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A PROBABILISTIC APPROACH TO SOME BINOMIAL

IDENTITIES

CHRISTOPHE VIGNAT AND VICTOR H. MOLL

Abstract. Classical binomial identities are established by giving probabilistic
interpretations to the summands. The examples include Vandermonde identity
and some generalizations.

1. Introduction

The evaluation of finite sums involving binomial coefficients appears throughout
the undergraduate curriculum. Students are often exposed to the identity

(1.1)

n
∑

k=0

(

n

k

)

= 2n.

Elementary proofs abound: simply choose x = y = 1 in the binomial expansion
of (x + y)n. The reader is surely aware of many other proofs, including some
combinatorial in nature.

At the end of the previous century, the evaluation of these sums was trivialized
by the work of H. Wilf and D. Zeilberger [7]. In the preface to the charming book
[7], the authors begin with the phrase

You’ve been up all night working on your new theory, you found the

answer, and it is in the form that involves factorials, binomial

coefficients, and so on, ...

and then proceed to introduce the method of creative telescoping. This technique
provides an automatic tool for the verification of this type of identities.

Even in the presence of a powerful technique, such as the WZ-method, it is often
a good pedagogical idea to present a simple identity from many different points of
view. The reader will find in [1] this approach with the example

(1.2)
m
∑

k=0

2−2k

(

2k

k

)(

2m− k

m

)

=
m
∑

k=0

2−2k

(

2k

k

)(

2m+ 1

2k

)

.

The current paper presents probabilistic arguments for the evaluation of certain
binomial sums. The background required is minimal. The continuous random vari-
ables X considered here have a probability density function. This is a nonnegative
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2 A PROBABILISTIC APPROACH TO SOME BINOMIAL IDENTITIES

function fX(x), such that

(1.3) Pr(X < x) =

∫ x

−∞
fX(y) dy.

In particular, fX must have total mass 1. Thus, all computations are reduced to the
evaluation of integrals. For instance, the expectation of a function of the random
variable X is computed as

(1.4) Eg(X) =

∫ ∞

−∞
g(y)fX(y) dy.

In elementary courses, the reader has been exposed to normal random variables,
written as X ∼ N(0, 1), with density

(1.5) fX(x) =
1√
2π

e−x2/2,

and exponential random variables, with probability density function

(1.6) f(x;λ) =

{

λe−λx for x ≥ 0;

0 otherwise.

The examples employed in the arguments presented here have a gamma distribu-
tion with shape parameter k and scale parameter θ, written as X ∼ Γ(k, θ). These
are defined by the density function

(1.7) f(x; k, θ) =

{

xk−1e−x/θ/θkΓ(k), for x ≥ 0;

0 otherwise.

Here Γ(s) is the classical gamma function, defined by

(1.8) Γ(s) =

∫ ∞

0

xs−1e−x dx

for Re s > 0. Observe that if X ∼ Γ(a, θ), then X = θY where Y ∼ Γ(a, 1).
Moreover EXn = θn(a)n, where

(1.9) (a)n =
Γ(a+ n)

Γ(a)
= a(a+ 1) · · · (a+ n− 1)

is the Pochhammer symbol. The main property of these random variables employed
in this paper is the following: assume Xi ∼ Γ(ki, θ) are independent, then

(1.10) X1 + · · ·+Xn ∼ Γ(k1 + · · ·+ kn, θ).

This follows from the fact that that the density probability function for the sum of
two independent random variables is the convolution of the individual ones.

Related random variables include those with a beta distribution

(1.11) fa,b(x) =

{

xa−1(1− x)b−1/B(a, b) for 0 ≤ x ≤ 1;

0 otherwise.

Here B(a, b) is the beta function defined by

(1.12) B(a, b) =

∫ 1

0

xa−1(1− x)b−1 dx
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and also the symmetric beta distributed random variable Zc, with density propor-
tional to (1 − x2)c−1 for −1 ≤ x ≤ 1. The first class of random variables can be
generated as

(1.13) Ba,b =
Γa

Γa + Γb
,

where Γa and Γb are independent gamma distributed with shape parameters a and
b, respectively and the second type is distributed as 1− 2Bc,c, that is,

(1.14) Zc = 1− 2Γc

Γc + Γ′
c

=
Γc − Γ′

c

Γc + Γ′
c

,

where Γc and Γ′
c are independent gamma distributed with shape parameter c. A

well-known result is that Ba,b and Γa + Γb are independent in (1.13); similarly,
Γc + Γ′

c and Zc are independent in (1.14).

2. A sum involving central binomial coefficients

Many finite sums may be evaluated via the generating function of terms appear-
ing in them. For instance, a sum of the form

(2.1) S2(n) =
∑

i+j=n

aiaj

is recognized as the coefficient of xn in the expansion of f(x)2, where

(2.2) f(x) =

∞
∑

j=0

ajx
j

is the generating function of the sequence {ai}. Similarly,

(2.3) Sm(n) =
∑

k1+···+km=n

ak1
· · · akm

is given by the coefficient of xn in f(x)m. The classical example

(2.4)
1√

1− 4x
=

∞
∑

j=0

(

2j

j

)

xj

gives the sums

(2.5)

n
∑

i=0

(

2i

i

)(

2n− 2i

n− i

)

= 4n

and

(2.6)
∑

k1+···+km=n

(

2k1
k1

)

· · ·
(

2km
km

)

=
22n

n!

Γ(m2 + n)

Γ(m2 )
.

The powers of (1− 4x)−1/2 are obtained from the binomial expansion

(2.7) (1− 4x)−a =

∞
∑

j=0

(a)j
j!

(4x)j ,

where (a)j is the Pochhammer symbol.

The identity (2.5) is elementary and there are many proofs in the literature. A
nice combinatorial proof of (2.6) appeared in 2006 in this journal [3]. In a more
recent contribution, G. Chang and C. Xu [5] present a probabilistic proof of these
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identities. Their approach is elementary: take m independent Gamma random
variables Xi ∼ Γ(12 , 1) and write

(2.8) E

(

m
∑

i=1

Xi

)n

=
∑

k1+···+km=n

(

n

k1, · · · , km

)

EXk1

1 · · ·EXkm
m

where E denotes the expectation operator. For each random variable Xi, the mo-
ments are given by

(2.9) EXki

i =
Γ(ki +

1
2 )

Γ(12 )
= 2−2ki

(2ki)!

ki!
=

ki!

22ki

(

2ki
ki

)

,

using Euler’s duplication formula for the gamma function

(2.10) Γ(2z) =
1√
π
22z−1Γ(z)Γ(z + 1

2 )

(see [6], 5.5.5) to obtain the second form. The expression

(2.11)

(

n

k1, · · · , km

)

=
n!

k1! k2! · · · km!

for the multinomial coefficients shows that the right-hand side of (2.8) is

(2.12)
n!

22n

∑

k1+···+km=n

(

2k1
k1

)

· · ·
(

2km
km

)

.

To evaluate the left-hand side of (2.8), recall that the sum ofm independent Γ
(

1
2 , 1
)

has a distribution of Γ(m2 , 1). Therefore, the left-hand side of (2.8) is

(2.13)
Γ(m2 + n)

Γ(m2 )
.

This gives (2.6). The special case m = 2 produces (2.5).

3. More sums involving central binomial coefficients

The next example deals with the identity

(3.1)

n
∑

k=0

(

4k

2k

)(

4n− 4k

2n− 2k

)

= 24n−1 + 22n−1

(

2n

n

)

that appears as entry 4.2.5.74 in [4]. The proof presented here employs the famous
dissection technique, first introduced by Simpson [8] in the simplification of

(3.2)
1

2

(

E(X1 +X2)
2n + E(X1 −X2)

2n
)

,

where X1, X2 are independent random variables distributed as Γ
(

1
2 , 1
)

.
The left-hand side is evaluated by expanding the binomials to obtain

1

2
(E(X1 +X2)

2n + E(X1 −X2)
2n) =

1

2

2n
∑

k=0

(

2n

k

)

EXk
1 EX2n−k

2 +
1

2

2n
∑

k=0

(−1)k
(

2n

k

)

EXk
1 EX2n−k

2
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This gives

1

2
(E(X1 +X2)

2n + E(X1 −X2)
2n) =

n
∑

k=0

(

2n

2k

)

EX2k
1 EX2n−2k

2 .

Using (2.9), this reduces to

(3.3)
1

2

(

E(X1 +X2)
2n + E(X1 −X2)

2n
)

=
(2n)!

24n

n
∑

k=0

(

4k

2k

)(

4n− 4k

2n− 2k

)

.

The random variable X1 +X2 is Γ(1, 1) distributed, so

(3.4) E(X1 +X2)
2n = (2n)!,

and the random variable X1 − X2 is distributed as (X1 + X2)Z1/2, where Z1/2

is independent of X1 + X2 and has a symmetric beta distribution with density
fZ1/2

(z) = 1/π
√
1− z2. In particular, the even moments are given by

(3.5)
1

π

∫ 1

−1

z2n dz√
1− z2

=
1

22n

(

2n

n

)

.

Therefore,

(3.6) E(X1 −X2)
2n = E(X1 +X2)

2n
EZ2n

1/2 =
(2n)!

22n

(

2n

n

)

.

It follows that

(3.7) E(X1 +X2)
2n + E(X1 −X2)

2n = (2n)! +
(2n)!

22n

(

2n

n

)

.

The evaluations (3.3) and (3.7) imply (3.1).

4. An extension related to Legendre polynomials

A key point in the evaluation given in the previous section is the elementary
identity

(4.1) 1 + (−1)k =

{

2 if k is even;

0 otherwise.

This reduces the number of terms in the sum (3.3) from 2n to n. A similar can-
cellation occurs for any p ∈ N. Indeed, the natural extension of (4.1) is given
by

(4.2)

p−1
∑

j=0

ωjr =

{

p if r ≡ 0 (mod p);

0 otherwise;

Here ω = e2πi/p is a complex p-th root of unity. Observe that (4.2) reduces to (4.1)
when p = 2.

The goal of this section is to discuss the extension of (3.1). The main result
is given in the next theorem. The Legendre polynomials appearing in the next
theorem are defined by

(4.3) Pn(x) =
1

2n n!

(

d

dx

)n

(x2 − 1)n.
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Theorem 4.1. Let n, p be positive integers. Then

(4.4)

n
∑

k=0

(

2kp

kp

)(

2(n− k)p

(n− k)p

)

=
22np

p

p−1
∑

ℓ=0

eiπℓnPnp

(

cos

(

πℓ

p

))

.

Proof. Replace the random variable X1 − X2 considered in the previous section,
by X1 +WX2, where W is a complex random variable with uniform distribution
among the p-th roots of unity. That is,

(4.5) Pr
{

W = ωℓ
}

=
1

p
, for 0 ≤ ℓ ≤ p− 1.

The identity (4.2) gives

(4.6) EW r =

{

1 if r ≡ 0 (mod p);

0 otherwise.

This is the cancellation alluded above.
Now proceed as in the previous section to obtain the moments

E(X1 +WX2)
np =

n
∑

k=0

(

np

kp

)

EX
(n−k)p
1 EXkp

2(4.7)

=
(np)!

22np

n
∑

k=0

(

2kp

kp

)(

2(n− k)p

(n− k)p

)

.

A second expression for E(X1 + WX2)
np employs an alternative form of the

Legendre polynomial Pn(x) defined in (4.3).

Proposition 4.2. The Legendre polynomial is given by

(4.8) Pn(x) =
1

n!
E

[

(x+
√

x2 − 1)X1 + (x−
√

x2 − 1)X2

]n

,

where X1 and X2 are independent Γ
(

1
2 , 1
)

random variables.

Proof. The proof is based on characteristic functions. Compute the sum

(4.9) Eet(x+
√
x2−1)X1 Eet(x−

√
x2−1)X2 =
∞
∑

k=0

tn

n!
E

[

(x+
√

x2 − 1)X1 + (x−
√

x2 − 1)X2

]

.

The moment generating function for a Γ
(

1
2 , 1
)

random variable is

(4.10) EetX = (1− t)−1/2.

This reduces (4.9) to
(

1− t(x+
√

x2 − 1)
)−1/2 (

1− t(x −
√

x2 − 1)
)−1/2

= (1− 2tx+ t2)−1/2

which is the generating function of the Legendre polynomials. �

This concludes the proof of Theorem 4.1. �

Corollary 4.3. Let x be a variable and Γ1, Γ2 as before. Then

(4.11) E(Γ1 + x2Γ2)
n = n!xnPn

(

1
2 (x+ x−1

)

.
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Proof. This result follows from Proposition 4.2 and the change of variables x 7→
1
2 (x+ x−1), known as the Joukowsky transform. �

Replacing x by W 1/2 in (4.11) and averaging over the values of W gives the
second expression for E(X1 +WX2)

np. The proof of Theorem 4.1 is complete.

5. Chu-vandermonde

The arguments presented here to prove (2.5) can be generalized by replacing the
random variables Γ

(

1
2 , 1
)

by two random variables Γ(ai, 1) with shape parameters
a1 and a2, respectively. The resulting identity is the Chu-Vandermonde theorem.

Theorem 5.1. Let a1 and a2 be positive real numbers. Then

(5.1)

n
∑

k=0

(a1)k
k!

(a2)n−k

(n− k)!
=

(a1 + a2)n
n!

.

The reader will find in [2] a more traditional proof. The paper [10] describes
how to find and prove this identity in automatic form.

Exactly the same argument for (2.6) provides a multivariable generalization of
the Chu-Vandermonde identity.

Theorem 5.2. Let {ai}1≤i≤m be a collection of m positive real numbers. Then

(5.2)
∑

k1+···+km=n

(a1)k1

k1!
· · · (am)km

km!
=

1

n!
(a1 + · · ·+ am)n.

The final stated result presents a generalization of Theorem 4.1.

Theorem 5.3. Let n, p ∈ N, a ∈ R
+ and ω = eiπ/p. Then

(5.3)
n
∑

k=0

(a)kp
(kp)!

(a)(n−k)p

((n− k)p)!
z2kp =

1

p

p−1
∑

ℓ=0

eiπℓnznpC(a)
np

(

1
2 (zω

ℓ + z−1ω−ℓ)
)

.

Here C
(a)
n (x) is the Gegenbauer polynomial of degree n and parameter a.

Proof. Start with the moment representation for the Gegenbauer polynomials

(5.4) C(a)
n (x) =

1

n!
EU,V

(

U(x+
√

x2 − 1) + V (x−
√

x2 − 1)
)n

with U and V independent Γ(a, 1) random variables. This representation is proved
in the same way as the proof for the Legendre polynomial, replacing the exponent
−1/2 by and exponent −a. Note that the Legendre polynomials are Gegenbauer
polynomials with parameter a = 1

2 . This result can also be found in Theorem 3 of
[9]. �

Note 5.4. The value z = 1 in (5.3) gives

(5.5)

n
∑

k=0

(a)kp
(kp)!

(a)(n−k)p

((n− k)p)!
=

1

p

p−1
∑

ℓ=0

eiπℓnC(a)
np

(

cos

(

πℓ

p

))

.

This is a generalization of Chu-Vandermonde.
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The techniques presented here may be extended to a variety of situations. Two
examples illustrate the type of identities that may be proven. They involve the
Hermite polynomials defined by

(5.6) Hn(x) = (−1)nex
2

(

d

dx

)n

e−x2

.

Theorem 5.5. Let m ∈ N. The Hermite polynomials satisfy

(5.7)
1

n!
Hn

(

x1 + · · ·+ xm√
m

)

= m−n/2
∑

k1+···+km

Hk1
(x1)

k1!
· · · Hkm(xm)

km!
.

Proof. Start with the moment representation for the Hermite polynomials

(5.8) Hn(x) = 2nE(x + iN)n,

where N is normal with mean 0 and variance 1
2 . The details are left to the reader.

�

The moment representation for the Gegenbauer polynomials (5.4) yields the final
result presented here.

Theorem 5.6. Let m ∈ N. The Gegenbauer polynomials C
(a)
n (x) satisfy

(5.9) C(a1+···+am)
n (x) =

∑

k1+···+km=n

C
(a1)
k1

(x) · · ·C(am)
km

(x).

Remark 5.7. A relation between Gegenbauer and Hermite polynomials is given by

(5.10) lim
a→∞

1

an/2
C(a)

n

(

x√
a

)

=
1

n!
Hn(x).

This relation allows to recover easily identity (5.7) from identity (5.9).

The examples presented here, show that many of the classical identities for spe-
cial functions may be established by probabilistic methods. The reader is encour-
aged to try this method in his/her favorite identity.
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