Method proposed

The following presents a Bayesian approach for solving constrained multi-objective optimization problems. The functions of the problem are modeled by random processes [START_REF] Jones | Efficient global optimization of expensive black-box functions[END_REF][START_REF] Mockus | Application of bayesian approach to numerical methods of global and stochastic optimization[END_REF][START_REF] Schonlau | Global versus local search in constrained optimization of computer models[END_REF] and we use an extended domination rule taking both constraints and objectives into account in a multi-objective framework to define a proper expected improvement (EI) criterion.

Extended domination rule

Let 𝑦 = 𝑦 1 , … , 𝑦 𝑟 ∈ 𝕐 and z = 𝑧 1 , … , 𝑧 𝑟 ∈ 𝕐 , where 𝕐 ⊆ ℝ 𝑟 denotes the output space. We usually say that 𝑦 dominates 𝑧, which is denoted by 𝑦 ≺ 𝑧, if the following holds:

∀𝑖 ∈ 1, r , 𝑦 𝑖 ≤ 𝑧 𝑖 ∃𝑗 ∈ 1, r , 𝑦 𝑗 < 𝑧 𝑗
In order to adapt this domination rule to the constrained setup [START_REF] Fonseca | Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation[END_REF], we define the following function: The Expected Improvement follows by taking the expectation of the above defined improvement:

𝜓 ∶ 𝔽 × ℂ → ℝ 𝑝 × ℝ 𝑞 𝑦 𝑓 , 𝑦 𝑐 ↦ 𝑦 𝑓 , 0 if 𝑦 𝑐 ≤ 0 +∞, max
𝐸𝐼 𝑛 𝑥 = 𝐻 𝑛 𝑐 ℙ 𝑛 𝜉 𝑥 ⊲ 𝑦 d𝑦,
where ℙ 𝑛 denotes the probability conditioned on the observations and 𝜉 is a vector of Gaussian process priors associated with the functions of the problem.

Illustration

The method is illustrated on a 2D toy problem with two objective functions and one constraint function. The feasible subset consists in three small regions (see figure below) and the Pareto front is composed of three corresponding disconnected fronts. In particular, note that no feasible point is given to begin with.

Criterion calculation

The Its integration over 𝕐\H 𝑛 however is not trivial. In particular, we cannot use decomposition methods due to the dimension of 𝕐 [START_REF] Hupkens | Faster computation of expected hypervolume improvement[END_REF].

To address this difficulty, we propose to use a Monte Carlo approximation of the integral:

𝐸𝐼 𝑛 𝑥 ≈ 1 𝑚 𝑘=1 𝑚 ℙ 𝑛 𝜉 𝑥 ⊲ 𝑦 𝑘 ,
where 𝒴 𝑛 = 𝑦 𝑛,𝑘 1≤𝑘≤𝑚 is a set of particles targeting the uniform density over 𝕐\H 𝑛 .

In principle, sampling uniformly over 𝕐\H 𝑛 could be achieved using an accept-reject method [START_REF] Robert | Monte Carlo statistical methods[END_REF]. However, when the dimension of 𝕐 is high, 𝕐\H 𝑛 will probably have a small volume with respect to that of 𝕐. In this case, the acceptance rate of an accept-reject method becomes small and the cost of generating a uniform sample on 𝕐\H 𝑛 becomes prohibitive.

In this work, we use a variant of a technique called subset simulation [START_REF] Au | Estimation of small failure probabilities in high dimensions by subset simulation[END_REF][START_REF] Cérou | Sequential monte carlo for rare event estimation[END_REF]. Given a set of particles 𝒴 𝑛 = 𝑦 𝑛,𝑘 1≤𝑘≤𝑚 uniformly distributed on 𝕐\H 𝑛 , one obtains a sample 𝒴 𝑛+1 uniformly distributed over 𝕐\H 𝑛+1 using the following Remove-Resample-Move procedure:

1) Remove particles 𝑦 𝑛,𝑘 ∈ 𝒴 𝑛 that are not in 𝕐\H 𝑛+1 2) Replicate randomly the surviving particles until the population size is 𝑚 again 3) Move particles using a Metropolis-Hastings algorithm with invariant density 𝟙 𝕐\H 𝑛+1

This procedure is illustrated in the illustration panel.

Criterion optimization

The optimization of the criterion is also a difficult problem because the EI criterion is known to be highly multi-modal and hard to optimize. Our proposal is to conduct the optimization on a restrained set of good candidates provided at each iteration by a Sequential Monte Carlo approach in the spirit of [START_REF] Benassi | Bayesian optimization using sequential Monte Carlo[END_REF][START_REF] Li | Bayesian Subset Simulation: a kriging-based subset simulation algorithm for the estimation of small probabilities of failure[END_REF]. This enables us to use results from past iterations to save computational time and converge hopefully to higher precisions.

Let 𝒳 𝑛 = 𝑥 𝑛,𝑘 , 𝑤 𝑛,𝑘 1≤𝑘≤𝑚 be a cloud of weighted particles distributed according to 𝜋 𝑛 𝑥 ∝ ℙ 𝑛 𝜉 𝑥 ∈ 𝕐\H 𝑛 (this is actually the probability of improvement). When a new sample is observed, the incremental weights of the particles can be updated to fit the new density: The incremental weights can be used to resample the particles in the regions of high density for 𝜋 𝑛+1 . Then a Metropolis-Hastings algorithm with invariant density 𝜋 𝑛+1 is used to mix the particles.

Below is a summary of the proposed method [START_REF] Liu | Monte Carlo strategies in scientific computing[END_REF]:

1) Reweight particles using the incremental weights 2) Resample with a residual resampling scheme 3) Move the new particles with a metropolis Hastings algorithm

In practice, the probability of improvement can't be calculated analytically in the general case. However, the posterior density of 𝜉 𝑥 is Gaussian and it can be simulated empirically. If 𝑧 𝑘 1≤𝑘≤𝑁 are 𝑁 simulations of 𝜉 𝑥 , an estimator of ℙ 𝑛 𝜉 𝑥 ∈ 𝕐\H 𝑛 is the following counting measure:

ℙ 𝑛 𝜉 𝑥 ∈ 𝕐\H 𝑛 ≈ 𝑘=1 𝑁 𝟙 𝕐\H 𝑛 𝑧 𝑘
The optimization method is illustrated in the illustration panel.
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 1 Fig. 1. Illustration of the extended domination rule in different situations. The region dominated by each point is represented by a shaded area. Darker shades of gray indicate overlapping regions. (a) Feasible solutions are compared with respect to their objective values using the usual domination rule in the objective space. (b) Non-feasible solutions are compared using the Pareto domination rule applied to the vectors of constraint violations. (c) Feasible solutions always dominate non-feasible solutions; other cases are handled as in the first two figures.

Fig. 2 .

 2 Fig. 2. Illustration of the improvement 𝐼 𝑛 yielded by the observation of a new point at location 𝑥 𝑛+1

  integrand of the EI formula can be calculated in closed form for any 𝑥 ∈ 𝕏 and any 𝑦 = 𝑦 𝑜 , 𝑦 𝑐 ∈ 𝕐

	ℙ 𝑁 𝜉 𝑥 ⊲ 𝑦	
	=	𝑖=1 𝑝	𝜙	𝑦 𝑜,𝑖 -𝜉 𝑜,𝑖,𝑛 𝑥 𝜎 𝑜,𝑖,𝑛 𝑥 𝑗=1 𝑞 𝜙 max 𝑦 𝑐,𝑗 , 0 -𝜉 𝑜,𝑗,𝑛 𝑥 𝑗=1 𝑞 𝜙 -𝜉 𝑜,𝑗,𝑛 𝑥 𝜎 𝑜,𝑗,𝑛 𝑥 𝜎 𝑜,𝑗,𝑛 𝑥	if 𝑦 𝑐 ≤ 0 otherwise
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Context : problem formulation

Minimize 𝑓 𝑥 Subject to 𝑥 ∈ 𝕏 and 𝑐 𝑥 ≤ 0

is a vector of objective functions to be minimized.

• 𝕏 ⊂ ℝ 𝑑 is the design space.

• 𝑐 = 𝑐 𝑖 1≤𝑖≤𝑞 is the vector of constraint functions.

Both the objective functions 𝑓 𝑗 and the constraint functions 𝑐 𝑖 are assumed to be smooth, nonlinear, expensive-to-evaluate black-box functions.