
s o e ey e =ML o 0% 0] @9
o0(,A)n (0,777/4] and anyT >0 sufficiently small so that
(9) is satisfiedthere exists a constat >0 such that (17) and
(7) hold, replacing ther¢X,w) by ()Z, p) and lettingz(t) =0.
Specifically, one gets the following inequalities:

for all td[t,,t,,,) and all integersk =0. Then, the following

approximate observer, inspired by the exact obsetescribed
by (33)-(36) and (49), is considered:

X (t) = AX(t) + Bv(t)
-M AL (pO.t) +CM )X (1) - y(t))

/T ~ T\~
”Ht]”SeXV{_TtJH pLoy] th]”sex;{—th” p.l0]] (44) for all tO[t,,t,,,) and all integerk >0  (50)
R (0] < K expt-on| 0] + 5,001 @s) P ENZEG teof @40 % 51)
for all t=0. Due to (41) one has, applying Wirtinger's _ 7

inequality, | flt]| <||B,Lt]|, for all t = 0. This together with (42) &1 = ~(21+ 1)279 (t)

and (37)-(38) yield, for alt = 0: 1 7K
- > +2 X, v(t)) cos (2 +1) — |dx 52
[ < o]+ paxdom com = @) K@) fa.Gencod @+ 5 2
~ _ ~ def _
<[[B.[t1]+ maxicm (M 1(1)|)\X(t)\ (46) T(x.1) = B(x.t) +CM OM @) X (1) (53)
N N dM N _ for all (x,t)0[01]x[0,+) andl = 012...,N, with
||ux[t]|| = " px[t]|| " gggl{ CK(X)M (1)D‘X(t)‘ (47 g.(X,V) = g(x,v) ~CM (X)M *@)v, for (x,v)O[01]xR™ (54)
It follows from (44)-(47) that there is @ > 0 such that, The following theorem states that system (50)-(32) an
~ - ~ - approximate exponential observer for system (24);(@rovided
‘X(t)‘ +{jarey] + e < pexp(—at)qx (0)‘ +| px[0]||), that the sampling period is sufficiently small.

for t = 0, which proves (43) and establishes Theoremi 1. Theorem 2. Consider the system (21)-(24) and the approximate

observer, described by (50)-(52) with LOR" is such that

Remark 5. Estimates of the constantsT >0 in Theorem 1 can A—LCOR™" is Hurwitz. Suppose that there exists a constant
be obtained this way: first, by Proposition 1,R, >0 such that |g(x,v)|<PyM for all (x,v)O[01]xR™.

o0(0,4) n (0,77 /4] with A any real constant such that Then, there exist (sufficiently small) constants ,T >0 and

lexpl(A+ A)t) = ||v| Mexp(A-LC)t)M ™ (1)| < Rexp(At), (sufficiently large, N -independent) constants p,3>0 such
for all t=0, with A =-M@LCM (). Then, T>0 is that, for any T -diameter partition {tk}f;o of R, , any bounded
selected so that (9) holds whege R, — R, is any continuous VDCl(R+;Rm), X,, X, OR", c(0)ORN", u[0]OC?[0]]
function satisfying|edit]sqa(t), for all t=0. However, it with (u,[0])(0)=0 and (u[O])() =CX,, the initial value

should be noticed that inequality (9) provides asswvative problem defined by (29)-(32) and (50)-(54) with initial
upper bound for the diametéf >0 of the sampling partition conditions (c,(0),...,cy (0)) =c(0), X(0) =X, , X(0) = )?0,

{t.}r, - That is, in practice, the observer (33)-(36) veorkell u(x,0) = (U[0])(x) for x[1[01], has a unique solution satisfying:

even with some values df > 0 not satisfying inequality (9). |)_((t) _ X(t)| + maxﬂU(x t)—u(x t)|)

Remark 6. Notice that the exponential convergence (43) holds Osxst

for every sampling partitioft,}7_, with diameterT > 0. It turns < pexp(—at)QXO - x0|+||¢x||)+ NIB 1supﬂv(s)|) (55)
+1s0

out that performance (43) is robust to samplingedaie. For

example, if the measurement device is set to peovidor @l t20, where

measurements everyl /m time units, for some positive integer def N 7K
m, it is guaranteed that the performance (43) wéllgreserved p(x) = \EZ G (O)COS{(2| +1) 7]
even if m—1 consecutive measurements are periodically lost. 1=0

—(u[O(X) +CM (XM (@) X, , for xI[0]] .
V. APPROXIMATE SAMPLED-OUTPUT OBSERVER FORODE-PDE .
CASCADES Proof. Consider the system,

- _ -1
The practical difficulty with the observer (33)-(36 that its real- G (1) = Qo (6 1) + 9O MD) =CM M = (DBY(D)

time implementation necessitates an online numiesimation of for all (x,t) 0 (01)x (0,+), (56)
a PDE, i.e. (34)-(35). This will now be coped witsing a finite- 0,(0t)=9g@t)=0,forallt=0 (57)



with initial condition
(@D =¥23 ¢ (O)co{(ZI +1) %j ,for xo[oa]  (58)
1=0

Its solution writes as follows, fofx,t) O [0 xR, :

ax0=+23 )co{(z +1) %] , (59)
1=0

where ¢ (0)=\/§}(q[0])(x)co{(2I+1)%]dx while ¢ (t)
0

(1 = 01...) satisfy (52). We conclude from (52) (fo=N+1...)
and (58) (which entailsc,(0) =0 for I =N+1...) that the

following equations hold, forl

=N+ Zl.andallt=0:

¢ ()= \/5} ex;{—(Zl +1)? é(t —s)J
0

x U 9. (zv(9) co{ @ +1) %jdz}ds (60)

Also, one immediately gets comparing (60) and (51):

a0n-pOH=v2 D c) (61)

I=N+1

Next, we define for(x,t) O[01] xR, :
et) = X(1) - X(t) (62)
w(xt) = q(x,t) = p(x,t) (63)

Using (63), (56), (57), (30), (31), it follows thatjuations (2), (3)

hold. Subtracting both sides of (29) from corregfing sides of
(50), it successively follows, for atld[t,,t,,,) and allk =2 0:

&t) = Ae(t) -M L (pOL,) +CM * X (t,) ~u(Ot,))

= Ae(t) -M ())LCM ~* (De(t, )
+M @QL(pO,t,) - POL,)) (using (26))
= Ae(t) -M ()LCM ™ (De(t, )
-M@OLwO,t,)+M @OLvV2 iq (t)

I=N+1

where the last equality is obtained using (63) @1g. It follows
that equations (1)-(3) hold witX (t) being replaced bg(t) and

z(t)=\/§ icl (t,) (for tO[t,,.t.,,) and all integersk=0),

I=N+1
A=A, A=-MOLCM™(Q),
Applying Proposition 1,
small) g, T >0 there exist constant¥,y >0
holds as well as the following estimate, foria#t O:

b=-M (@)L,

le(t)| < K expot)(e(0)] +|w,10]])+ v sup

Appendix B
(independent of/ [ Cl(R+ ‘R m)) such that:

9. (x. (1) < P, supﬂv(s)|), for all (x,t) O[01] xR,

Then, it follows from (60) and (66) that the follmg inequalities

hold, forallt=0:

f
||()| 1)2]72

x/_Zq(s)

I=N+1
On the other hand, definition (54) in conjunctioithathe fact
that |g(x,v)| < P, for all (x,v) J[01]xR™, and Property 4 in

__ N2 p sudlv(s)| with | =N+LN+ 2.

(64)

G=M(@L.
it follows that for any (aiently
such that (7)

(65)

imply that there exists a constaiR, >0

(66)

(67)

It is readily checked that:

Z%s 3 izs | izdx= 1 (68)
2 (2 +D° s KT e 2N +2

Then, it follows from (67) and (68) that:
su;:{\/_ ZQ (9= [l %1 @ +1)? ) rﬂ (S)|

20 j=n#1
nz(N T supﬂv(s)| (69)
Using (69), one gets from (65) that, for ak0:
le(t) <K exp(—at)ﬂe(0)|+||w [0]||) supﬂv(s)| (70)

On the other hand, it follows from (53), (59), (62)d (63) that,

forall (x,t)O[01]%xR,:

T 1) —u(xt) = p(x,t) = q(x,t) + w(x,t) +CM ()M L D)e(t)
=w(x,t) +CM ()M L @e(t)

-2 3¢ ¢)co;{(2| +1)%j (71)

I=N+1

where the last equality is obtained using (51) @&%j. It follows
from (71) that:

max{u(x ) -u(xt) < ma><1w(x t)| + 1e(t) +/2 Z|C| Q)
I=N+1
(72)
where y = maﬂCM (XM (1)| exists by Property 4 in Appendix
X
B. In view of (3), one hasv(x,t) = —ij (s,t)ds, forall t=0

and x[J[01] . Using the Cauchy-Schwarz inequality, one gets for
all t=0 and xO[0]1] :

lw(xt)| =

fwx (s,t)ds{ < ﬂwx (s.t)[ds
0 0

<Vx le (s:0] s < w1l
This, combined W|th the second inequality in (7)iveg
2
gggﬂw(x,tﬂ < exp(—Tt)"WX[O]" <expoat)|w,[0]|, for all

t >0, using the fact thar < 77° /4 (by Proposition 1). Then, it
follows from (72), (70), (69) and (67), that
ma>1u(x t) =u(xt)|

Osxsl’

< exp(—ot)||w [0]] + K,uexp(—ot)qe(O)| +|w, [0]||)

nz(N 1) Fﬂ()| ﬂz(N e urﬂv(s)| (73)

Combining (73) and (70) gives (55), for some comsta
p, £ >0, and completes the proof of Theorem<@.

Remark 7. Theorem 2 shows that the accuracy of the
approximate estimatesX(t) and U(x,t) depends on the
truncation orderN in (51) (compared to (59)). The larghr the
better the estimate accuracy. However, a laMeentails an

increase of computational load. Practically, a e¢raff between
estimate accuracy and computational load is made.



V. ILLUSTRATION EXAMPLE

Practical use of Theorems 1 and 2 entails the ctatipn of the
solution of equations (27) and the choice of the SPAT .
Consider the following system of the form (21)-(24)

Xi(1) = X, (1), X,() = vy (t) (74)

U (X%, 1) = U, (1) + @ (X)v, (1), (75)

u, (0t)=0andu(@,t) = X,(t), forall t=0 (76)
with the output signal:

y(t) =u(Ot,), forall td[t,,t,,,) and allk=0 (77)
where X =[X,,X,]" OR?® denotes a state vector

v=[v,,v,]" OC*(R,;R?) is an input vectory OC"([01];R)
is a given function, an@tk}:zo is aT -diameter partition oRR, .
Clearly, the system (74)-(77) fits the form (2124) with

0

01 0
A= , B= ,C=1 0 V) = 78
[O O} [1 O} L d gxv) =gy, (78)
It is checked that the solution of equations (27) i

M (x) :Ll) X 1/2}

By Theorem 1, an exponential observer for systedfi-(77) is:

>A<1 = >22 _(ll "’%lzj(ﬁ(o,tk)"' >21('[k) _%Xz(tk)‘ Y(tk)j

(79)

X, :vl(t)—lz(ﬁ(tk ,0>+>21(tk>—§>“<2(tk>—y(tk)]

(80)
B (X0) = P (X + OOV, () + 2, (1)
for (x,t) O (02)x (0,+) (81)
P, (%t)=p@ELt)=0,forallt=0 (82)
G0 = pOxt) + X0 + 22 %,0)
for (x,t) 0 [01] % [0,+c0) (83)
whatever [;,I, >0, and sufficiently small MASPT >0.

Proposition 1 and Remark 5 are resorted to estinfatand
o>0 so thatsup{exp(at)‘X(t) - )Z(t)‘)< +o0 . To this end, direct
t=0

computations give:
01 b Of
A {O 0}, A =M m[l O}M o,
-1 -1
exp((A, + A)t)= M (1)exr{{_l OHM 0)

exp(At) = [é j lexp(At) < gtt) =t +1
Letting I, =1, =2, one finds that,

oo of

Then, with the notations of Theorem 1, one gete#ignates:

A=1af=1 1A1=%, =)= [

lexel(a, + AN < 9+8Jﬁ [+ VB Jexpet)
Then, inequality (9) yields:

< (1+ \/g)exp(—t) ,forallt=0.

2
1>0 +107.67exp(aT)(T +T7j (84)

This implies thatl> g +10767T and soT < 0.00924. Setting

the value of the sampling period b= 0001, one gets from
(84) that o < 0892, indicating that

su;{exp(at)‘X(t)—)A((t)U< +0  for all o< 0892. Now, we
t=0

know by Theorem 2 that if the amplitude of the inpector
v=[v;,v,]" OC*(R,;R?) is not large then, the following set of
equations defines an approximate exponential obsefor

"system (74)-(76) provided that < 0.00924:

);(1('[) = )_(2(t) - \/Eiq t)+ Xl(tk) _%Xz(tk) - Y(tk)j

>?2(t) =v(t) - ﬁi‘,c, (t)+ X, (t) —% X, (t) - y(tk)j
(85)
6 0=~ +1 6.0+ v (V2w & )co{(z +1)§jdx

+gvl(t).1[ 1-x2 )co{(2| +1)%jdx, for | = 01...,N

(86)
T(xt) = X,(0) + ¢ ~D %, )/ 24423 c)co{(z +1)§],
1=0

for all (x,t) 0 [0] x [0, +00) (87)

VI. CONCLUSION

The contribution of this work is threefold. Firglhe exponential
stability result of Proposition 2 is established fiybrid systems
composed of an ODE and a PDE interacting accordog
equations (1)-(4). Then, the problem of samplegraubbserver
design for the ODE-PDE cascade (19)-(22) is deéh wsing
the backstepping-like transformation (24). The oigd observer
(33)-(36) is shown in Theorem 1 to be exponentiaitgble.
Finally, the practical observer (48)-(52) that utds no PDEs is
derived and shown in Theorem 2 to be a suitablecjipation
of (33)-(36). Proposition 1 plays an instrumentalerin the
proofs of Theorem 1 and Theorem 2 because bottt ri@san
observation error system fitting the hybrid syststnucture (1)-
(4). As a matter of fact, Proposition 1 can as weelhstitute a
suitable framework for sampled-data output-feedbeamhktrol of
linear ODE-PDE cascades. This perspective is ctiyremder
investigation.

APPENDICES
Appendix A. Proof of Lemma 1.

The solution of (2)-(3) is well-defined satisfyirfgr all t >0:
w(x,t) = Zi co{(ZI +1)— ex;{ @+ m +1) ‘ ]
1=0

X E(V\{O])(s)co{(ZI +1) 7]ds
@),
{q(x)=x/5co{(2l+l)%]} is an orthonormal basis of

(A1)

To show inequalities notice first that

L? (01 (they are the eigenfunctions of the Sturm-Liowvill



operator d?/dx? defined on

= {f oc2([oa;R):f @) = % ©) = o}). Then,  applying

Parseval's identity tov(x,t) one gets, using (Al):

wie)|? = 22 ( I;(v\{t])(s)co{(ZI +1) %]ds]
@ +1) %2

© +
=2 -
E’) ex;{ 2
exd 7t |wio?
2

which proves the first inequality in (7). On thehet hand,
differentiating both sides of (Al) with respectxoone gets:

W, (X, 1) =—n§: @ +1)S|r{(2| + = r{ @+n°mr +1)2772 J
1=0

x [ (wO])(s )co{(ZI +1) Ejds

{ (2|+1) 22 J

x}(wx [0])(s)sin[(2I +1) %jds, for t >0

t] j;(V\{O])(s)co{(Zl +1) %)ds

IN

= ZZ sm((ZI +1)

1=0
(A2)

where the last equality has been obtained usingtagration by
parts and the fact thafw[0])(1) =0. Note that the functions

{zp' (x) = J_zsin( @ +1) %}}

0

1=0

3) MY(x)A= AM (x)

(2]

(3]

(9]

(10]

def
4 M) =(1

0A

OJX I
: [OJDR”*”, OxOR

O)e
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Appendix B. Additional properties oM (x)

The functionM (x) defined by (27) has the following properties,

see proofin [14]:

2k

M) =1+ kz(’z(k)' k

2) M(x)A =AM (x)
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