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An overlooked formula of E. Lucas for the generalized Bernoulli numbers is proved using generating functions. This is then used to provide a new proof and a new form of a sum involving classical Bernoulli numbers studied by K. Dilcher. The value of this sum is then given in terms of the Meixner-Pollaczek polynomials.

Introduction

The goal of this paper is to provide a unified approach to two topics that have appeared in the literature. The first one is an expression for the generalized Bernoulli numbers B 

3 = 1 8 p 2 (1 -p). In his 1878 paper E. Lucas [START_REF] Lucas | Sur les congruences des nombres Euleriens et des coefficients différentiels des fonctions trigonometriques, suivant un module premier[END_REF] gave the formula

(1.3) B (p) n = (-1) p-1 (p -1)! n! (n -p)! β n-p+1 (1 + β) • • • (p -1 + β)
for n ≥ p. This is a symbolic formula: to obtain the value of B (p) n , expand the expression (1.3) and replace β j by the ratio B j /j. Here B j is the classical Bernoulli number B n = B [START_REF] Carlitz | Note on Nörlund polynomial B (z) n[END_REF] n in the notation from (1.1). The second topic is an expression established by K. Dilcher [START_REF] Dilcher | Sums of products of Bernoulli numbers[END_REF] for the sums of products of Bernoulli numbers (1.4)

S N (n) := 2n 2j 1 , 2j 2 , • • • , 2j N B 2j 1 B 2j 2 • • • B 2j N ,
where the sum is taken over all nonnegative integers j 1 , • • • , j N such that j 1 + • • • + j N = n, and where

(1.5) 2n 2j 1 , 2j 2 , • • • , 2j N = (2n)! (2j 1 )! • • • (2j N )!
is the multinomial coefficient and B 2k is the classical Bernoulli number. One of the main results of [START_REF] Dilcher | Sums of products of Bernoulli numbers[END_REF] is the evaluation

(1.6) S N (n) = (2n)! (2n -N )! ⌊(N -1)/2⌋ k=0 b (N ) k B 2n-2k 2n -2k ,
where the coefficients b

(N ) k
are defined by the recurrence 

(1.7) b (N +1) k = - 1 N b (N ) k + 1 4 b (N -1) k-1 , with b (1 
S N (n) = N k=0 (2n)! (2n -k)! 2 -k N k B (N -k) 2n-k
that expresses Dilcher's sum (1.4) explicitly in terms of the generalized Bernoulli numbers. Expressing this result in hypergeometric form leads to a formula for S N (n) in terms of the Meixner-Pollaczek polynomials (1.9)

P (λ) n (x; φ) = (2λ) n n! e ınφ 2 F 1 -n λ + ıx 2λ 1 -e -2ıφ .
It is then established that the recurrence (1.7), provided by Dilcher in [START_REF] Dilcher | Sums of products of Bernoulli numbers[END_REF], is equivalent to the classical three-term relation for this orthogonal family of polynomials.

Lucas's theorem

In his paper [START_REF] Lucas | Sur les congruences des nombres Euleriens et des coefficients différentiels des fonctions trigonometriques, suivant un module premier[END_REF], E. Lucas gave an expression for the generalized Bernoulli numbers B (p) n , for n ≥ p. This section presents an outline of his proof and an extension of this expression for B (p) n to the case 0 ≤ n ≤ p -1. A proof based on generating functions is given in the next section. Lucas's formula uses the translation (2.1)

β n = B n n
coming from umbral calculus. Observe, for example, that

B (2) 3 = (-1) 1 1! 3! 1! β 2 (1 + β) = -6(β 2 + β 3 ) = -6 B 2 2 + B 3 3 = -3B 2 = - 1 2
Observe also that the symbolic substitution (2.1) should be performed only after all the terms have been expanded. For example,

(2.2)

β 2 (1 + β) = β 2 + β 3 = B 2 2 + B 3 3 = - 1 4 but (2.3) β 2 (1 + β) = B 2 2 1 + B 1 1 = 1 24 .
Theorem 2.1 (Lucas). For n ≥ p, the generalized Bernoulli numbers B (p) n are given by

(2.4) B (p) n = (-1) p-1 (p -1)! n! (n -p)! β n-p+1 (1 + β)(2 + β) • • • (p -1 + β)
where, in symbolic notation,

)

β n = B n n .
Proof. Lucas's argument begins with the identity

(2.6) pB (p+1) n = (p -n)B (p) n -pnB (p) n-1
which follows directly from the identity for generating functions

(2.7) x d dx x e x -1 p = p(1 -x) x e x -1 p -p x e x -1 p+1 . Shifting n to n -1 it follows that (2.8) pB (p+1) n-1 = (p -n + 1)B (p) n-1 -p(n -1)B (p)
n-2 . Now multiplying (2.6) by n(p + 1) and (2.8) by (p -n + 1) leads to

p(p + 1)B (p+2) n = (p -n + 1)(p -n)B (p) n -(p -n + 1)(p + p + 1)nB (p) n-1 +p(p + 1)n(n -1)B (p) n-2
and then, by the same methods, he produces

(p + 2)(p + 1)pB (p+3) n = (p -n + 2)(p -n + 1)(p -n)B (p) n -(p -n 2 )(p -n + 1)(p + p + 1 + p + 2)nB (p) n-1 + (p -n + 2)(p(p + 1) + p(p + 2) + (p + 1)(p + 2))n(n -1)B (p) n-2 -p(p + 1)(p + 2)n(n -1)(n -2)B (p) n-3
and then, stating 'and so on', concludes the proof.

The following alternate proof of Lucas's theorem using generating functions requires an expression for B (p) n in the range 0 ≤ n ≤ p -1, of the kind given in (2.4). This cannot be obtained directly from (2.4). The Stirling numbers of the first kind s n . These numbers are defined by the generating function

(2.9) z(z -1)(z -2) • • • (z -(p -1)) = p k=1 s (p) k z k .
Then (2.4) may be written as

B (p) n = (-1) p-1 (p -1)! n(n -1) • • • (n -(p -1))β n-p (-1) p p k=1 s (p) k (-β) k = - 1 (p -1)! n(n -1) • • • (n -(p -1)) p k=1 s (p) k (-1) k B n-p+k n -p + k .
Observe that the index n varies in the range 0

≤ n ≤ p -1, therefore the prefactor n(n -1) • • • (n -(p - 1 
)) always vanishes. On the other hand, all the summands are finite, except when k = p -n. Performing the translation from (-β) k to B k /k for this specific index gives .

- 1 (p -1)! n(n -1) • • • 1 × (-1)(-2) • • • (-(p -1 -n)))s (p) p-n (-
In fact, this is a classical result. It is, for example, a direct consequence of the identity

(2.11) (z -1)(z -2) • • • (z -p) = p ℓ=0 p ℓ z ℓ B (p+1) p-ℓ
which appears (unnumbered) in [5, p.149].

The proof via generating function

The expressions for the generalized Bernoulli numbers given in (2.4) and (2.10) are now used to compute the generating function

(3.1) G(z) = ∞ n=0 B (p) n z n n!
and to show that it coincides with the generating function of the generalized Bernoulli numbers (1.1). Split the sum as G(z) = G 1 (z) + G 2 (z), where

(3.2) G 1 (z) = p-1 n=0 B (p) n z n n! and G 2 (z) = ∞ n=p B (p) n z n n! .
Observe that

G 2 (z) = ∞ n=p (-1) p-1 (p -1)! n! (n -p)! β n-p+1 (1 + β) • • • ((p -1) + β) z n n! = (-1) p-1 (p -1)! β(1 + β) • • • (p -1 + β) ∞ n=p n! (n -p)! β n-p z n n! = (-1) p-1 (p -1)! (-1) p p k=1 s (p) k (-1) k z p f k (z) with (3.3) f k (z) = ∞ n=p B n-p+k (n -p)!(n -p + k) z n-p .
The (k -1)-st antiderivative of f k (z), denoted by g k (z), is

g k (z) = ∞ n=p B n-p+k (n -p + k)! z n-p+k-1 = z -1 ∞ ℓ=k B ℓ ℓ! z ℓ = 1 z z e z -1 - k-1 ℓ=0 B ℓ ℓ! z ℓ , therefore f k (z) = d dz k-1 1 e z -1 - d dz k-1 1 z = d dz k-1 1 e z -1 + (-1) k (k -1)! z k .
This gives

G 2 (z) = - z p (p -1)! p k=1 s (p) k (-1) k f k (z) = - z p (p -1)! p k=1 s (p) k (-1) k d dz k-1 1 e z -1 - z p (p -1)! p k=1 s (p) k (k -1)! z k .
On the other hand,

G 1 (z) = p-1 n=0 B (p) n z n n! = p-1 n=0 s (p) p-n p-1 n z n n! = 1 (p -1)! p-1 n=0 s (p) p-n (p -1 -n)!z n = 1 (p -1)! p k=1 s (p) k (k -1)!z p-k .
This sum cancels the second term in the expression for G 2 (z). Hence

(3.4) G(z) = G 1 (z) + G 2 (z) = - z p (p -1)! p k=1 s (p) k (-1) k d dz k-1 1 e z -1
.

Using (2.9) this gives

(3.5) G(z) = - (-z) p (p -1)! (p -1) + d dz • • • 1 + d dz 1 e z -1
.

The next lemma simplifies this expression. Its proof by induction is elementary, so it is omitted. Lemma 3.1. For n ≥ 1, the identity

(3.6) (-1) n n! n + d dz n -1 + d dz • • • 1 + d dz 1 e z -1 = 1 (e z -1) n+1 holds.
Replacing in (3.5) produces

(3.7) G(z) = - (-z) p (p -1)! (p -1)! (-1) p-1 1 (e z -1) p = z e z -1 p ,
which is the generating function of the generalized Bernoulli numbers. This proves both Lucas's formula for B (p) n with n ≥ p and the expression (2.10) for 0 ≤ p ≤ n -1.

Lucas's formula via recurrences

The numbers B (p) n satisfy the recurrence (4.1)

pB (p+1) n = (p -n)B (p) n -pnB (p) n-1 .
Lucas's formula for B

n is now established by showing that the numbers defined by (2.4) satisfy the same recurrence.

Start with

(p -n)B (p) n -pnB (p) n-1 = (p -n) (-1) p-1 n! (p -1)!(n -p)! β n-p p-1 k=0 (k + β)- pn (-1) p-1 n! (p -1)!(n -p -1)! β n-1-p p-1 k=0 (k + β),
and write it as

(p -n)B (p) n -pnB (p) n-1 = (-1) p-1 n! (p -1)!(n -p -1)! β n-1-p - p-1 k=0 (k + β) -pβ p-1 k=0 (k + β) = (-1) p n! (p -1)!(n -p -1)! β n-1-p (p + β) p-1 k=0 (k + β) = p (-1) p p! n! (n -p -1)! β n-1-p p k=0 (k + β) = pB (p+1) n .
To conclude the result, it suffices to check that the initial conditions match. This is clear, since (4.2)

B (1) n = n! (n -1)! β n = nβ n = n B n n = B n .
This establishes Lucas's formula for the generalized Bernoulli numbers.

A new proof of Dilcher's formula

This section analyzes the sum (5.1) n . An alternative formulation is presented.

S N (n) := 2n 2j 1 , 2j 2 , • • • , 2j N B 2j 1 B 2j 2 • • • B 2j N , using 
Proposition 5.1. The sum S N (n) is given by

(5.2) S N (n) = N k=0 (2n)! (2n -k)! 2 -k N k B (N -k) 2n-k for 2n > N .
Proof. The umbral method [START_REF] Roman | The Umbral Calculus[END_REF] shows that the sum S N (n) is given by

(5.3) S N (n) = 1 2 N (ǫ 1 B 1 + • • • + ǫ N B N ) 2n with ǫ j = ±1. Introduce the notation (5.4) Y (M,N ) 2n = (-B 1 -• • • -B M + B M +1 + • • • + B N ) 2n
Some examples are presented next.

Example 5.4. The Meixner-Pollaczek polynomial (5.21) P

(1) 2

x; 

π 2 = 2x 2 -1 gives S 3 (n) = (2n)! (2n -3)! × (-1/4)β 2n-2 (-2β 2 -1) = (2n)(2n -1)(2n -2) 4 2 B 2n 2n + B 2n-2 2n -2 = (2n -1)(n -1)B 2n + 1 2 n(2n - 
; π 2 = 4 3 (-2x + x 3 ) that produces S 3 (n) = (2n)! (2n -4)! 1 (2ı) 3 β 2n-3 4 3 (2ıβ + ıβ 3 ) = -1 3 (2n -1)(n -1)(2n -3)B 2n -1 3 (2n)(2n (1) 3 x 
N ) k = (-1) N -1-k 2 N -1 p (N -1) N -1-2k . ( 
The recurrence relation (1.7) is equivalent to the three-terms recurrence

(5.25) (n + 1)P

(1) Proof. The Meixner-Pollaczek polynomials are orthogonal, hence they satisfy a three-terms recurrence. The specific form for this family in (5.25) appears in [START_REF] Olver | NIST Handbook of Mathematical Functions[END_REF]Chapter 18]. In terms of its coefficients p .

n+1 x;
Replacing in (5.26) and simplifying yields (1.7).

Theorem 2 in [START_REF] Dilcher | Sums of products of Bernoulli numbers[END_REF], stated below, may be proven along the same lines of the proof of Theorem 2.2. Details are omitted. 

.

  For n ∈ N, the coefficients B (p) n are polynomials in p named after Nörlund in[START_REF] Carlitz | Note on Nörlund polynomial B (z) n[END_REF]. The first few are (

  k < 0 and for k > ⌊(N -1)/2⌋. Lucas's original proof is recalled in Section 2. This section also contains an extension of Lucas's formula for B (p) n to 0 ≤ n ≤ p -1 in terms of the Stirling numbers of the first kind. A unified proof of the two formulas for B (p) n based on generating functions is given in Section 3. Another proof of Lucas's formula, based on recurrences, is given in Section 4 and Section 5 contains a proof of (1.8)

k

  are used to produce an equivalent formulation of B (p)

  Lucas's expression for the generalized Bernoulli numbers B (p)

  1)B 2n-2 , which coincides with [2, eq. (2.6)]. Example 5.5. The Meixner-Pollaczek of degree 3 is (5.22) P

Theorem 5 . 2 .

 52 1)(2n -3)B 2n-2 , which coincides with [2, eq. (2.7)]. The next step is to establish a correspondence between the Dilcher coefficients b the Meixner-Pollaczek polynomials. In particular, it is shown that the recurrence (1.7) is a consequence of the classical three terms recurrence for orthogonal polynomials. The coefficients b

  satisfied by the Meixner-Pollaczek polynomials.

  expressions for S N (n) in (1.6) and (5.20) gives (5

Theorem 5 . 3 . 1 )

 531 If 2n ≤ N -1, then S N (n) = (-1) n (2n)!(N -2n -N -1 (2n)!(N -2n -1)!b (N )n .
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where there are M minus signs and N -M plus signs. Thus, (5.5)

.

The next step uses the famous umbral identity

(see Section 2 of [START_REF] Dixit | The Zagier modification of Bernoulli numbers and a polynomial extension[END_REF] for details) to obtain

.

This may be written as

where Q M j = Y (M,P +j) j

and P = N -2n. Then (5.8) is easily solved to produce (5.9)

Since the initial condition is (5.10)

2n-k , it follows that (5.11)

Replacing in (5.5) yields

Now use the basic identity (5.12)

to obtain the result.

Lucas's identity for generalized Bernoulli numbers is now used to obtain a second expression for the sum S N (n). Proposition 5.2. For 2n > N , the sum S N (n) is given by

Proof. Using the Pochhammer symbol

Lucas's formula (2.4) is stated in the form (5.15)

Using Proposition 5.1 and

that reduces to the stated form.

To obtain a hypergeometric form of the sum S N (n), observe that (5.16)

and the following result follows from Proposition 5.2.

Proposition 5.3. The hypergeometric form of the sum S N (n) is given by

The final form of the sum S N (n) involves the Meixner-Pollaczek polynomials defined by (5.19)

Choosing λ = 1 and φ = π/2 gives the next result.