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Optimal Mean Square Control using the Continuous Stream Model of

Computation

Daniele Fontanelli1 and Luca Greco2 and Luigi Palopoli3

Abstract— We consider the problem of optimal allocation
of computation resources to a set of control tasks sharing a
CPU. Each task is used to control a linear and time invariant
plant affected by noise and is supposed to have a computation
time with known distribution. The metric we use to express
the Quality of Control (QoC) is a function of the steady state
covariance of the state. We show how the combination of a
Resource Reservation scheduler with an unconventional model
of computation known as Continuous Stream produces a system
that is easy to analyse. In particular, it is possible to compute
the QoC of each control loop as a function of the fraction
of CPU (bandwidth) that the task receives, and formalise an
optimisation problem where a global QoC metric is defined
that consolidates the QoC of each task. We show an efficient
solution to this optimisation problem and validate its efficacy
on a set of numeric examples.

I. INTRODUCTION

Modern embedded controllers are increasingly based on

sensors that require a heavy and time-varying processing time

to extract the relevant information. Vision based application

are a perfect example of this kind. The processing time for

these applications can be modeled as stochastic variables

with long tailed distribution. When the hardware is shared

between several applications (a frequent design choice to re-

duce the costs and to simplify system engineering) additional

delays are introduced by the scheduling interference.

The standard solution to deal with scheduling delays is

to force the communications between the plant and the

embedded controller to take place at precise points in time [1]

and to delegate to the system engineer the responsibility of

guaranteeing that all applications will be ready to deliver

their output at the correct time. When the processing time

changes much, providing temporal guarantees for the execu-

tion of every single activation (job) of a task significantly

reduces the possibility of sharing the CPU.

Many researchers have investigated on how to make the

design robust against an irregular timing behaviour of the im-

plementation, focusing on such effects as packet dropout [2],

[3], jitter in computation [4], [5] and time varying delays [6].
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Other authors have sought suitable ways to modify the

scheduling behaviour in overload conditions [7], [8].

In this paper we consider a design problem where multiple

and independent linear controllers are implemented by a

set of real–time tasks with stochastic computation time

sharing a CPU. Roughly speaking the goal is to identify

the choice of the scheduling parameter that corresponds

to a global optimal performance. Our work is inspired by

the following considerations: I) control systems are known

to tolerate delays and even occasional losses of data in

the feedback loop, as long as the problem is adequately

accounted for in system design [9], [10], II) when a task has a

variable computation time, standard scheduler using fixed or

dynamic priorities [11] are difficult to use, whilst different

alternatives such as the Resource Reservations (RR) [12],

[13] offer a superior performance, III) if a designer’s ob-

jective is to enforce system stability with minimal use of

resources, unconventional models of computation such as

event-triggered [14], [15] or self-triggered [16], [17] control

and anytime computing [18] can offer a valuable alternative

to periodic sampling.

RR scheduling algorithms have been developed in the

multimedia community and enable a fine–grained control

of the bandwidth (fraction of CPU time) that each task

receives. By using this property, we can derive a discrete–

time Markov Chain (DTMC) describing the evolution of

the delays incurred by a task for a given distribution of its

computation time and for a given assigned bandwidth [19]. In

our previous work, we have combined the DTMC associated

with the Resource Reservation scheduler with a soft real–

time computation model, whereby a control task is activated

periodically but is occasionally allowed to execute beyond

its deadline. The Markov Jump Linear System (MJLS)

that describes the resulting closed loop dynamics is rather

cumbersome to analyse [10]. A different possibility [20] is to

adopt a simpler model of computation, in which sampling is

periodic but a delayed job is cancelled. In this case the use of

RR scheduling enables a straightforward computation of the

probability of dropping a job as a function of the bandwidth.

A standard test to ascertain the stability of a MJLS is to

compute the steady state covariance of the state and to

verify that it satisfies some eigenvalue conditions (see for

instance [21]). Moreover, in case of random input noise, the

steady state covariance is usually adopted as a performance

measure, since it accounts for the impact of the noise on the

output. As a consequence, the steady state covariance can

be used to define a Quality of Control (QoC) metrics for

the task. The case of multiple control tasks sharing the CPU



can be addressed by consolidating the QoC of the different

control loops into a global QoC metric. By doing so, the

designer translates the design problem into an optimisation

problem, where the bandwidth assigned to tasks are decision

variables that can be efficiently computed. Although simple

to analyse, the computation model [20] is based on the

outright cancellation of a job and can be a drastic choice,

with a negative impact on the QoC of the delivered by the

task.

In this paper, we aim to combine the simplicity of the

problem formulation with job cancellations with the arguably

better performance of a model in which delays are allowed.

The key point is the adoption of the so-called Continuous

Stream model of computation [22], in which a delayed task

is allowed to continue beyond the deadline but the new

sampling event is deferred to the termination of the job.

This idea allows us to model the delays as an indepen-

dent and identically distribute (IID) process and to extend

the formalisation of the optimisation problem for the job

cancellation case proposed in [20] to a more compelling

problem. In particular, we can use the steady state covariance

of each control loop to define a QoC metric, expose its

dependency on the probability of the different delays (and

ultimately on the assigned bandwidth), and use a simple

technique to compute the optimal value of the global QoC.

In the paper, we show the theoretical foundations of this

idea considering generic non-monotone QoC measures (only

monotone functions are adopted in [20]), and test its efficacy

on several numeric examples.

The paper is organised as follows. In Section II, we

offer some background information and formulate the design

problem. In Section III, we show how to set up constraints

and cost function for the optimisation problem. In Section IV

we show our solution strategy for the problem. In Section V,

we offer numeric evidence of the efficiency of our solu-

tion. Finally, in Section VI, we offer our conclusions and

announce future work directions.

II. BACKGROUND MATERIAL AND PROBLEM

PRESENTATION

We consider a set of real–time tasks sharing a CPU. In

our setting a task τi, i = 1, . . . , n is a piece of software

implementing a controller. Tasks have a cyclic behaviour:

when an event occurs at the start time ri, j , task τi generates

a job Ji, j (the j-th job). In this work, we will consider

periodic activations: ri, j = jTi with j ∈ Z≥0. Job Ji, j
finishes at the finishing time fi, j , after using the resource for

a computation time ci, j . If job Ji, j is granted an exclusive

use of the resource, then fi, j = ri, j + ci, j .

A. Scheduling Mechanism

The scheduling mechanism rules the access to the com-

puting power when multiple job requests are active at the

same time. In this paper, we advocate the use of resource

reservations [12]. In any time interval of length Ri, called

the reservation period henceforth, the fraction of CPU time

granted by the scheduler to the task τi during Ri is called

the bandwidth Bi. The product Qi = BiRi is termed

budget, which is an integer number ranging in the interval

[0, . . . , Ri]. A reservation is then (Qi, Ri). Since the exe-

cution of job Ji, j requires at most
⌈
ci, j
Qi

⌉
Ri computation

units, or briefly
ci, j
Bi

, we can consider the bandwidth Bi as

a fraction of the speed of the real processor that is given to

task τi.

For our purposes, it is convenient to choose a reservation

period that is an integer sub-multiple of the task period: Ti =
NiRi, Ni ∈ N. There are several possible implementation

of the resource reservations paradigm, one of the most

popular being the Constant Bandwidth Server (CBS) [13],

which operates properly as long as the following condition

is satisfied.
n∑

i=1

Bi ≤ 1, (1)

i.e., the cumulative allocation of bandwidth cannot exceed

100% of the computing power.

B. Model of Computation

The CBS has been already used in the literature assuming

a time-triggered model of execution [1]. For example, [10]

proposes a feedback scheduling for a set of control tasks,

while [20] presents an optimal allocation of bandwidth for

a model of computation where delayed jobs are cancelled.

The approach followed in this paper is similar in spirit to

the latter approach, but extends the result to a more flexible

model of computation, called the Continuous Stream [22],

which we summarise below.

The continuous stream MoC is an “extreme” evolution of

the soft real–time model of computation described in [10].

The model can be described as follows: 1. when the j-th job

is activated on a sampling event (time ri,j ), it is assigned

a relative deadline to complete (say d), which is a multiple

of a base time granularity Rj typically chosen equal to the

reservation period, 2. if the job finishes before d, at time

rj + d its output is released a new input is acquired and a

new job triggered, 3. in the opposite case the job’s execution

continues beyond the ri,j + d. When the job finishes (time

fi,j , the system waits for the next release time, equal to

ri,j +
⌈
fi,j−ri,j

Rj

⌉
Rj . When this instant arrives, the result

of the computation of job Ji,j is released, a new sample

is acquired and the new job starts. 4) there is a maximum

amount of delay beyond which the job is cancelled.

As apparent from this short description, the idea of time-

triggered activation is relaxed: when a job finishes after its

soft absolute deadline (equal to the job arrival time plus the

nominal period T ), it immediately activates the following

one (hence the name “continuous stream”). The delivery of

the task result takes place at the arrival time of the next job.

Since the input for a job is collected at the same time the

result of the previous job is released, the model tolerates

the delays and, more importantly, the absence of carry-on

execution between adjacent jobs prevents an accumulation

of delays. This drastically simplifies the model expressing



the evolution of the delays, which become an i.i.d. process.

The interested reader is referred to [22].

C. The Control Problem

Each task τi is used to control a controllable and observ-

able discrete–time linear system:

xi(k + 1) = Aixi(k) + Fiui(k) + wi(k)

yi(k) = Cixi(k)
(2)

where xi(k) ∈ R
nxi represents the system state, ui(k) ∈

R
mi the control inputs, wi(k) ∈ R

nxi a noise term and

yi ∈ R
pi the output functions. One step transition for this

discrete time system refers to the evolution of the system step

across one temporal unit, which is set equal to the reservation

period Ri. The ui(k) vector is updated at the end of each

control task, according to the model of execution described

above.

By Pi(k) = E
{
xi(k)xi(k)

T
}

we denote the variance of

the state resulting from the action of the noise term and of the

control action. When P i = limk→∞ Pi(k) < +∞ (i.e., the

variance converges) for a given control algorithm, we will say

that the closed loop system is mean square stable [21] and

we will use P i to define Quality of Control (QoC) metrics.

Clearly, the smaller is the value of P i, the better is the control

quality.

D. Problem Formulation

The bandwidth Bi quantifies the amount of computation

that the task receives in unit time and can be translated into

the delays introduced in the feedback loop and therefore

into the probability of violating the deadline. Then, different

values for the bandwidth determine a different value of the

QoC P i.

The objective of this paper is to identify the allocation

of resources, i.e., the bandwiths B1, . . . , Bn, between the

different n control tasks that maximises the system-wide

global QoC. More precisely:

minΦ(P 1, . . . , Pn)

subject to
n∑

i=1

Bi ≤ 1

Bi ≥ Bi ≥ Bi.

(3)

where Bi is the minimum (critical) bandwidth that the

task has to receive in order for the feedback loop that

it implements to be mean square stable, while the upper

bound Bi is to ensure that the task does not receive more

bandwidth than it needs to achieve probability 1 of meeting

the deadline. The cost function Φ(·) generate the global

QoC index, and it is considered to be the infinity norm

in this paper, i.e., Φ(P 1, . . . , Pn) = maxi φi(P i), where

φi(·) are the individual QoC metrics. Finally, the constraint∑n

i=1 Bi ≤ 1 is the schedulability condition (1).

III. COST FUNCTION AND CONSTRAINTS FOR THE

OPTIMISATION PROBLEMS

This section presents the QoC analysis for a generic task.

Since we are referring to a single control task, we will

drop the i subscript in this section. The jobs control tasks

are nominally activated on a periodic basis: rj = jNR,

where the N ∈ N expresses the number of steps (reservation

periods) composing a period. Since the control action is

effectively computed when the job is executed, the system (2)

is controlled by the linear controller

zj+1 = Aczj +Bcyj (4)

uj = Cczj +Hcyj ,

where j is the index of the j-th job and we have adopted

for notation simplicity z(j + 1) = zj+1. The controller is

designed supposing that the control law is computed with

a fixed nominal period T = NR, while the output of the

control task is released with a delay of one period T after

the fetch of the output yj (unitary delay assumption). More

in depth, by recalling that Dj =
⌈
cj
Q

⌉
is the number of

reservation periods R needed for the task computation (see

Section II-A), the input-output delay will be at least of N .

Because of the computation time and of the presence of other

tasks, the output may be further deferred after the relative

deadline. In this case, the control task incurs an additional

delay, defined by ∆j = Dj − N reservation periods. A

maximum delay of Nr reservation periods is tolerated, for

some fixed integer Nr > N . Hence, the integer delay Dj

can change for each job and assumes values in the set

D = {N, . . . , Nr}.

A. Closed Loop Model

The integer variable Dj ∈ D represents the number of

reservation periods during which the control value uj−1 is

held constant, hence the controlled system dynamics in a

job-based fashion instead of a time-based one as in (2):

xj+1 = ADjxj + FDj
uj−1 + w̃(j) (5)

yj = Cxj ,

where FDj
=

∑Dj−1
t=0 ADj−t−1F and w̃(j) =∑Dj−1

t=0 ADj−t−1w(j + t). Here we are assuming that

the output of the system yj is sampled on a job basis.

If, instead, the delay would be greater then Nr, i.e., Dj 6∈
D, a job cancellation event takes place (called drop), forcing

the computation to stop. The cancellation event can be

managed either holding the previous control value (drop and

hold), or zeroing it (drop and zero). In both cases we consider

the controller state zj to be held (zj = zj−1). Therefore, in

the drop case, the dynamics (5) is still unchanged, while

the dynamics of the controller (4) has to be modified. To

this end, we introduce the state variable ξj and re-write the

controller dynamics (4) as reported in Table I.

ζj+1 = Aφ(j)ζj + v(j)

yj = C̃ζj ,
(6)



Regular dynamics Drop and hold Drop and zero

zj+1 = Aczj +Bcyj

ξj+1 = Cczj +Hcyj

uj = Cczj +Hcyj

zj+1 = zj

ξj+1 = ξj

uj = ξj

zj+1 = zj

ξj+1 = 0

uj = 0.

TABLE I

CONTROLLER DYNAMICS FOR REGULAR AND DROP SITUATIONS.

Regular dynamics Drop
φ(j) ∈ D φ(j) > Nr





Aφ(j) 0 Fφ(j)

BcC Ac 0
HcC Cc 0









Aφ(j) 0 Fφ(j)

0 I 0
0 0 αI





TABLE II

CLOSED LOOP DYNAMICS FOR REGULAR AND DROP SITUATIONS. THE

DROP DYNAMIC IS DROP AND HOLD WHEN α = 1 AND DROP AND ZERO

WHEN α = 0.

where ζj , [xT
j , z

T
j , ξ

T
j ]

T , C̃ , [C, 0, 0], v(j) ,[
w̃(j)T , 0

]T
and the piecewise constant function φ : Z≥0 →

D ∪ {Nr + 1} rules the switchings among the different

subsystems, whit φ(j) = Nr + 1 for a drop event. The

structure of Aφ(j) can be easily derived recalling that uj−1

in (5) is replaced by ξj , thus leading to the matrices in

Table II.

In the following, we assume that the noise w(·) and

the computation time {cj}j∈Z≥0
are mutually independent,

stationary and both independent from the state. Moreover,

we assume that w(·) is an independent identically dis-

tributed (i.i.d.) random process, have zero mean and vari-

ance E
{
w(k)w(k)T

}
= W . We further assume that also

{cj}j∈Z≥0
is i.i.d., which is a realistic assumption since even

ignoring its possible correlation structure, a close approxima-

tion of the actual process can be obtained [19].

B. Stochastic Analysis

Depending on the choice of the bandwidth B, we get

different distributions for the i.i.d. process representing the

delay. Let us define the probability µ
j
t of the j-th job to

execute exactly in t reservation periods as µ
j
t , P {Dj = t}

for t = N, . . . , Nr. By means of the fluid approximation and

the definition of Dj , we have that

µ
j
t ,

{
P {cj ≤ NBR} for t = N

P {(t− 1)BR < cj ≤ tBR} for t = N + 1, . . . , Nr ,

(7)

which expresses the probability in terms of the computation

time cj and of the bandwidth B. Due to the fact that

{cj}j∈Z≥0
is an i.i.d. process, the probability does not change

with the job and we can just drop the subscript j and

writing µt as a function of t and B only: µt , µ(t, B).
Here µ(·, ·) represents the cumulative distribution of the

computation time {cj}j∈Z≥0
. We also define the probability

µo , 1 −
∑Nr

t=N µt of dropping the computations, i.e., of

cancelling the job and going in open loop.

Remark 1: It is important to notice that, due to the de-

pendence of all the probabilities µt on the same variable B,

the vector [µN , . . . , µNr
, µo] ∈ SNr−N does not span the

whole (Nr − N)-dimensional probability simplex SNr−N .

Such vector describes a one parameter curve w.r.t. B.

The dynamics of the covariance P (j + 1) of the state ζ for

the (j + 1)-th job is then given by

P (j + 1) = E
{
ζj+1ζ

T
j+1

}

=

Nr∑

t=N

µtE
{
(Atζj + v(j)) (Atζj + v(j))T

}
+

+ µoE
{
(Aoζj + v(j)) (Aoζj + v(j))

T
}

=

Nr∑

t=N

µtAtP (j)AT
t + µoAoP (j)AT

o +H,

(8)

where the last relation is obtained taking into account the

mutual independence of the stochastic processes and the fact

that w(·) has null mean and constant variance W . Finally,

by suitably defining f(p, q) , Ap−q−1W (Ap−q−1)T and

g ,
∑N−1

q=0 f(N, q), we have

H = HN−1 +

Nr−1∑

t=N

µtHt (9)

with

HN−1 ,

[
g +

∑Nr−1
q=N f(q + 1, 0) 0

0 0

]
, (10)

Ht ,

[
−
∑Nr−1

q=t f(q + 1, 0) 0

0 0

]
, t = N, . . . , Nr − 1 .

(11)

Using Kronecker product properties we can write the dy-

namics (8) as

vec(P (j+1))=

(
Nr∑

t=N

µtA
[2]
t + µoA

[2]
o

)
vec(P (j))+vec(H),

(12)

where M [2] , M ⊗ M and vec(·) is the linear operator

producing a vector by stacking the columns of a matrix. This

is a discrete–time linear time–invariant system in the state

vec(P (j)). Hence, it admits a steady state solution w.r.t. the

constant input vec(H) ∈ R
n2
c if

max
i

∣∣∣∣∣λi

(
Nr∑

t=N

µtA
[2]
t + µoA

[2]
o

)∣∣∣∣∣ < 1, (13)

where with λi(M) we mean the i-th eigenvalue of M . If such

a condition is verified, we look for a steady state solution P̄

solving the algebraic equation (see (8))

P̄ =

Nr∑

t=N

µtAtP̄AT
t + µoAoP̄AT

o +H . (14)



Using again the Kronecker product we can write the unique

solution of (14) as

vec(P̄ ) = S(µ)−1vec(H), (15)

with

S(µ) ,

Nr∑

t=N−1

µtΓt (16)

µ , (µN−1, µN , . . . , µNr
) µN−1 , 1 (17)

ΓN−1 , I −A[2]
o (18)

Γt , A[2]
o −A

[2]
t t = N, . . . Nr. (19)

The inverse of S(µ) exists as a result of condition (13).

Ensuring mean square stability for the system (6) turns

to a problem of Schur stability for the matrix curve∑Nr

t=N µtA
[2]
t +µoA

[2]
o (see also Remark 1). It is worth noting

that we can always find some values of the bandwidth for

which condition (13) is verified, since the closed loop system

is asymptotically stable. Indeed any bandwidth ensuring

µN = 1 and µt = 0 for any t = N + 1, . . . , Nr, satisfies

condition (13). As we are not interested in giving to a control

task more bandwidth than what is strictly necessary to finish

without delay, we define the maximum bandwidth B < +∞
as

B , min {b ≥ 0 | µN = µ(N, b) = 1} . (20)

On the other hand, there are always values of the bandwidth

for which condition (13) is not verified, as the open loop sys-

tems is supposed unstable. We can, thus, define the minimum

bandwidth B as the limit value for which condition (13) is

verified, but it is not verified for any b < B. The problem

with this definition is that it is based on condition (13), which

is a strict inequality. Hence, the set of bandwidths verifying

such condition is, in general, an open one. We can force a

closed set by replacing condition (13) with the following one

max
i

∣∣∣∣∣λi

(
Nr∑

t=N

µtA
[2]
t + µoA

[2]
o

)∣∣∣∣∣ ≤ 1− ǫ (21)

for a sufficiently small positive ǫ. In particular ǫ must be

chosen such that maxi

∣∣∣λi

(
A

[2]
t

)∣∣∣ < 1−ǫ in order to ensure

that the bandwidth set is not empty. We define the set:

Bǫ ,
{
0 ≤ b ≤ B | condition (21) is verified

}
. (22)

We can finally define the minimum bandwidth as

B , min {b ≥ 0 | b ∈ Bǫ} . (23)

Remark 2: The set (22) is closed and bounded, but there

is no guarantee that it is also connected. In particular, it can

be the union of many disjoint closed subsets. We assume by

the following assumption that the number of these sets is

finite.

Assumption 1: The number of zeros of the function

maxi

∣∣∣λi

(∑Nr

t=N µtA
[2]
t + µoA

[2]
o

)∣∣∣−(1−ǫ) w.r.t. B is finite

on the set [B,B].
We also make the following mild assumption.

Assumption 2: The functions µt(·), for any t = N +
1, . . . , Nr have finitely many minima and maxima on on the

set Bǫ.

IV. OPTIMAL SOLUTION

We express the QoC as a measure of the steady state

covariance matrix P̄ given in the equations (14). In particular,

the QoC of the i-th task is measured by the trace of P̄i

considered as a function of the probabilities µi
t and, hence,

of the bandwidth Bi. We pose φi : B
ǫ
i → R>0 ∪ {+∞} and

φi(Bi) , Trace
(
P̄i(Bi)

)
. (24)

We define the feasibility set of the optimisation problem (3)

in terms of the definitions (20), (22) and (23) as

B ,

{
(B1, . . . , Bn) ∈ R

n
>0 | Bi ∈ Bǫ

i ,

n∑

i=1

Bi ≤ 1

}
,

(25)

where the index i refers to the i-th task. The optimisation

problem (3) can be finally written as

min
B∈B

Φ(B) = min
B∈B

max
i∈{1,...,n}

φi(Bi) (26)

where B , (B1, . . . , Bn) and B is given in (25). This

optimisation problem has non trivial solutions only if the

set B is non-empty. Therefore, in addition to the obvious

condition Bi ≤ Bi that ensures that the non-emptiness of

the set Bǫ
i (see definitions (20), (22) and (23)), we also need

the following Assumption.

Assumption 3: The point B = (B1, . . . , Bn) is feasible,

namely
∑n

i=1 Bi ≤ 1.

A. Characterisation of φi(·)

In order to proceed with the solution of the optimal

problem (26), we need to characterise the functions φi(·). We

show that the φi(·) can be expressed as the ratio of two poly-

nomials in the probabilitiesµi
t. Recalling that Trace (AB) =

vec(AT )T vec(B) and (15), we can write Trace
(
P̄ (µi)

)
=

vec(I)T vec(P̄ (µi)) = vec(I)TS(µi)−1vec(H), with S(µi)
defined as in (16) and µ

i as in (17) (except for the index i of

the i-th task). In order to compute S(µi)−1 we make use of

the recursive algorithm in [23], Fact 2.16.28.We can apply

this fact in our context as follows. Define the polynomials

Θ0(µ
i) , I

Θq(µ
i) ,

Nr∑

i1=N−1

· · ·

Nr∑

iq=N−1

µi
i1
· · ·µi

iq
Λi1,...,iq ,

∀q = 1, . . . , Nr −N + 1. The matrix coefficients Λi1,...,iq∈

R
n2
c×n2

c are given by the following recursive equations:

Λii , I

Λi1,i2,...,iq , ΓiqΛi1,...,iq−1
−

1

q
Trace

(
ΓiqΛi1,...,iq−1

)
I,

q ≥ 2. Thus we can write S(µi)−1 as

Nr −N + 1

d(µi)

Nr∑

i1=N−1

· · ·

Nr∑

iNr−N=N−1

µi
i1
· · ·µi

iNr−N
Λi1,...,iNr−N

,



with

d(µi) ,

Nr∑

i1=N−1

· · ·

Nr∑

iNr−N+1=N−1

µi
i1
· · ·µi

iNr−N+1
γi1,...,iNr−N+1

for suitable coefficients γi1,i2,...,iNr−N+1
.

Recalling (9), (10) and (11) and the definition µN−1 =
1, we can write vec(H) =

∑Nr

t=N−1 µ
i
tvec(Ht) and hence

Trace
(
P̄ (µi)

)
= n(µi)

d(µi) with

n(µi) , (Nr −N + 1)·

·

Nr∑

i1=N−1

· · ·

Nr∑

iNr−N=N−1

Nr∑

t=N−1

µi
tµ

i
i1
· · ·µi

iNr−N
αi1,...,iNr−N t

and αi1,...,iNr−N t , vec(I)TΛi1,...,iNr−N
vec(Ht).

B. Degenerate Problem

The optimisation problem (26) can present some special

cases that deserve a separate analysis.

Definition 4: The optimisation problem (26) is said to be

degenerate if there exist i, j ∈ {1, . . . , n}, i 6= j such that

φi(Bi) ≥ φj(Bj) for every Bi ∈ Bǫ
i and Bj ∈ Bǫ

j . In such

a case φi(·) is said to dominate φj(·).
In a degenerate case the bandwidth associated to a dom-

inated function does not influence the cost function, but

only the constraints defining the feasibility set. For this

reason, if φj(·) is a dominated function, we have Φ(B) =
maxh∈{1,...,n} φh(Bh) = maxh∈{1,...,n}\{j} φh(Bh). As a

consequence, we can fix Bj = Bj thus ensuring the largest

feasibility set. It can be easily verified that the feasibility

set is now a (n − 1)–dimensional subset of the original set

B. If in the optimisation problem there are more than one

dominated function, say n′ < n functions with indices in the

set I ′ ⊂ {1, . . . , n}, then the feasibility set is the (n− n′)–
dimensional subset:

Bn′ , B \

{
B ∈ R

n
>0 | Bh = argmax

b∈Bǫ
h

φh(b), ∀h ∈ I ′
}
.

(27)

C. The general case

In order to analyse the solution set of the non degenerate

optimisation problem (26), we define the “rectified” func-

tions φ
i
: [Bi, Bi] → R>0 ∪{+∞} for every i ∈ {1, . . . , n}

as follows

φ
i
(Bi) , min

b∈Bǫ
i

φi(b), (28)

and we consider also the associated optimisation problem

min
B∈B

Φ(B) = min
B∈B

max
i∈{1,...,n}

φ
i
(Bi), (29)

where the feasibility set of the

new optimisation problem is B ,{
(B1, . . . , Bn) ∈ R

n
>0 | Bi ∈ [Bi, Bi],

∑n
i=1 Bi ≤ 1

}
.

Remark 3: It is worth noting that, while the functions

φi(·) are defined only for bandwidths satisfying condi-

tion (13), i.e. for B ∈ Bǫ
i , the rectified functions φ

i
(·) are

defined in the entire set [Bi, Bi]. Indeed, for any Bi ∈
[Bi, Bi] \ B

ǫ
i , the definition (28) and the fact that Bi ∈ Bǫ

i

imply that there exists a point B̃i < Bi with B̃i ∈ Bǫ
i such

that φ
i
(Bi) = φi(B̃i). In other words, the rectified functions

φ
i
(·) hold on the values assumed by the corresponding

functions φi(·) in some points B̃i ∈ Bǫ
i . These points can

be the right extremal of one of the closed subsets making

up Bǫ
i , or a local minimum of φi(·). To show the latter

case, let us consider, for simplicity, any Bi ∈ Bǫ
i such

that φ
i
(Bi) 6= φi(Bi). It can be easily verified that B⋆

i =
minα∈{b∈[Bi,Bi]|φ

i
(b)=φ

i
(Bi)}

α is a local minimum for φi(·)

and φ
i
(Bi) = φi(B

⋆
i )..

Remark 4: Differently from the functions φ
i
(·), the func-

tions φi(·) cannot assume a constant value on intervals.

Indeed, being φi(·) a ratio of polynomials and in view of

Assumption 2, its derivative can only have a finite number

of isolated zeros.

The rationale of the following Theorem 5 relies on the idea

that the optimal solution of problem (29) belongs to the

region in which all the functions φ
i
(Bi) are equal. If such

a region exists, the optimal bandwidth allocation is either

where one of the φ
i
(Bi) has reached its minimum value

(point i)) or where it is not possible to further decrease it

(point ii)). If the region in which the functions φ
i
(Bi) are

equal does not exists, then there exists at least one function

that will not play a role in the minimisation even if its

bandwidth is equal to the minimum (point iii)).
Theorem 5: Assume that the optimisation problem (29)

is not degenerate, the functions φ
i
: [Bi, Bi] → R>0 ∪

{+∞} are defined as in (28) and the functions φi :
Bǫ
i → R>0 ∪ {+∞} are continuous and differentiable

for every i ∈ {1, . . . , n}. Define the optimal solu-

tion set as X ∗
, argminB∈B′ Φ(B), the values t ,

maxi∈{1,...,n} φi
(B̄i), t̄ , mini∈{1,...,n} φi

(Bi),
=
t ,

maxi∈{1,...,n} φi
(Bi), the points B̌ = (B̌1, . . . , B̌n) such

that B̌i , minα∈{b∈[B
i
,Bi]|φ

i
(b)=t̄} α and B̂ = (B̂1, . . . , B̂n)

such that B̂i , minα∈{b∈[Bi,Bi]|φ
i
(b)=t} α for every i ∈

{1, . . . , n}. The following mutually exclusive cases are

given:

1)
∑n

i=1 B̂i ≤ 1, then B̂ ∈ X ∗and the optimal value is

t∗ = t;

2)
∑n

i=1 B̌i ≤ 1 and
∑n

i=1 B̂i > 1, then there exists B̃ =
(B̃1, . . . , B̃n), B̃ ∈ X ∗ such that φ

i
(B̃i) = φ

j
(B̃j)

and
∑n

i=1 B̃i = 1. The optimal value is t∗ ∈ (t, t];
3)
∑n

i=1 B̌i > 1, then there exists B∗ = (B∗
1 , . . . , B

∗
n)

such that for ῑ = argmaxj∈{1,...,n} φj
(Bj), the ele-

ment B∗
ῑ = B ῑ and B∗ ∈ X ∗. The optimal values is

t∗ ∈ (t,
=
t ].

Remark 5: The degenerate case can be addressed by re-

calling that the subset Bn′ in (27) is an (n−n′)–dimensional

set. We can, thus, apply the previous theorem to such

a set, with the unique difference that now the feasibility

constraint on the bandwidth is no longer to sum up to

1, but
∑

i∈{1,...,n}\I′ Bi = 1 −
∑

i∈I′ Bi. The case 3 in

Theorem 5 is similar to the degenerate case. Indeed, once



the ῑ-th component of B∗ is fixed to B∗
ῑ = B ῑ, the other

components are found solving the optimal problem on the

subset B′ , B ∩ {(B1, . . . , Bn) ∈ R
n
≥0 | Bi = Bi} with the

feasibility constraint
∑

i∈{1,...,n}\{ῑ} Bi = 1−B ῑ.

We can now formulate a corollary tackling the generic

case of non-monotone functions φi(·) and defined only on

Bǫ
i .

Corollary 6: Assume the optimisation problems (26) and

(29) are not degenerate. Define the corresponding optimal

solution sets as X ∗ , argminB∈B Φ(B) and X ∗
,

argminB∈B Φ(B). Given B̃∗ = (B̃∗
1 , . . . , B̃

∗
n) ∈ X ∗, we

have:

1) the point B∗ = (B∗
1 , . . . , B

∗
n) such that

B∗
i = minα∈{b∈[Bi,Bi]|φ

i
(b)=φ

i
(B̃∗

i
)} α for every

i ∈ {1, . . . , n}, is optimal for the problem (26),

namely B∗ ∈ X ∗. Moreover, for the optimal value we

have Φ(B∗) = Φ(B̃∗);
2) if φi(B̃

∗
i ) = φ

i
(B̃∗

i ) for every i ∈ {1, . . . , n}, then

B̃∗ ∈ X ∗; otherwise the optimal point B∗ ∈ X ∗

defined at point 1 is such that there exist at least one

index ῑ ∈ {1, . . . , n} for which B∗
ῑ = B⋆

ῑ with B⋆
ῑ

local minimum of φῑ(·) or right boundary of one of

the closed subset making up Bǫ
ῑ .

D. Algorithm

The Theorem 5 and the Corollary 6 can be exploited

to devise an algorithm for the computation of an optimal

solution for the problem (26). With reference to Theorem 5

point 1, the first step is to compute B̂ and to check its

feasibility. If the test fails, the condition at point 3 of the

same theorem is then checked and, in case of success, one

bandwidth is fixed to its minimal value and the algorithm is

recursively applied on the subset defined in the Remark 5. In

the more interesting case of the point 2 of Theorem 5, two

nested binary search algorithms are employed. The inner one

is responsible for computing the generalised inverse of the

functions φ
i
(·). That is, given a value t̆ ∈ [t, t], it provides

the extreme points B t̆
i , minα∈{b∈[B

i
,Bi]|φ

i
(b)=t̆} α and

B
t̆

i , maxα∈{b∈[Bi,Bi]|φ
i
(b)=t̆} α for each i ∈ {1, . . . , n}.

Note that, if φ
i
(·) is locally invertible in t̆, then B t̆

i = B
t̆

i.

The outer algorithm scans the interval [t, t] searching for

the optimal value. At each step the search interval is halved

according to the following rule: if B t̆ is not feasible, i.e.∑n
i=1 B

t̆
i > 1, then the upper bound of the search interval

for the next step is fixed to t̆; if B
t̆

is such that
∑n

i=1 B
t̆

i < 1,

then it is the lower bound of the search interval to be fixed

to t̆; if
∑n

i=1 B
t̆
i = 1, then B t̆ is the optimal solution and

t̆ is the optimal value. If, instead, B t̆ is feasible and B
t̆

is

not, then t̆ is the optimal value. Since we are interested to

the solution of the problem (26), we can use the point 1 of

the Corollary 6 to conclude that B t̆ is an optimal solution.

V. NUMERIC EVALUATION

In this section, we provide a numerical analysis of the

optimal bandwidth allocation algorithm presented in this

paper. We consider a task set comprising three different tasks.

The task τ1 has a nominal sampling period of T1 = 20 ms

and a reservation period R1 = 4 ms. Its execution time

is drawn from a uniform distribution, parametrised with

respect to its mean value η1, which ranges in the set M =
{6, 8, 10, 12, 14, 16, 20, 24, 28}ms to highlight the behaviour

of the optimal algorithm in different situations. The uniform

distribution U[η1, b] is thus defined in the range [b, w1], being

b = R1 its best-case execution time and w1 = 2η1 − b its

worst-case execution time (WCET), hence b ≤ c1 ≤ w1. The

task τ2 has a sampling period of T2 = 56 ms, a reservation

period R2 = R1 and computation times distributed according

to an exponential distribution, i.e., E[η2, b] = 1
η2
e−

c2−b

η2 ,

where the WCET is w2 = +∞ and where η2 = 6 ms.

Finally, the task τ3 has computation times obeying to a Beta

distribution B[η3, b] =
1
N

(
c3−b
w3−b

)α−1 (
1− c3−b

w3−b

)β−1

with

normalisation factor N =
∫ 1

0
xα−1(1 − x)β−1dx, having

T3 = T2, η3 = η2 and WCET w3 = 3T3 and parameters

α = 2 and β = αw3−η3

η3−b
. Notice that the task set considered

is not hard real time schedulable for any choice of η1,

which remarks how the proposed method outperforms the

commonly adopted hard-real time techniques based on the

WCET. The relative deadlines were chosen equal to the

period, i.e., di = Ti. We consider randomly generated, open-

loop unstable, reachable and observable linear continuous

time systems subject to a linear combination of continuous

time noises. In order to be general, the number of indepen-

dent noise sources equals the number of states, which is set to

2, 3 and 4 for each task, respectively. The noise processes are

normally distributed with zero mean and standard deviation

equal to σ = 0.01.

We report here the results on the bandwidth optimal

synthesis described in the previous sections. Fig. 1-a shows

the optimal bandwidths solving the problem (26) for all

η1 ∈ M. For comparison, Fig. 1-b shows the results when

the delay is not explicitly considered, as previously presented

in [20]. The solid thick line represents the normalised value

of the optimal trace with respect to he maximum achieved

by the two methods. Fig. 1 clearly shows that the proposed

Continuous Stream method tolerating the delays allows an

improvement in the QoC with respect to [20], which ranges

from a few percent (for η1 ∈ {10, 12, 14}) up to 30% in the

other cases. The optimal trace increases, as expected, as τ1
becomes more and more demanding. In the first three cases,

the optimal solution is given for B1 = B1, while Bi <

Bi < Bi, i = 2, 3. In all the other cases, Bi < Bi < Bi,

i = 1, 2, 3, with B1 > B2 > B3. We remark a slight increase

of B1 and a corresponding decrease of B2 and B3 (until

B3 = B3 for the last experiment) as η⋆ grows beyond 12 ms,

since from η⋆ = 12 ms the system computing power becomes

fully exploited. It is worthwhile to note that considering

explicitly the delays and adopting the Continuous Stream

not only leads to a remarkable improvement in the system

performance, but also allows a fully exploitation of the

computing power.
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Fig. 1. Bandwidth optimal allocation minimising Trace (P ) with respect
to the randomly generated task set. The solid thick lines represent the
normalised value of the traces. Results considering the presence of the delay
(a) or not (b) are both reported for comparison.

VI. CONCLUSIONS

In this paper we have presented a solution for optimal

sharing of computation resources between different compet-

ing control tasks. We have shown the combination of a RR

scheduler with a novel model of computation called Contin-

uous Stream. The resulting problem is easy to analyse and

it is possible to establish a functional dependence between

the bandwidth allocated to the task and the QoC it delivers,

where the latter is related to the steady state covariance of

the state. This result is the gateway to a more ambitious

effort: setting up an optmisation problem where the QoC of

the different tasks is consolidated into a global QoC and the

constraint is that the total bandwidth assigned cannot exceed

100%. The optimisation problem can be solved with a limited

computational effort. The result of the optimisation problem

are shown on a selection of numeric examples.

Our future work directions will be toward finding real–

life application examples for the proposed technique in the

automotive and in the robot domain. Another possibility

for future work is the exploration of different ways of

consolidating the QoC of the different tasks into a global

QoC metric, different form the infinity norm considered in

this paper.

REFERENCES

[1] H. Kopetz and G. Bauer, “The time-triggered architecture,” Proceed-

ings of the IEEE, vol. 91, no. 1, pp. 112–126, 2003.
[2] J. Nilsson and B. Bernhardsson, “Analysis of real-time control systems

with time delays,” in Proc. IEEE Conf. on Decision and Control.
IEEE, Dec. 1996, pp. 3173–3178.

[3] Q. Ling and M. Lemmon, “Robust performance of soft real-time
networked control systems with data dropouts,” in Proc. IEEE Conf.
on Decision and Control. IEEE, Dec. 2002, pp. 1225–1230.

[4] P. Marti, J. Fuertes, G. Fohler, and K. Ramamritham, “Jitter compen-
sation for real-time control systems,” in Proc. IEEE Real-Time Systems
Symposium, Dec. 2001, pp. 39–48.

[5] B. Lincoln and A. Cervin, “JITTERBUG: a tool for analysis of real-
time control performance,” in Proc. IEEE Conf. on Decision and

Control. IEEE, Dec. 2002, pp. 1319–1324.
[6] C. Kao and A. Rantzer, “Stability analysis of systems with uncertain

time-varying delays,” Automatica, vol. 43, no. 6, pp. 959–970, June
2007.

[7] G. Buttazzo, M. Velasco, and P. Marti, “Quality-of-Control Manage-
ment in Overloaded Real-Time Systems,” IEEE Trans. on Computers,
vol. 56, no. 2, pp. 253–266, Feb. 2007.

[8] T. Chantem, X. S. Hu, and M. Lemmon, “Generalized Elastic Schedul-
ing for Real-Time Tasks,” IEEE Trans. on Computers, vol. 58, no. 4,
pp. 480–495, April 2009.

[9] A. Cervin and J. Eker, “The control server: A computational model for
real-time control tasks,” in ECRTS. IEEE Computer Society, 2003,
pp. 113–120.

[10] D. Fontanelli, L. Greco, and L. Palopoli, “Soft RealTime Scheduling
for Embedded Control Systems,” Automatica, vol. 49, no. 8, pp. 2330–
2338, July 2013.

[11] C. L. Liu and J. Layland, “Scheduling alghorithms for multiprogram-
ming in a hard real-time environment,” Journal of the ACM, vol. 20,
no. 1, 1973.

[12] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa, “Resource kernels:
A resource-centric approach to real-time and multimedia systems,” in
Proc. of the SPIE/ACM Conference on Multimedia Computing and
Networking, January 1998.

[13] L. Abeni and G. Buttazzo, “Integrating Multimedia Applications in
Hard Real-Time Systems,” in Proc. IEEE Real-Time Systems Sympo-

sium, Dec. 1998, pp. 4–13.
[14] M. Rabi and K. Johansson, “Scheduling packets for event-triggered

control,” in Proc. of 10th European Control Conference (ECC), 2009,
pp. 3779–3784.

[15] X. Wang and M. D. Lemmon, “Event-triggering in distributed net-
worked control systems,” IEEE Trans. Automat. Contr., vol. 56, no. 3,
pp. 586–601, 2011.

[16] M. Mazo and P. Tabuada, “Input-to-state stability of self-triggered
control systems,” in Proc. IEEE Conf. on Decision and Control. IEEE,
Dec. 2009, pp. 928–933.

[17] M. Velasco, P. Martı́, and E. Bini, “Control-driven tasks: Modeling and
analysis,” in IEEE Real-Time Systems Symposium. IEEE Computer
Society, 2008, pp. 280–290.

[18] A. Quagli, D. Fontanelli, L. Greco, L. Palopoli, and A. Bicchi, “Design
of Embedded Controllers Based on Anytime Computing,” IEEE Trans.
on Industrial Informatics, vol. 6, no. 4, pp. 492–502, November 2010.

[19] L. Palopoli, D. Fontanelli, N. Manica, and L. Abeni, “An Analytical
Bound for Probabilistic Deadlines,” in Euromicro Conf. on Real-Time

Systems (ECRTS), july 2012, pp. 179–188.
[20] D. Fontanelli, L. Palopoli, and L. Greco, “Optimal CPU Allocation to

a Set of Control Tasks with Soft Real–Time Execution Constraints,”
in Hybrid Systems: Computation and Control (HSCC). Philadelphia,
PA, USA: ACM, April 2013, pp. 233–242.

[21] O. Costa, M. Fragoso, and R. Marques, Discrete-time Markov jump

linear systems. Springer, 2006.
[22] D. Fontanelli, L. Palopoli, and L. Abeni, “The Continuous Stream

Model of Computation for Real–Time Control,” in 2013 IEEE 34th

Real-Time Systems Symposium (RTSS). Vancouver, Canada: IEEE,
4-6 Dec. 2013, pp. 150–159.

[23] D. S. Bernstein, Matrix mathematics: theory, facts, and formulas.
Princeton University Press, 2009.


