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Abstract—We examine two distributed parameter models for
strings of generators connected to a wind farm. We show that
these models boil down to delay systems either with or without
continuous dynamics, depending on the type of the chosen
boundary conditions. We then investigate the differential flatness
of the systems, giving some solution to the actuation placement
problem (i.e. where to place the farms along the generators
string).

Index Terms—Infinite dimensional systems, rings, modules,
controllability, differential flatness, wave equation, wind power
systems.

I. INTRODUCTION

Inter area oscillations is a known and annoying phenomenon
in power systems. A simple yet representative modelisation of
this phenomena can be done through a distributed parameter
system of hyperbolic type (namely a wave equation) by assum-
ing a distributed placement of strings of generators ([3], [22],
[28], [37], [41]). The involved wave equations are amenable to
delay systems, the study of which has a rich literature. Quite a
few authors have used algebraic techniques ([1], [7], [16]). We
here envision the problem using module theoretic techniques,
which have been used for delay systems ([8], [12], [14] as
well as for distributed parameter systems [15], [26], [33],
[40]). The main advantages of this approach are threefold:
notions are intrinsic to the system, many controllability notions
can be recast in this setting using extension of scalars, and
a complete system parametrization is obtained through the
freeness property (the linear analogue to differential flatness
of lumped nonlinear systems).

The module properties of torsion freeness, projectivity and
freeness, as well as the change of base ring through tensor
product (i.e. extension of scalars) give rise to a huge number
of possible controllability notions. One can then combine the
choice of the base ring (the simplest, i.e. the nearest to a
principal ideal domain, the better) and the module property
(the strongest, i.e. the nearest to freeness, the better) to obtain
a basis which can generate all the distributed system (such a
system can be viewed as a collection of input/output systems
parametrized by the spatial variable).

The paper is organized as follows: in a first Section, the
module theoretic setting is recalled, including the module asso-
ciated to a distributed parameter system and its controllability
properties. In a second one, two modelizations are reviewed,

one stemming from the literature, and another new one. The
control appearing at the boundary is supposed to come from a
wind farm. We then show that the first input/output model is a
purely discrete one (i.e. it has no continuous dynamics, from a
control perpective) and that the second is a neutral distributed
delay one. In a third Section, the controllability properties of
the two systems are given, wherefrom a placement of the wind
farm can be deduced.

II. MODULE THEORETIC SETTING

A. R-linear systems

We shall consider in this section quite general definitions
for linear systems viewed as modules over a ring. In the
next section, we shall be more specific in order to describe
boundary value problems as modules over a ring parametrized
by space.

Definition 1: An R-system Λ, or a system over R, is an
R-module. A presentation matrix of a finitely presented R-
system Σ is a matrix P such that Σ ∼= [v]/[Pv] where [v]
is free with basis v. An output y is a subset, which may be
empty, of Λ. An input-output R-system, or an input-output
system over R, is an R-dynamics equipped with an output.
The next definition allows, by extension of scalars, to obtain
much nicer algebraic properties when needed.

Definition 2: Let A be an R-algebra and Λ be an R-system.
The A-module A⊗R Λ is an A-system, which extends Λ.

B. Boundary value problems as systems parametrized by
space

We shall here consider boundary value PDE systems as
modules over rings. A space parametrization is embedded in
the chosen rings.

1) Model class: Models are here considered as space
dynamics with time differential operator coefficients.

Distributed equations: The envisioned model equations are
based on a Cauchy-Kowalevski form:

∂xwi = Aiwi +Biu, wi : Ωi → (D
′∗)p, u ∈ (D

′∗)m,

Ai ∈ (R[∂t])
pi×pi , Bi ∈ (R[∂t])

pi×m, i ∈ {1, . . . , l} (1a)

where w1, . . . ,wl are the distributed variables, the lumped
variables are u = (u1, . . . , um), and D′∗ denotes a space of
(ultra -) distributions.



Assumptions: We shall make two assumptions:
• The intervals Ω1, . . . ,Ωl are given by an open neighbor-

hood of

Ω̃i = [xi,0, xi,1], `i = xi,1 − xi,0 = qi`

qi ∈ Q, ` ∈ R
(1b)

Without loss of generality, assume xi,0 = 0.
• The characteristic polynomials of the matrices A1, . . . , Al

can be written

Pi(λ) := det(λI −Ai) =

pi∑
ν=0

ai,νλ
ν , (1c)

ai,ν =
∑

ν+µ≤pi

ai,ν,µ∂
µ
t (1d)

with ai,j,k ∈ R, ai,pi,0 = 1. Moreover, their principal
parts

∑
µ+ν=pi

ai,µ,ν∂
µ
t λ

ν are hyperbolic w.r.t. the time
t, i.e. the roots of

∑
µ+ν=pi

ai,µ,νλ
j are real.

Remark 1: Note that the above assumptions apply to most
spatially one-dimensional boundary controlled evolution equa-
tions including Euler-Bernoulli or Timoshenko beam equa-
tions, more general parabolic diffusion-reaction-convection
equations, damped and undamped wave-equations, etc. The
only notable exception is the case where the maximal order
derivative is a mixed one, such as, e.g. models of structural
damping (α∂t + 1)(∂2

x − ∂2
t )w = 0

Boundary conditions: The models are completed by the
following boundary conditions

l∑
i=1

Liwi(0) +Riwi(`i) +Du = 0 (1e)

with D ∈ (R[∂t])
q×m and Li, Ri ∈ (R[∂t])

q×pi .
2) Solution of the Cauchy Problem: Some properties of the

solution of the Cauchy problem (1a) with initial conditions
given by x = ξ, i.e.

∂xw = Aw +Bu, w(ξ) = wξ (2)

with A ∈ (R[∂t])
p×p, B ∈ (R[∂t])

p×q as assumed in the
previous section for Ai, Bi, will be used. The notation of the
previous section is used in what follows, dropping the index
i ∈ {1, . . . , l}.

Consider the initial value problem

P (∂x)v(x) = 0, (∂jxv)(0) = vj ∈ E∗(R), j = 0, . . . , p−1
(3)

associated with the characteristic equation

P (λ) := det(λI −A) =

p∑
j=0

ajλ
j , aj =

∑
j+µ≤p

aj,µ∂
µ

According to [18, Thrm. 12.5.6] or [30, Thm 2.5.2, and
Prop. 2.5.6] the initial value problem (3) has a unique solution
which may be written as

v(x) =

p−1∑
j=0

Cj(x)vj

where the juxtaposition of symbols means convolution and
C0, . . . , Cp−1 are smooth functions mapping Ω to the space
of compactly supported Beurling ultradistributions E ′∗(R) :=
E ′(p/(p−1))(R) of Gevrey order p/(p − 1). The functions
C0, . . . , Cp−1 satisfy (k, j ∈ {0, . . . , p− 1})

∂kxCj(0) =

{
1, k = j

0, k 6= j
(4)

and

∂xCj = Cj−1 − ajCp−1, j = 1, . . . , p− 1, (5)
∂xC0 = −a0Cp−1. (6)

With this preparatory steps, the unique solution x 7→ Φ(x, ξ)
of the initial value problem (2) can be expressed as

w(x) = Φ(x, ξ)wξ + Ψ(x, ξ)u. (7)

Therein, Φ(x, ξ) ∈ E ′∗(R)p×p is the fundamental matrix of
the initial value problem

w(x) = Φ(x, ξ)w(x), w(ξ) = wξ

and Ψ(x, ξ) ∈ E ′∗(R)p×m corresponds to the particular
solution of (2) with vanishing data wξ = 0.

Explicit expressions for Φ and Ψ can be given using the
ultradistribution-valued functions C0, . . . , Cp−1

Φ(x, ξ) =

p−1∑
j=0

AjCj(x− ξ), Ψ(x, ξ) =

∫ x

ξ

Φ(x, ζ)dζB.

(8)

Substituting the general solutions of the initial value prob-
lems into the boundary conditions, one obtains the following
linear system of equations:

w(x) = Wξ(x)cξ, Pξcξ = 0. (9)

Here, ξ = (ξ1, . . . , ξn), cTξ = (wT
1 (ξ1) · · ·wT

l (ξl),u
T ),

Wξ =

Φ1(x, ξ1) 0 0 Ψ1(x, ξ1)

0
. . . 0

...
0 · · · Φl(x, ξl) Ψl(x, ξl)

 ,

Pξ =
(
Pξ,1 · · ·Pξ,l+1

)
with

Pξ,i = LiΦi(0, ξi) +RiΦi(`i, ξi), i = 1, . . . , l

Pξ,l+1
= D +

l∑
i=1

LiΨi(0, ξi) +RiΨi(`i, ξi).

A possible choice for the coefficient ring is the ring RIX =
C[∂t,SX,S

I
X], with X ⊆ R and

SX = {C(z`), S(z`)|z ∈ X},
SI

X = {CI(z`), SI(z`)|z ∈ X},



` defined as in (1b), and

SI(x) =

∫ x

0

S(ζ)dζ, CI(x) =

∫ x

0

C(ζ)dζ.

Inspired by the results given in [23], [1], [16], and in view
of the simplification of the analysis of the module properties,
instead of the ring RIR, we shall use a slightly larger ring,
given by RR = C(∂t)[SR] ∩ E ′∗.

Definition 3: The convolutional system Σ associated with the
boundary value problem (1) is the RIR-module generated by
the elements of cξ with presentation matrix Pξ . By ΣR (resp.
ΣQ) we denote ΣR = RR ⊗RI

R
Σ (resp. ΣQ = RQ ⊗RI

R
Σ).

C. System controllabilities

1) General controllabilities: In this section we emphasize
several controllability notions which are defined directly with-
out referring to a solution space. Let us start with some purely
algebraic definitions:

Definition 4 (see, e.g. , [12, Def. 2.4.]): Let A be an R
algebra. An R-system Λ is said to be A-torsion free control-
lable (resp. A-projective controllable, A-free controllable) if
the A-module A ⊗R Λ is torsion free (resp. projective, free).
An R-torsion free (resp. R-projective, R-free) controllable R-
system is simply called torsion free (resp. projective, free)
controllable.

Elementary homological algebra (see, e.g., [31]) yields
Proposition 1: A-free (resp. A-projective) controllability

implies A-projective (resp. A-torsion free) controllability.
Proposition 2: R-free controllability implies A-free control-

lability for any R-algebra A. More generally, given any R-
system Σ that is a direct sum of a torsion module tΣ and a
free module Λ, the extended system A ⊗R Σ is a direct sum
of the torsion module A⊗R tΣ and the free module A⊗R Λ.

Definition 5: Take an A-free controllable R-system Λ with
a finite output y. This output is said to be A-flat, or A-basic,
if y is a basis of A⊗R Λ. If A ∼= R then y is simply called
flat, or basic.

2) Bézout character of k[SQ] and RQ:
Proposition 3 ([40, Cor. 3.2., 3.7.]): Let k be a field. The

ring k[SQ] is a Bézout domain, i.e. , any finitely generated
ideal is principal.

Remark 2: Note that k[SQ] is not Noetherian. Indeed, the
following ideal is not finitely generated: ({S1/2n | n ∈ N}).

Theorem 1 ([40, Thm. 3.9.]): The ring RQ is a Bézout
domain.

Corollary 1: For any X ⊃ Q, a finitely presentedRX-system
ΣX is free, if and only if, it is torsion free. More generally
ΣX = tΣX ⊕ ΣX/tΣX where tΣX is torsion and ΣX/tΣX is
free.

3) Spectral controllability: In finite dimensional linear sys-
tems theory, the so called Hautus criterion is a quite popular
tool for checking controllability. This criterion has been gen-
eralized to delay systems (see, e.g., [23, Def. 5.1]) and to more
general convolutional systems [38, Def. 10] and [40]. All those
rings may be embedded into the ring of entire functions via the

Laplace transform. This motivates the following quite general
definition.

Definition and proposition 1 (see [40]): Let R be any
ring that is isomorphic to a subring of the ring O of entire
functions with pointwise defined multiplication. Denote the
embedding R→ O by L . A finitely presented R-system with
presentation matrix P is said to be R-spectrally controllable
if one of the following equivalent conditions holds:

(i)) The O-matrix P̂ = L (P ) satisfies

∃k ∈ N,∀σ ∈ C, rankR P̂ (σ) = k

(ii)) The module ΣO = O ⊗R Σ is torsion free.
In the case of the existence of a presentation matrix of full

generic row-rank equivalence of spectral controllability and
torsion free controllability has been shown for delay systems
in [23, Thrm. 5.1]) and for M0-systems in [39, Satz 4.4]. As
[38, Example. 6] shows, such an equivalence does not hold
for more general presentation matrices. However, for Bézout
domains we have following.

Proposition 4 (see [40]): Let R be any Bézout domain that
is isomorphic to a subring of O with the embedding R→ O
denoted by L . Then the notions of spectral controllability and
R-torsion free controllability are equivalent if and only if L
maps non-units in R to non-units in O.

We are now able to state the main result of this section:
Theorem 2 (see [40]): A finitely presented RQ-system ΣQ

is spectrally controllable, if and only if it is torsion free.

III. MODELLING

A. Distributed Parameter System models
Consider a transmission line with series of generators. The

generation Gi and power angle change δi are supposed to
be continuously distributed over the spatial dimension z. The
Rotor dynamics of the ith generator is taken to be (see, e.g.
[]) (

2Hi

Ωs

)
Giδ̈i + ξδ̇i = Pi (10)

with the following
Hi The inertia constant
Ωs The electrical frequency with 60Hz base
Pi The real power flowing out the ith machine
ξ A damping coefficient
Then, the real power flow from node i to node i+ 1 over a

lossless line is

Pi,i+1 =
EiEi+1 sin(δi − δi+1)

xi

with Ei the voltage magnitude at bus i.
We then make the following two common assumptions: the

change angle δi is small and Ei = 1. With these, we get

Pi = Pi+1,i − Pi,i+1
(δi−1 − δi)(δi − δi+1)

xi

By substitution, one obtains
2

Ωi

Hi

∆L
δ̈i +

ξ

∆l
δ̇i =

∆L

xi

δi − δi−1

(∆L)2
− ∆L

xi

δi − δi+1

(∆L)2



Then, taking the limit ∆L→ 0, and setting

HT =
1

L

∫ L

0

dH(z) =
H(L)

L
, γ =

x(L)

L
, η =

ξ(L)

L

yields, with ν =
√

377/2HTGT γ

∂2
t δ(z, t) + η ∂tδ(z, t) = ν2 ∂2

zδ(z, t) (11)

The corresponding power flow is

P (z, t) = − 1

γ
∂zδ(z, t)

This type of model has been used to take into account inter
area oscillation phenomena.

Adding power injection to the previous model leads to

∂2
t δ(z, t) + η ∂tδ(z, t)− ν2 ∂2

zδ(z, t) = W (z, t) (12)

wiht boundary conditions

P (0, t) = P (1, t) = 0, or ∂zδ(0, t) = ∂zδ(1, t) = 0

A first model, used in [22], is a point source injection

W (u, t) = ρPg(t)δ̄(z − α)

where δ̄ denotes the delta Dirac distribution, and Pg the net
power injected. Another possible model, which we introduce
here, is a power flow injection

W (u, t) = −γPg(t)δ̄′(z − α)

with δ̄′ is the Dirac’s derivative, in the distributional sense.
The previous model (12) with point source injection

∂2
t δp(z, t) + η∂tδp(z, t)− ν2∂2

zδp(z, t) = ρPg(t)δ̄p(z − α)

is equivalent to the following model

∀z ∈ [0, α],

∂2
t δ
−
p (z, t) + η ∂tδ

−
p (z, t)− ν2 ∂2

zδ
−
p (z, t) = 0 (13a)

∂zδ
−
p (0, t) = 0 (13b)

δ−p (α, t) = ρPg(t) (13c)

∀z ∈ [α,L],

∂2
t δ

+
p (z, t) + η ∂tδ

+
p (z, t)− ν2 ∂2

zδ
+
p (z, t) = 0 (13d)

δ+
p (α, t) = ρPg(t) (13e)

∂zδ
+
p (L, t) = 0 (13f)

The other model we introduce, corresponding to the model
(12) with power flow injection:

∂2
t δf (z, t) + η∂tδf (z, t)− ν2∂2

zδf (z, t) = −γPg(t)δ̄′f (z − α)

is equivalent to the following model

∀z ∈ [0, α],

∂2
t δ
−
f (z, t) + η ∂tδ

−
f (z, t)− ν2 ∂2

zδ
−
f (z, t) = 0 (14a)

∂zδ
−
f (0, t) = 0 (14b)

∂zδ
−
f (α, t) = −γPg(t) (14c)

∀z ∈ [α,L],

∂2
t δ

+
f (z, t) + η ∂tδ

+
f (z, t)− ν2 ∂2

zδ
+
f (z, t) = 0 (14d)

∂zδ
+
f (α, t) = −γPg(t) (14e)

∂zδ
+
f (L, t) = 0 (14f)

B. Point source model solution

General solution: Let us consider the first half point source
model for z ∈ [0, α] (equations (13a)–(13c)):

∂2
t δ
−
p (z, t) + η ∂tδ

−
p (z, t)− ν2 ∂2

zδ
−
p (z, t) = 0 (15a)

∂zδ
−
p (0, t) = 0 (15b)

δ−p (α, t) = ρPg(t) (15c)

The temporal Laplace transform of (15) yields

s2δ̂−p (z, s) + ηsδ̂−p (z, s)− ν2∂2
z δ̂
−
p (z, s) = 0

∂z δ̂
−
p (0, s) = 0

δ̂−p (α, s) = ρP̂g(s)

Freezing s leads to an ODE in space:

s2δ̂−p (z) + ηsδ̂−p (z)− ν2
dδ̂−p
dz2

(z) = 0 (16)

dδ̂−p
dz

(0) = 0, δ̂−p (α) = ρP̂g(s) (17)

where we have kept the symbol δ−p by abuse of notation.
The general solution of the previous ODE is investigated

through the characteristic equation in ξ:

s2 + ηs− ν2ξ2 = 0

yielding

ξ = ± ς
√
s2 + ηs = ±σ(s), with ς = 1/ν

Thus, the general solution of (16) is

δ̂−p (z) = eςz
√
s2+ηs λ̂1 + e−ςz

√
s2+ηs λ̂2 = eσzλ̂1 + e−σzλ̂2

Boundary value problem solution: Following Subsection
II-B2 and equations (7) to (9), the general solution of (15)
is rewritten as

δ̂−p (z, s) = Ĉz(s)µ̂
−
p1(s) + Ŝz(s)µ̂

−
p2(s), where

Ĉz(s) = cosh(σz), Ŝz(s) =
sinh(σz)

σ

The sole advantage of using these operators is that:

Ĉ0(s) = 1, Ŝ0(s) = 0



which simplifies the boundary conditions expressions. The
spatial derivatives of Ĉz and Ŝz are:

∂zĈz = σ2Ŝz, ∂zŜz = Ĉz

And the spatial derivative of δ̂−p is

∂z δ̂
−
p (z, s) = σ2Ŝzµ̂

−
p1 + Ĉzµ̂

−
p2

Similarily, the general solution of the second half point source
model for z ∈ [α,L] (equations (13d)–(13f)) and its spatial
derivatives are

δ̂+
p (z, s) = Ĉzµ̂

+
p1 + Ŝzµ̂

+
p2

∂z δ̂
+
p (z, s) = σ2Ŝzµ̂

+
p1 + Ĉzµ̂

+
p2

The boundary conditions of the point source model (13)

∂zδ
−
p (0, t) = 0

δ−p (α, t) = ρPg(t)

δ+
p (α, t) = ρPg(t)

∂zδ
+
p (L, t) = 0

are then expressed as

µ̂−p2 = 0 (18a)

Ĉαµ̂
−
p1 + Ŝαµ

−
p2 = ρP̂g(s) (18b)

Ĉαµ̂
+
p1 + Ŝαµ̂

+
p2 = ρP̂g(s) (18c)

σ2ŜLµ̂
+
p1 + ĈLµ̂

+
p2 = 0 (18d)

Recalling the general solutions and/or spatial derivatives:

δ̂−p (z, s) = Ĉzµ̂
−
p1

δ̂+
p (z, s) = Ĉzµ̂

+
p1 + Ŝzµ̂

+
p2

∂z δ̂
+
p (z, s) = σ2Ŝzµ̂

+
p1 + Ĉzµ̂

+
p2

we get the following expressions for µ̂−p1, µ̂+
p1 and µ̂+

p2:

µ̂−p1 = δ̂−p (0, s) = δ̂−p0 (19a)

µ̂+
p1 = δ̂+

p (0, s) = δ̂+
p0 (19b)

µ̂+
p2 = ∂z δ̂

+
p (0, s) = δ̂+′

p0 (19c)

Thus, the preceding equations (18) become

Ĉαδ̂
+
p0 + Ŝαδ̂

+′

p0 = Ĉαδ̂
−
p0 (20a)

σ2ŜLδ̂
+
p0 + ĈLδ̂

+′

p0 = 0 (20b)

which form the relations of the RQ-system ΛpQ = [δ̂−p0, δ̂+
p0,

δ̂+′

p0 ]RQ . The presentation of ΛpQ is then

(
−Ĉα Ĉα Ŝα

0 σ2ŜL ĈL

)δ̂
−
p0

δ̂+
p0

δ̂+′

p0

 = 0 (21)

To be more specific from a physical viewpoint, the model
can be written as

Ĉαδ̂
+
p0 + Ŝαδ̂

+′

p0 = Ĉαδ̂
−
p0 (22a)

σ2ŜLδ̂
+
p0 + ĈLδ̂

+′

p0 = 0 (22b)

ρP̂g = Ĉαδ̂
−
p0 (22c)

δ̂−pz = Ĉz δ̂
−
p0 (22d)

δ̂+
pz = Ĉz δ̂

+
p0 + Ŝz δ̂

+′

p0 (22e)

with δ−pz = δ−p (z, s), δ+
pz = δ+

p (z, s).

C. Power flow model solution

General and boundary value problem solution: The general
solution of power flow model (14) and its spatial derivatives
are

δ̂−f (z, s) = Ĉzµ̂
−
f1 + Ŝzµ̂

−
f2 ∂z δ̂

−
f (z, s) = σ2Ŝzµ̂

−
f1 + Ĉzµ

−
f2

δ̂+
f (z, s) = Ĉzµ̂

+
f1 + Ŝzµ̂

+
f2 ∂z δ̂

+
f (z, s) = σ2Ŝzµ̂

+
f1 + Ĉzµ̂

+
f2

The boundary conditions of the point source model (14)

∂zδ
−
f (0, t) = 0

∂zδ
−
f (α, t) = −γPg(t)

∂zδ
+
f (α, t) = −γPg(t)

∂zδ
+
f (L, t) = 0

are then expressed as

µ̂−f2 = 0 (23a)

σ2Ŝαµ̂
−
f1 + Ĉαµ

−
f2 = −γP̂g(s) (23b)

σ2Ŝαµ̂
+
f1 + Ĉαµ

+
f2 = −γP̂g(s) (23c)

σ2ŜLµ̂
+
f1 + ĈLµ̂

+
f2 = 0 (23d)

The following expressions are obtained for µ̂−f1, µ̂+
f1 and µ̂+

f2:

µ̂−f1 = δ̂−f (0, s) = δ̂−f0 (24)

µ̂+
f1 = δ̂+

f (0, s) = δ̂+
f0 (25)

µ̂+
f2 = ∂z δ̂

+
f (0, s) = δ̂+′

f0 (26)

We then get the following equations

σ2Ŝαδ̂f
+

0 + Ĉαδ
+′

f0 = σ2Ŝαδ̂
−
f0 (27a)

σ2ŜLδ̂
+
f0 + ĈLδ

+′

f0 = 0 (27b)

which form the relations of the RQ-system ΛfQ = [δ̂−f0, δ̂+
f0,

δ̂+′

f0 ]RQ . The presentation of ΛfQ is then

(
−σ2Ŝα σ2Ŝα Ĉα

0 σ2ŜL ĈL

)δ̂
−
f0

δ̂+
f0

δ̂+′

f0

 = 0 (28)



To be more specific from a physical viewpoint, the model
can be written as

σ2Ŝαδ̂f
+

0 − Ĉαδ
+′

f0 = σ2Ŝαδ̂
−
f0 (29a)

σ2ŜLδ̂
+
f0 − ĈLδ

+′

f0 = 0 (29b)

−γP̂g = σ2Ŝαδ̂
−
f0 (29c)

δ̂−fz = Ĉz δ̂
−
f0 (29d)

δ̂+
fz = Ĉz δ̂

+
f0 + Ŝz δ̂

+′

f0 (29e)

with δ−fz = δ−f (z, s), δ+
fz = δ+

f (z, s).

D. Associated I/O systems

Point source I/O system: To obtain the input/output system,
we should extract from (22) the relation between δ−pz and P̂g
on the one hand and between δ+

pz and P̂g on the other hand.
From (22c) and (22c), we get

Ĉαδ̂
−
pz = ρ ĈzP̂g (30)

Then, from (22a) and (22b):(
Ĉα Ŝα
σ2ŜL ĈL

)(
δ̂+
p0

δ̂+′

p0

)
=

(
Ĉαδ̂

−
p0

0

)
Hence, we get

ĈL−α

(
δ̂+
p0

δ̂+′

p0

)
=

(
ĈL −Ŝα
−σ2ŜL Ĉα

)(
Ĉαδ̂

−
p0

0

)

wherefrom the expression involving δ̂+
pz:

ĈL−αδ̂
+
pz = ĈzĈL−αδ̂

+
p0 + ŜzĈL−αδ̂

+′

p0

=
(
ĈzĈL − σ2ŜzŜL

)
Ĉαδ̂

−
p0

= ρ ĈL−zP̂g (31)

And, gathering (30) and (31), we get the point source injection
input/output model:

Ĉαδ̂
−
pz = ρ ĈzP̂g (32)

ĈL−αδ̂
+
pz = ρ ĈL−zP̂g (33)

on which we can see that this model is a purely discrete one,
i.e. from a system dynamics viewpoint, it has no dynamics.

Power flow I/O system: Similarily to obtain the input/output
system, we should extract from (29) the relation between δ−fz
and P̂g on the one hand and between δ+

fz and P̂g on the other
hand.

From (29c) and (29c), we get

σ2Ŝαδ̂
−
fz = −γ ĈzP̂g (34)

Then, from (29a) and (29b):(
σ2Ŝα −Ĉα
σ2ŜL −ĈL

)(
δ̂+
f0

δ̂+′

f0

)
=

(
σ2Ŝαδ̂

−
f0

0

)

Hence, we get

−ŜL−α

(
δ̂+
f0

δ̂+′

f0

)
=

(
−ĈL Ĉα
−σ2ŜL σ2Ŝα

)(
σ2Ŝαδ̂

−
f0

0

)
wherefrom the expression involving δ̂+

fz:

ŜL−αδ̂
+
fz = ĈzŜL−αδ̂

+
f0 + ŜzŜL−αδ̂

+′

f0

=
(
ĈzĈL − σ2ŜzŜL

)
σ2Sαδ̂

−
f0

= −γ ĈL−zP̂g (35)

And, gathering (34) and (35), we get the power flow injection
input/output model:

σ2Ŝαδ̂
−
fz = −γ ĈzP̂g (36)

ŜL−αδ̂
+
fz = −γ ĈL−zP̂g (37)

on which we can see that this model is a second order neutral
distributed delay system.

IV. STRUCTURAL PROPERTIES

A. Point source system

The presentation matrix associated to ΛpQ is

PΛp
Q

=

(
−Ĉα Ĉα Ŝα

0 σ2ŜL ĈL

)
(38)

and the associated minors are:

m1(s) = −σ2ĈαŜL (39a)

m2(s) = −ĈαĈL (39b)

m3(s) = ĈαĈL − σ2ŜLŜα = ĈL−α (39c)

We then have the following proposition
Theorem 3: The RQ-system ΛpQ is RQ-free controllable if,

and only if, ĈL−α and Ĉα have no common zeros in C.
Proof: Common zeros between the minors m1 and m2

can only be the ones of their common factor Ĉα. Thus, if
ĈL−α and Ĉα have no common zeros, applying Proposition
1 and Theorem 2, ΛpQ is RQ-spectrally controllable.
When ΛpQ is free, a basis may be obtained as follows. Consider
(p1, p2, p3) a solution to the Bézout equation in RQ:

pm1 + q m2 + rm3 = 1

Then, a basis is given by (see, e.g., [24, Rmk II.5, p. 30])

ω = p1δ̂
−
p0 − p2δ̂

+
p0 + p3δ̂

+′

p0

B. Power flow system

The presentation matrix associated to ΛpQ is

PΛp
Q

=

(
−σ2Ŝα σ2Ŝα Ĉα

0 σ2ŜL ĈL

)
(40)

and the associated minors are:

m1(s) = −σ4ŜαŜL (41a)

m2(s) = −σ2ŜαĈL (41b)

m3(s) = σ2ŜαĈL − σ2ŜLĈα = σ2Ŝα−L (41c)



We then have the following proposition
Proposition 5: The RQ-system ΛfQ is not RQ-free control-

lable.
Proof: The minors m1 to m3 have σ = 0 (corresponding

to s = 0) as a common zero. Hence, ΛfQ is not RQ-spectrally
controllable, and hence not RQ-torsion free.
Let RσQ be the ring RσQ = C(∂t)[σ

−1,SQ] ∩ E ′∗ Then we
have:

Theorem 4: The system RσQ⊗RQ ΛfQ is RσQ-free controllable
if, and only if, Ŝα and ŜL−α have no common zeros in C.

Proof: Common zeros between the minors m1 and m2

can only be the ones of their common factor Ŝα. Thus, if
ŜL−α and Ŝα have no common zeros, applying Proposition 1
and Theorem 2, ΛpQ is RQ-spectrally controllable.
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[1] D. BRETHÉ and J.J. LOISEAU, A result that could bear fruit for the
control of delay-differential systems. Proc. 4th IEEE Mediterranean
Symp. Control Automation, Chania, Greece, 1996, pp. 168–172.

[2] D. BUCHSBAUM and D. EISENBUD, What makes a complex exact?, J.
Algebra, 25, 1973, pp. 259-268.

[3] S. CHANDRA, D.F. GAYME and A. CHAKRABORTTY, Coordinating
Wind Farms and Battery Management Systems for Inter-Area Oscillation
Damping: A Frequency-Domain Approach, IEEE Transactions on Power
Systems, pp. 1-9, 2014.

[4] S.Y. CHUNG and J. CHUNG, There exist no gaps between Gevrey
differentiable and nowhere Gevrey differentiable. Proceedings of the
American Mathematical Society, 133, 2005, pp. 859-863.

[5] V. DITKINE and A. PROUDNIKOV, Transformations intégrales et calcul
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