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GENERALIZED BERNOULLI NUMBERS AND A

FORMULA OF LUCAS

VICTOR H. MOLL AND CHRISTOPHE VIGNAT

Abstract. An overlooked formula of E. Lucas for the generalized Bernoulli
numbers is proved using generating functions. This is then used to pro-
vide a new proof and a new form of a sum involving classical Bernoulli
numbers studied by K. Dilcher. The value of this sum is then given in
terms of the Meixner-Pollaczek polynomials.

1. Introduction

The goal of this paper is to provide a unified approach to two topics
that have appeared in the literature. The first one is an expression for the

generalized Bernoulli numbers B
(p)
n defined by the exponential generating

function

(1.1)

∞
∑

n=0

B(p)
n

zn

n!
=

(

z

ez − 1

)p

.

For n ∈ N, the coefficients B
(p)
n are polynomials in p named after Nörlund

in [1]. The first few are

(1.2) B
(p)
0 = 1, B

(p)
1 = −1

2p, B
(p)
2 = − 1

12p+
1
4p

2, B
(p)
3 = 1

8p
2(1− p).

In his 1878 paper E. Lucas [4] gave the formula

(1.3) B(p)
n =

(−1)p−1

(p− 1)!

n!

(n− p)!
βn−p+1(1 + β) · · · (p − 1 + β)

for n ≥ p. This is a symbolic formula: to obtain the value of B
(p)
n , expand

the expression (1.3) and replace βj by the ratio Bj/j. Here Bj is the classical

Bernoulli number Bn = B
(1)
n in the notation from (1.1).

The second topic is an expression established by K. Dilcher [2] for the
sums of products of Bernoulli numbers

(1.4) SN(n) :=
∑

(

2n

2j1, 2j2, · · · , 2jN

)

B2j1B2j2 · · ·B2jN ,
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where the sum is taken over all nonnegative integers j1, · · · , jN such that
j1 + · · ·+ jN = n, and where

(1.5)

(

2n

2j1, 2j2, · · · , 2jN

)

=
(2n)!

(2j1)! · · · (2jN )!

is the multinomial coefficient and B2k is the classical Bernoulli number. One
of the main results of [2] is the evaluation

(1.6) SN (n) =
(2n)!

(2n −N)!

⌊(N−1)/2⌋
∑

k=0

b
(N)
k

B2n−2k

2n− 2k
,

where the coefficients b
(N)
k are defined by the recurrence

(1.7) b
(N+1)
k = −

1

N
b
(N)
k +

1

4
b
(N−1)
k−1 ,

with b
(1)
0 = 1 and b

(N)
k = 0 for k < 0 and for k > ⌊(N − 1)/2⌋.

Lucas’s original proof is recalled in Section 2. This section also contains

an extension of Lucas’s formula for B
(p)
n to 0 ≤ n ≤ p − 1 in terms of the

Stirling numbers of the first kind. A unified proof of the two formulas for

B
(p)
n based on generating functions is given in Section 3. Another proof of

Lucas’s formula, based on recurrences, is given in Section 4 and Section 5
contains a proof of

(1.8) SN (n) =

N
∑

k=0

(2n)!

(2n− k)!
2−k

(

N

k

)

B
(N−k)
2n−k

that expresses Dilcher’s sum (1.4) explicitly in terms of the generalized
Bernoulli numbers. Expressing this result in hypergeometric form leads
to a formula for SN (n) in terms of the Meixner-Pollaczek polynomials

(1.9) P (λ)
n (x;φ) =

(2λ)n
n!

eınφ2F1

(

−n λ+ ıx

2λ

∣

∣

∣

∣

1− e−2ıφ

)

.

It is then established that the recurrence (1.7), provided by Dilcher in [2],
is equivalent to the classical three-term relation for this orthogonal family
of polynomials.

2. Lucas’s theorem

In his paper [4], E. Lucas gave an expression for the generalized Bernoulli

numbers B
(p)
n , for n ≥ p. This section presents an outline of his proof and

an extension of this expression for B
(p)
n to the case 0 ≤ n ≤ p − 1. A proof

based on generating functions is given in the next section. Lucas’s formula
uses the translation

(2.1) βn =
Bn

n
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coming from umbral calculus. Observe, for example, that

B
(2)
3 =

(−1)1

1!

3!

1!
β2(1 + β) = −6(β2 + β3)

= −6

(

B2

2
+

B3

3

)

= −3B2 = −
1

2

Observe also that the symbolic substitution (2.1) should be performed only
after all the terms have been expanded. For example,

(2.2) β2(1 + β) = β2 + β3 =
B2

2
+

B3

3
= −

1

4

but

(2.3) β2(1 + β) 6=
B2

2

(

1 +
B1

1

)

=
1

24
.

Theorem 2.1 (Lucas). For n ≥ p, the generalized Bernoulli numbers B
(p)
n

are given by

(2.4) B(p)
n =

(−1)p−1

(p − 1)!

n!

(n− p)!
βn−p+1(1 + β)(2 + β) · · · (p − 1 + β)

where, in symbolic notation,

(2.5) βn =
Bn

n
.

Proof. Lucas’s argument begins with the identity

(2.6) pB(p+1)
n = (p− n)B(p)

n − pnB
(p)
n−1

which follows directly from the identity for generating functions

(2.7) x
d

dx

(

x

ex − 1

)p

= p(1− x)

(

x

ex − 1

)p

− p

(

x

ex − 1

)p+1

.

Shifting n to n− 1 it follows that

(2.8) pB
(p+1)
n−1 = (p− n+ 1)B

(p)
n−1 − p(n− 1)B

(p)
n−2.

Now multiplying (2.6) by n(p+ 1) and (2.8) by (p − n+ 1) leads to

p(p+ 1)B(p+2)
n = (p − n+ 1)(p − n)B(p)

n − (p − n+ 1)(p + p+ 1)nB
(p)
n−1

+p(p+ 1)n(n− 1)B
(p)
n−2

and then, by the same methods, he produces

(p+ 2)(p + 1)pB(p+3)
n = (p − n+ 2)(p − n+ 1)(p − n)B(p)

n

− (p − n2)(p− n+ 1)(p + p+ 1 + p+ 2)nB
(p)
n−1

+ (p − n+ 2)(p(p + 1) + p(p+ 2) + (p+ 1)(p + 2))n(n − 1)B
(p)
n−2

− p(p+ 1)(p + 2)n(n − 1)(n − 2)B
(p)
n−3

and then, stating ‘and so on’, concludes the proof. �
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The following alternate proof of Lucas’s theorem using generating func-

tions requires an expression for B
(p)
n in the range 0 ≤ n ≤ p− 1, of the kind

given in (2.4). This cannot be obtained directly from (2.4). The Stirling

numbers of the first kind s
(p)
k are used to produce an equivalent formulation

of B
(p)
n . These numbers are defined by the generating function

(2.9) z(z − 1)(z − 2) · · · (z − (p− 1)) =

p
∑

k=1

s
(p)
k zk.

Then (2.4) may be written as

B(p)
n =

(−1)p−1

(p− 1)!
n(n− 1) · · · (n− (p − 1))βn−p(−1)p

p
∑

k=1

s
(p)
k (−β)k

= −
1

(p− 1)!
n(n− 1) · · · (n − (p − 1))

p
∑

k=1

s
(p)
k (−1)k

Bn−p+k

n− p+ k
.

Observe that the index n varies in the range 0 ≤ n ≤ p − 1, therefore the
prefactor n(n − 1) · · · (n − (p − 1)) always vanishes. On the other hand, all
the summands are finite, except when k = p−n. Performing the translation
from (−β)k to Bk/k for this specific index gives

−
1

(p− 1)!
n(n− 1) · · · 1× (−1)(−2) · · · (−(p− 1−n)))s

(p)
p−n(−1)p−n =

s
(p)
p−n

(p−1
n

) .

This gives:

Theorem 2.2. The generalized Bernoulli numbers B
(p)
n , with 0 ≤ n ≤ p−1

are given by

(2.10) B(p)
n =

s
(p)
p−n

(

p−1
n

) .

In fact, this is a classical result. It is, for example, a direct consequence
of the identity

(2.11) (z − 1)(z − 2) · · · (z − p) =

p
∑

ℓ=0

(

p

ℓ

)

zℓB
(p+1)
p−ℓ

which appears (unnumbered) in [5, p.149].

3. The proof via generating function

The expressions for the generalized Bernoulli numbers given in (2.4) and
(2.10) are now used to compute the generating function

(3.1) G(z) =

∞
∑

n=0

B(p)
n

zn

n!
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and to show that it coincides with the generating function of the generalized
Bernoulli numbers (1.1).

Split the sum as G(z) = G1(z) +G2(z), where

(3.2) G1(z) =

p−1
∑

n=0

B(p)
n

zn

n!
and G2(z) =

∞
∑

n=p

B(p)
n

zn

n!
.

Observe that

G2(z) =
∞
∑

n=p

(−1)p−1

(p− 1)!

n!

(n− p)!
βn−p+1(1 + β) · · · ((p − 1) + β)

zn

n!

=
(−1)p−1

(p − 1)!
β(1 + β) · · · (p− 1 + β)

∞
∑

n=p

n!

(n− p)!
βn−p z

n

n!

=
(−1)p−1

(p − 1)!
(−1)p

p
∑

k=1

s
(p)
k (−1)kzpfk(z)

with

(3.3) fk(z) =

∞
∑

n=p

Bn−p+k

(n− p)!(n − p+ k)
zn−p.

The (k − 1)-st antiderivative of fk(z), denoted by gk(z), is

gk(z) =

∞
∑

n=p

Bn−p+k

(n− p+ k)!
zn−p+k−1

= z−1
∞
∑

ℓ=k

Bℓ

ℓ!
zℓ

=
1

z

[

z

ez − 1
−

k−1
∑

ℓ=0

Bℓ

ℓ!
zℓ

]

,

therefore

fk(z) =

(

d

dz

)k−1 1

ez − 1
−

(

d

dz

)k−1 1

z

=

(

d

dz

)k−1 1

ez − 1
+

(−1)k(k − 1)!

zk
.

This gives

G2(z) = −
zp

(p− 1)!

p
∑

k=1

s
(p)
k (−1)kfk(z)

= −
zp

(p− 1)!

p
∑

k=1

s
(p)
k (−1)k

(

d

dz

)k−1 [ 1

ez − 1

]

−
zp

(p− 1)!

p
∑

k=1

s
(p)
k

(k − 1)!

zk
.
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On the other hand,

G1(z) =

p−1
∑

n=0

B(p)
n

zn

n!

=

p−1
∑

n=0

s
(p)
p−n

(p−1
n

)

zn

n!

=
1

(p− 1)!

p−1
∑

n=0

s
(p)
p−n(p − 1− n)!zn

=
1

(p− 1)!

p
∑

k=1

s
(p)
k (k − 1)!zp−k.

This sum cancels the second term in the expression for G2(z). Hence

(3.4) G(z) = G1(z)+G2(z) = −
zp

(p− 1)!

p
∑

k=1

s
(p)
k (−1)k

(

d

dz

)k−1 [ 1

ez − 1

]

.

Using (2.9) this gives

(3.5) G(z) = −
(−z)p

(p− 1)!

(

(p − 1) +
d

dz

)

· · ·

(

1 +
d

dz

)[

1

ez − 1

]

.

The next lemma simplifies this expression. Its proof by induction is ele-
mentary, so it is omitted.

Lemma 3.1. For n ≥ 1, the identity

(3.6)
(−1)n

n!

(

n+
d

dz

)(

n− 1 +
d

dz

)

· · ·

(

1 +
d

dz

)

1

ez − 1
=

1

(ez − 1)n+1

holds.

Replacing in (3.5) produces

(3.7) G(z) = −
(−z)p

(p− 1)!

(p− 1)!

(−1)p−1

1

(ez − 1)p
=

(

z

ez − 1

)p

,

which is the generating function of the generalized Bernoulli numbers. This

proves both Lucas’s formula for B
(p)
n with n ≥ p and the expression (2.10)

for 0 ≤ p ≤ n− 1.

4. Lucas’s formula via recurrences

The numbers B
(p)
n satisfy the recurrence

(4.1) pB(p+1)
n = (p− n)B(p)

n − pnB
(p)
n−1.

Lucas’s formula for B
(p)
n is now established by showing that the numbers

defined by (2.4) satisfy the same recurrence.
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Start with

(p− n)B(p)
n − pnB

(p)
n−1 = (p− n)

(−1)p−1n!

(p− 1)!(n − p)!
βn−p

p−1
∏

k=0

(k + β)−

pn
(−1)p−1n!

(p− 1)!(n − p− 1)!
βn−1−p

p−1
∏

k=0

(k + β),

and write it as

(p− n)B(p)
n − pnB

(p)
n−1 =

(−1)p−1n!

(p− 1)!(n − p− 1)!
βn−1−p

[

−

p−1
∏

k=0

(k + β)− pβ

p−1
∏

k=0

(k + β)

]

=
(−1)pn!

(p− 1)!(n − p− 1)!
βn−1−p(p+ β)

p−1
∏

k=0

(k + β)

= p
(−1)p

p!

n!

(n− p− 1)!
βn−1−p

p
∏

k=0

(k + β)

= pB(p+1)
n .

To conclude the result, it suffices to check that the initial conditions
match. This is clear, since

(4.2) B(1)
n =

n!

(n− 1)!
βn = nβn = n

Bn

n
= Bn.

This establishes Lucas’s formula for the generalized Bernoulli numbers.

5. A new proof of Dilcher’s formula

This section analyzes the sum

(5.1) SN(n) :=
∑

(

2n

2j1, 2j2, · · · , 2jN

)

B2j1B2j2 · · ·B2jN ,

using Lucas’s expression for the generalized Bernoulli numbers B
(p)
n . An

alternative formulation is presented.

Proposition 5.1. The sum SN (n) is given by

(5.2) SN (n) =
N
∑

k=0

(2n)!

(2n− k)!
2−k

(

N

k

)

B
(N−k)
2n−k

for 2n > N .

Proof. The umbral method [7] shows that the sum SN (n) is given by

(5.3) SN (n) =
1

2N
(ǫ1B1 + · · ·+ ǫNBN )2n

with ǫj = ±1. Introduce the notation

(5.4) Y
(M,N)
2n = (−B1 − · · · −BM +BM+1 + · · · +BN )2n
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where there are M minus signs and N −M plus signs. Thus,

(5.5) SN (n) =
1

2N

N
∑

M=0

(

N

M

)

Y
(M,N)
2n .

The next step uses the famous umbral identity

(5.6) f(−B) = f(B) + f ′(0)

(see Section 2 of [3] for details) to obtain

(5.7) Y
(M,N)
2n = Y

(M−1,N)
2n + 2nY

(M−1,N−1)
2n−1 .

This may be written as

(5.8) Q
(M)
2n = Q

(M−1)
2n + 2nQ

(M−1)
2n−1 ,

where QM
j = Y

(M,P+j)
j and P = N − 2n. Then (5.8) is easily solved to

produce

(5.9) Q
(M)
2n =

M
∑

k=0

(

M

k

)

(2n)!

(2n− k)!
Q

(0)
2n−k.

Since the initial condition is

(5.10) Q
(0)
2n−k = Y

(0,N−k)
2n−k = B

(N−k)
2n−k ,

it follows that

(5.11) Y
(M,N)
2n =

M
∑

k=0

(

M

k

)

(2n)!

(2n− k)!
B

(N−k)
2n−k .

Replacing in (5.5) yields

SN (n) =
1

2N

N
∑

M=0

(

N

M

)

Y
(M,N)
2n

=
1

2N

N
∑

M=0

(

N

M

) M
∑

k=0

(

M

k

)

(2n)!

(2n − k)!
B

(N−k)
2n−k

=
1

2N

N
∑

k=0

(2n)!

(2n − k)!
B

(N−k)
2n−k

N
∑

M=0

(

M

k

)(

N

M

)

.

Now use the basic identity

(5.12)
N
∑

M=0

(

M

k

)(

N

M

)

=
N
∑

M=k

(

M

k

)(

N

M

)

= 2N−k

(

N

k

)

to obtain the result. �

Lucas’s identity for generalized Bernoulli numbers is now used to obtain
a second expression for the sum SN (n).
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Proposition 5.2. For 2n > N , the sum SN (n) is given by

(5.13) SN (n) =
(2n)!

(2n−N)!
β2n−N+1

N−1
∑

ℓ=0

(

N

ℓ+ 1

)

(−1)ℓ

2N−1−ℓ

(β + 1)ℓ
ℓ!

.

Proof. Using the Pochhammer symbol

(5.14) (β + 1)p−1 =
Γ(β + p)

Γ(β + 1)
= (β + 1) · · · (β + p− 1)

Lucas’s formula (2.4) is stated in the form

(5.15) B(p)
n =

(−1)p−1

(p − 1)!

n!

(n− p)!
βn−p+1(β + 1)p−1.

Using Proposition 5.1 and B
(0)
n = δn so that B

(0)
2n−N = 0 since 2n > N , it

follows that

SN (n) =
N−1
∑

k=0

(2n)!

(2n − k)!
2−k

(

N

k

)

(−1)N−k−1

(N − k − 1)!

(2n − k)!

(2n−N)!
β2n−N+1(β + 1)N−k−1

=
(2n)!

(2n−N)!
β2n−N+1

N−1
∑

k=0

2−k

(

N

k

)

(−1)N−k−1

(N − k − 1)!
(β + 1)N−k−1

that reduces to the stated form. �

To obtain a hypergeometric form of the sum SN (n), observe that

(5.16) N(1−N)ℓ = (−1)ℓ
N !

(N − ℓ− 1)!

and (2)ℓ = (ℓ+ 1)! give

(5.17) (−1)ℓ
(

N

ℓ+ 1

)

= N
(1−N)ℓ

(2)ℓ
,

and the following result follows from Proposition 5.2.

Proposition 5.3. The hypergeometric form of the sum SN (n) is given by

(5.18) SN (n) =
(2n)!

(2n −N)!
β2n−N+121−NN 2F1

(

1−N, 1 + β

2

∣

∣

∣

∣

2

)

.

The final form of the sum SN (n) involves the Meixner-Pollaczek polyno-
mials defined by

(5.19) P (λ)
n (x;φ) =

(2λ)n
n!

eınφ2F1

(

−n, λ+ ıx

2λ

∣

∣

∣

∣

1− e−2ıφ

)

.

Choosing λ = 1 and φ = π/2 gives the next result.

Theorem 5.1. The sum SN (n) is given by

(5.20) SN (n) =
(2n)!

(2n −N)!

1

(2ı)N−1
β2n−N+1P

(1)
N−1

(

−ıβ;
π

2

)

.
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Some examples are presented next.

Example 5.4. The Meixner-Pollaczek polynomial

(5.21) P
(1)
2

(

x;
π

2

)

= 2x2 − 1

gives

S3(n) =
(2n)!

(2n− 3)!
× (−1/4)β2n−2(−2β2 − 1)

=
(2n)(2n − 1)(2n − 2)

4

[

2
B2n

2n
+

B2n−2

2n− 2

]

= (2n− 1)(n − 1)B2n + 1
2n(2n − 1)B2n−2,

which coincides with [2, eq. (2.6)].

Example 5.5. The Meixner-Pollaczek of degree 3 is

(5.22) P
(1)
3

(

x;
π

2

)

=
4

3
(−2x+ x3)

that produces

S3(n) =
(2n)!

(2n− 4)!

1

(2ı)3
β2n−3 4

3
(2ıβ + ıβ3)

= −1
3(2n− 1)(n − 1)(2n − 3)B2n − 1

3 (2n)(2n − 1)(2n − 3)B2n−2,

which coincides with [2, eq. (2.7)].

The next step is to establish a correspondence between the Dilcher coef-

ficients b
(N)
k in (1.6) and the coefficients p

(n)
k in

(5.23) P (1)
n (x;π/2) =

n
∑

k=0

p
(n)
k xk

the Meixner-Pollaczek polynomials. In particular, it is shown that the re-
currence (1.7) is a consequence of the classical three terms recurrence for
orthogonal polynomials.

Theorem 5.2. The coefficients b
(N)
k defined in (1.6) and the coefficients

p
(n)
k are related by

(5.24) b
(N)
k =

(−1)N−1−k

2N−1
p
(N−1)
N−1−2k.

The recurrence relation (1.7) is equivalent to the three-terms recurrence

(5.25) (n+ 1)P
(1)
n+1

(

x;
π

2

)

− 2xP (1)
n

(

x;
π

2

)

+ (n+ 1)P
(1)
n−1

(

x;
π

2

)

= 0.

satisfied by the Meixner-Pollaczek polynomials.
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Proof. The Meixner-Pollaczek polynomials are orthogonal, hence they sat-
isfy a three-terms recurrence. The specific form for this family in (5.25)

appears in [6, Chapter 18]. In terms of its coefficients p
(n)
k this is expressed

as

(5.26) (n+ 1)p
(n+1)
k − 2p

(n)
k−1 + (n+ 1)p

(n−1)
k = 0.

Comparing the two expressions for SN (n) in (1.6) and (5.20) gives (5.24).
This is equivalent to

(5.27) p
(N−1)
ℓ = 2N−1ıN−1+ℓb

(N)
1
2 (N−1−ℓ)

.

Replacing in (5.26) and simplifying yields (1.7). �

Theorem 2 in [2], stated below, may be proven along the same lines of
the proof of Theorem 2.2. Details are omitted.

Theorem 5.3. If 2n ≤ N − 1, then

SN (n) = (−1)n
(2n)!(N − 2n − 1)!

2N−1
p
(N−1)
N−2n−1(5.28)

= (−1)N−1(2n)!(N − 2n− 1)!b(N)
n .
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