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Abstract—In Cloud Radio Access Networks (C-RAN) one of
the main challenges is accurate data transfer on limited capacity
fronthaul links between Remote Radio Heads (RRHs) and the
central processing unit. Particularly in large-band and multi-
antenna transmissions, fronthaul capacity can be a limiting factor.
In this paper we study the impact of non-ideal fronthaul on
uplink received signal, channel estimates and consequently on
the achievable rates. We consider both the fronthaul capacity
and the length of training sequences variable and find optimal
values allowing high-rate transmission taking into account the
costs of over-the-air transmission and fronthaul usage, thus, our
approach can be used in dynamic system design and configuration
given technical and economical factors.

I. INTRODUCTION

With mobile data traffic growth, the deployment of new
network architectures such as Cloud Radio Access Network
(C-RAN) is planned. In C-RAN we have several single-
or multi-antenna Remote Radio Heads (RRHs) located in a
distributed manner, implementing only a part of Base Band
(BB) processing going from only Radio Functions (RF) to
Media Access Control Layer or more. The Remote Radio
Heads are connected to the so-called Base Band Unit Pool
(BBU-Pool) through limited capacity fronthaul links and the
remaining part of the BB processing takes place there. In a
fully centralized C-RAN setup, we transfer digital I/Q symbols
between the RRHs and the BBU-Pool, which requires very
high fronthaul data rate.

Various technologies are susceptible to be used for fron-
thaul connections, the most common remains optical fiber
connection either in point-to-point configuration or through
a switched network. Since high over-the-air bandwidth and
multiple antennas at the RRH would increase fronthaul data
rate, system design remains challenging.

We demonstrate the benefit of optimizing the fronthaul
capacity usage by taking into account on one hand the impact
of data quantization on channel estimation accuracy and on
the other hand the cost of wireless spectrum and fronthaul
infrastructures. The joint optimization of the length of train-
ing sequences and allocated fronthaul bandwidth allows a
more efficient exploitation of available resources. The main
limitation of C-RAN is related to fronthaul data-transfer, its
accurate design enables good dimensioning of fronthaul links,
consequently significant cost savings.

In this work, a single wireless channel is considered, the
whole range of available bandwidth being contiguously filled
by channels at different frequencies and all frequencies are
reused between the different cells. For the sake of simplicity,
we study a system with two single-antenna RRHs and two
users, one in each cell, similarly to the model of the interfer-
ence channel defined in [1]. In addition, receivers cooperate
in the BBU-Pool to which each received digital signal is
forwarded. Physical layer processing of each cell remains
separated despite they take place in the same processing unit,
but they benefit from centralization by exploiting channel
estimates and received data of both cells in the Minimum
Mean Square Error (MMSE) detection [2]. This system model
guarantees scalability so that results can be extended to larger
systems and to each channel in the available spectrum. The
coordination of the multi-cell processing is realized in the
BBU-Pool, thus it can be applied to any cell connected to
the same pool.

Theoretical limits of multi-cell uplink cooperation under
practical constraints has been studied in several research
works. Optimal training length in uplink network MIMO
systems was derived in [3] assuming large-scale cooperation
and considering fixed fronthaul capacity constraint. Multi-
cell cooperation with limited communication links between
two Base Stations (BSs) without central processing unit was
studied in [4] and the impact of channel estimation error
was introduced. However, authors did not consider capac-
ity optimization, furthermore the asymmetric configuration
studied is less scalable than C-RAN which is inherently
designed for multi-cell cooperation. Distributed compression
scheme proposed in [5] aims reduced fronthaul usage while
maintaining accurate transmission.

One of the proposed methods to increase spectral efficiency
of future mobile networks is to use a large number of antennas
at the BSs [6]. The promising results of multi-user reception
using Massive MIMO stand under the assumption of uncor-
related channels, correlation can significantly affect system
performance [7]. Spatially distributed antennas, as considered
in this work can overcome this problem.

The C-RAN-based architecture proposed in [2] enables to
realize joint processing for critical users with an affordable
fronthaul infrastructure. The case of efficient fronthaul usage



in a C-RAN system with multi-antenna RRHs using Spatial
Compression and Forward strategy was explored in [8]. Au-
thors in [8] also point out that a system with distributed RRHs
and constrained fronthaul overperforms single-RRH massive
MIMO configuration.

The remainder of the paper is organized as follows: after
presenting the system model in Section II, in Section III we
compute the achievable rates taking into account channel esti-
mation error and limited fronthaul capacity, in Section IV we
formulate a cost-gain problem using the obtained expressions.
Finally we present numerical evaluation of obtained results
with various system parameters in Section V and we provide
concluding remarks and future steps in Section VI.

II. SYSTEM MODEL

The system that we study, introduced above, is depicted in
Figure 1. We assume that each transmitter and each receiver
has only one antenna. Users broadcast a signal xi, with i ∈
{1, 2} (rallied in the variable xxx = (x1, x2)T ) with powers,
respectively, p1 and p2, which form PPPxxx. Both receivers get
the sum of the signals transported by the wireless channels
represented by the channel coefficients hij , with i, j ∈ {1, 2}

which form the channel matrix HHH =

(
h11 h21
h12 h22

)
.

The received signal by each RRH is

yj = h1jx1 + h2jx2 + zj with j ∈ {1, 2} (1)

which is included in the matrix formulation

yyy = HHHxxx+ zzz (2)

The added white Gaussian noise zj has variance σ2
z . The RRHs

compress the received signal and forward it to the central
processing unit through the fronthaul link with capacity cj .
The BBU-Pool receives ŷyy = (ŷ1, ŷ2)T , then estimates the
channel matrix and gets the estimate ĤHH . The actual channel
matrix is HHH = ĤHH+H̃HH where H̃HH is the channel estimation error
matrix with independent entries of N (0, σ2

e).
We use the following notational conventions: for random

variables, upper case letters, e.g., X , for scalars, bold and non-
italic fonts, e.g., V, for vectors, and bold and sans serif fonts,
e.g., M, for matrices. Deterministic quantities are denoted with
italic letters, e.g., a scalar x, lowercase bold for a vector vvv,
and uppercase bold letters for a matrix MMM . Logarithms are in
base 2 and superscript (.)H denotes the conjugate transpose
of a vector or a matrix.

III. ACHIEVABLE TRANSMISSION RATES UNDER LIMITED
FRONTHAUL CONSTRAINT

In the C-RAN model with RRHs implementing only RF,
all digital signal processing is located in the BBU-Pool. On
the uplink (UL), RRHs forward fixed-sized packets containing
the I/Q symbols and this transmission introduces distortion on
the received signal. Afterward, the channel estimation realized
in the BBU-Pool using the received signal depends not only
on the training length, but also on the compression. In this
section, we compute the achievable transmission rates taking
into account these constraints.

Fig. 1: Two users - two antennas interference channel with
centralized processing

A. Fronthaul quantization

The RRHs receive analog radio signals containing users’
messages that they have to convert into digital signals in order
to be able to transmit to the centralized processing unit. For
practical reasons, even if we have high capacity fronthaul
links, we need to transmit I/Q symbols in finite-size packets,
consequently we have to deal with the loss of information due
to quantization. In the following, we show how the statistics of
the channel estimation error is related to the fronthaul capacity.

We define the distortion dj between the signal yj received
by the RRH and the compressed signal ŷj received by the
BBU-Pool as the squared-error distortion between yj and ŷj .

dj = D(yj , ŷj) := E[| yj − ŷj |2| Ĥ] ≤ σ2
dj (3)

The minimum achievable fronthaul rate for both of the links
with capacities cj , j ∈ {1, 2} is given - according to the rate-
distortion theorem [9] - by the mutual information between Y
and Ŷ given the channel estimate ĤHH .

rj ≤ cj
rj ≥ min

pŷ|y :D≤σ2
dj

I(Yj , Ŷj | Ĥ) (4)

If we choose ŷj adequately, the resulting distortion allows
to quantize yj accurately at the optimal rate rj = cj . We get
the following bound on σ2

dj

σ2
dj ≤ σ

2
yj |Ĥ

2−cj (5)

We define αj =
σ2

yj |Ĥ
−σ2

dj

σ2

yj |Ĥ
∀j ∈ {1, 2} and in the following

computations we use it in the matrix α = diag
j={1,2}

(αj). The

scaling factor αj allows to compute the upper bound of the
variance of the distortion, which can be then assimilated to
additive Gaussian noise with variance σ2

dj
. The rates computed

below are then valid for any distortion model.

σ2
dj

αj
=

σ2
dj
σ2
yj |Ĥ

σ2
yj |Ĥ
− σ2

dj

≤
σ2
yj |Ĥ

2−cj

1− 2−cj
∀j ∈ {1, 2} (6)



B. Imperfect channel estimation

In the BBU pool we estimate the complex channel coeffi-
cient from each user to both RRHs using pilot symbols known
on both sides. The error between estimates and the actual
channel realization is characterized by an additive estimation
error matrix H̃HH .

From a practical point of view, on one hand increasing
training length would decrease channel estimation error. On
the other hand, the useful sum-rate would also decrease,
since less useful transmission can be realized during channel
coherence time. In an optimal design we need to find a tradeoff
between the pilot length and the resulting σ2

e to achieve
maximal useful rates.

C. Achievable rates

The rate region of the channel defined in Section II is
given by the closure of the set of the achievable rate pairs.
We assume that the receivers can use as side information the
estimation of the channel matrix Ĥ, the statistics of channel
estimation error and of the channel noise. Received signals
from both RRHs are also shared in the BBU-Pool. The
achievable rates are then given by:

r1 ≤ I(X1; Ŷ | Ĥ, x2)

r2 ≤ I(X2; Ŷ | Ĥ, x1)

r1 + r2 ≤ I(X; Ŷ | Ĥ)

(7)

The mutual information terms can be written as

I(X1; Ŷ | Ĥ, x2) = h(X1)− h(X1 | ŷyy, x2, Ĥ) (8a)

I(X2; Ŷ | Ĥ, x1) = h(X2)− h(X2 | ŷyy, x1, Ĥ) (8b)

I(X; Ŷ | Ĥ) = h(X)− h(X | ŷyy, Ĥ) (8c)

The first entropy terms in equations (8a)-(8b) represent the
amount of information that was actually sent, while the second
terms the degradation through the channel, the fronthaul
quantization and the receiver. These ones can be obtained from
the covariance of the detection error when the received signal
includes the channel estimation error. Consequently, in order
to get the achievable rates, we have to find upper bounds of
the second entropy terms, since the first ones depend only on
transmission powers p1 and p2. In the following equations the
vectors hhhi denote the columns of the matrixHHH and respectively
ĥhhi and h̃hhi for the columns of the matrices ĤHH and H̃HH . Using
this notation the received signal can be written

ŷyy = α
(

(ĥhh1 + h̃hh1)x1 + (ĥhh2 + h̃hh2)x2 + zzz + ddd
)

(9)

where zzz is the additive Gaussian channel noise vector and
ddd the equivalent noise representing distortion. Since both are
assumed Gaussian we denote nnn = zzz + ddd and its covariance
matrix ΣN = diag

i={1,2}
{σ2

Ni
} with σ2

Ni
= σ2

z +
σ2
di

αi
.

Second terms of (8a) and (8b) can be computed similarly,
hence following computations stand for both with appropriate
indexes.

We denote ŷyy′ = ŷyy−αĥhh2x2 and consider the linear MMSE
estimate of x1 from ŷyy′ the conditional entropy in (8a). By
applying results in [10] to our system model, we get

h(X1 | ŷyy′, x2, Ĥ) ≤ EĤ1
[log(2πek1)] (10)

where k1 denotes the variance of the error between x1 and
its LMMSE estimate x̂1 given x2 and ĤHH .

Using the definition of ŷyy′, we get

k1 = p1(1− Ĥ
H

1 (Ĥ1Ĥ
H

1 p1 + Σe1)−1Ĥ1p1) (11)

with Σe1 = σ2
e(p1+ | X2 |2)III2 + ΣN .

We get the following bound on the mutual information

I(X1; Ŷ | Ĥ, x2) ≥ EH1,X2

[
log

(
p1
k1

)]
(12)

We have similar expression for the inequality (8b).
To find the achievable sum rate expression (equation (8c))

we use the array of received signals from both RRHs ŷyy.

h(X | ŷyy, Ĥ) ≤ EĤ [log(det(2πeKKK))] (13)

with KKK the covariance matrix of the error between xxx and
its LMMSE estimate x̂xx.

By computing this covariance we get

KKK = PPPX(III2 − Ĥ
H

(ĤPPPxxxĤ
H

+ Σe)
−1ĤPPPxxx) (14)

with Σe = σ2
e(p1 + p2)III2 + ΣN .

Using this result we get the following bound on mutual
information

I(X, Ŷ | Ĥ) ≥ EĤ

[
log

p1p2
det(KKK)

]
(15)

From the above expressions we get the following result.
Theorem 1: An achievable rate-region of the system de-

scribed in Section II is given by

r1 ≤ EĤ1,X2

[
log
(

1 + p1Ĥ
H

1 Σ−1e1 Ĥ1

)]
(16a)

r2 ≤ EĤ2,X1

[
log
(

1 + p2Ĥ
H

2 Σ−1e2 Ĥ2

)]
(16b)

r1 + r2 ≤ EĤ

[
log det

(
I2 + Ĥ

H
Σ−1e ĤPPPxxx

)]
(16c)

By developing the expression of Σe we can see that the
sum-rate is an increasing function of fronthaul capacities.

Σe =


σ2
e(p1 + p2)+ 0

σ2
z +

σ2

y1|Ĥ
2−c1

1−2−c1

σ2
e(p1 + p2)+

0 σ2
z +

σ2

y2|Ĥ
2−c2

1−2−c2

 (17)

Conjecture 1: For an extension of our system model to n co-
channel users and n RRHs connected to the BBU-pool through
links with capacity ci with i ∈ {1, 2, ..., n} the following sum-
rate can be derived from (16c).

n∑
i=1

ri ≤ EĤ

[
log det

(
In + Ĥ

H
Σ−1e,nĤPPPxxx

)]
(18)

with Σe,n = (σ2
e(

n∑
i=1

pi) + σ2
z)IIIn + diag

i={1,...,n}

(
σ2

yi|Ĥ
2−ci

1−2−ci

)



IV. FRONTHAUL CAPACITY AND CHANNEL TRAINING
OPTIMIZATION

In the optimization of radio front-end parameters we adopt a
cost-gain approach by taking into account the cost of fronthaul
capacity used and the effective useful transmission. In fact, in
a C-RAN architecture, the cost of the fronthaul infrastructure
is an important factor to take into account, since it can
happen that it is higher than the benefit from effective useful
transmission.

We focus on the optimization of the sum-rate (16c) follow-
ing two factors: the fronthaul capacity allocated to each user
and the training length which is inversely proportional to the
channel estimation error σ2

e .

A. Effective benefit of transmissions

In the expression of the optimization problem using (16c)
we have several parameters:

• The proportion of pilot symbols w.r.t. the total sequence
length denoted by η

• The input power allocated for each user that we assume
equal to both of them p = p1 = p2.

• The parameter which allows us to model σ2
e using the

transmit power and η: β
• The variance of the channel estimation error σ2

e = β
ηp+β

• The Gaussian channel noise variance σ2
z

• The capacity of each fronthaul link on which we forward
digital base-band I/Q symbols from the base-station to
the processing unit (we assume also c = c1 = c2)

• The cost λ of the fronthaul capacity allocation

The cost factor λ can be considered either as a price to pay
for effective transmission over the fiber link, or for example a
penalty depending on network conditions: allocating capacity
on an already saturated link impacts other users so has a high
cost.

Normalizing the estimated channel gain ĤHH makes clear the
impact of training length on the channel estimation error en-
sures proportionality between the useful rate and the fronthaul
cost. In the following equations we use the normalized channel
estimate matrix ĤHHN = (1 − σ2

e)ĤHH . In order to keep the
optimization results general, we use the expectancy over many
occurrences of the normalized channel estimate matrix ĤHHN .

We can formulate the following objective function

g(σ2
e , σ

2
z , p, λ, η, c) = (1− η)EĤN

[log det (III2+

p(1− 2−c)(1− σ2
e)Ĥ

H

N

(
(2σ2

ep+ σ2
z)III2+

2−cp(1− σ2
e)Ĥ

M

N

)−1
ĤN
)]
− λc

(19)

with Ĥ
M

N =

(
| Ĥ1N |2 0

0 | Ĥ2N |2

)
The value of this function for a given set of parameters

gives the effective gain of the transmission.

Fig. 2: Optimal pilot proportion and useful sum-rate vs fixed
fronthaul capacity for several SNR values

B. Capacity and training length optimization

The optimization problem using function (19) is written as
follows.

Given the parameters P = (σ2
e , σ

2
z , p), λ, β

We search for argmax
c,η

g(P, λ, η, c)

subject to σ2
e =

β

ηp+ β

(20)

The optimal (η, c) pair allows us to maximize the effective
gain of the transmission. In order to find the optimal values
of η and c, we compute the partial derivatives of the function
g w.r.t. η and c.

The partial derivative w.r.t. η is

∂g(P, λ, η, c)
∂η

=(1− η)EĤN

[
∂ log det a(σ2

e)

∂σ2
e

]
−

EĤN

[
log det a(σ2

e)
]

with a(σ2
e) =III2 + p(1− 2−c)(1− σ2

e)Ĥ
H

N×(
(2σ2

ep+ σ2
z)I2 + 2−cp(1− σ2

e)Ĥ
M

N

−1
ĤN

(21)

and the partial derivative w.r.t the capacity c is



∂g(P, λ, η, c)
∂c

= (1− η)EĤN

[
∂ log det a(c)

∂c

]
− λ

with a(c) =III2 + p(1− 2−c)(1− σ2
e)Ĥ

H

N×(
(2σ2

ep+ σ2
z )III2 + 2−cp(1− σ2

e)Ĥ
M

N

−1
ĤN

(22)

V. NUMERICAL EXAMPLES

We provide in this section numerical evaluation of the
results developed above. Since the achievable sum-rate de-
pends on the actual channel realization, we need to use
the expectancy w.r.t. the channel estimate value to get the
optimal c and η in a general case, not for a particular chan-
nel realization. Despite dynamic optimization and periodical
update of these parameters, computing them for each channel
realization would require too high computational effort and
they could only be applied for the following transmission
where channel estimates are already out-of-date. We have
evaluated the difference between the optimal pilot proportion
computed using expectancy and the one using each channel
realization and it turns out to be lower than 2% of the optimal
value. One can observe that this difference is also independent
of the fronthaul capacity. Thus, we can find the optimal values
by numerical search so that expectancy over many values
could be computed and update transmission parameters less
frequently.

A. Optimal pilot allocation

With a fixed amount of fronthaul capacity allocated and
without taking into account the cost of the fronthaul usage
we can find the optimal proportion of pilot symbols resulting
the best achievable sum-rate for the given fronthaul capacity.
More precisely, we evaluate the optimal pilot proportion η
as formulated in the optimization problem formulated in (20)
with cost factor λ = 0 and for several fixed capacity value.

On Figure 2 we have plotted the optimal proportion of
pilot symbols to be allocated depending on the available
fronthaul capacity (upper part) and the achieved sum-rate
values when the optimal pilot proportion is applied (lower
part) for several SNR values. We notice that for capacities
higher than log(1 + SNR) the sum-rate becomes constant,
longer training sequence cannot increase it more because of
the fronthaul capacity limitation. Also, for low SNR, the useful
transmission rate is very low due to large pilot overhead.

B. Joint optimization of the fronthaul capacity and the pilot
length

We can solve also numerically the problem defined in (20)
so that we get the pair (η, c) that gives the maximal sum-rate
for a given SNR. Moreover, we consider, according to (19),
a cost to get fronthaul capacity, hence increasing the capacity
too much would not increase the overall gain. On Figure 3 we
show jointly optimized pilot proportion and the capacity for
different cost values. One can observe that while fronthaul cost
increases, the optimal pilot length to be allocated decreases,

Fig. 3: Optimal pilot proportion and effective sum-rate vs
fronthaul cost for several SNR values

since sum-rate is limited by the lower optimal capacity, so
shorter training sequences are enough to achieve this lower
sum-rate.

On Figure 4 we can see how efficiently the allocated
fronthaul capacity is used if cost varies. The ratio of useful
sum-rate and optimal capacity shows that fronthaul is used
more efficiently with higher cost values and also for higher
SNR. On one hand, with higher SNR values we need to
allocate less pilots to get optimal sum-rate. On the other hand,
if cost is higher, it is optimal to allocate less capacity and pilots
than the ones achieving maximal sum-rate with unlimited
fronthaul, but still allowing reliable transmission, so that the
allocated fronthaul is used more efficiently.

VI. CONCLUSION

In this paper we have studied uplink transmissions in a C-
RAN system with limited capacity fronthaul links. We have
computed the achievable rate region which depends on the
fronthaul capacity and channel estimation error statistics. Us-
ing this rate region and considering the cost of fronthaul usage
we have shown the benefit of jointly optimizing the length of
training sequences and the allocated fronthaul capacity.

Since our system model allows scalability, these results
can be applied to higher dimensional systems regarding both
number of antennas and users, until the number of co-channel
users is not higher than the total number of antennas over
all RRHs. A next step of this work can be the creation of



Fig. 4: Efficiency of capacity usage w.r.t. fronthaul cost

user groups transmitting on the same channel in an extension
of our model where fronthaul capacity needs to be shared
between transmissions on several channels. User grouping
using the metric developed in this paper allows to maximize
transmission rate for the whole set of channels under the
practical constraints that we have cited. In another extension
of the present work, correlation between antennas in various
configurations in terms of distribution and centralization can
be studied. Provided results can also be generalized by consid-
ering different estimation errors for each user e.g. if they use
different transmission modes. This would allow to compute
optimal pilot length for each of them. Finally, as a next step,
we plan to implement optimization algorithms based on these

results in a prototype platform that can allow performance
evaluation in real network conditions.
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