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A Bayesian approach to constrained multi-objective optimization

FELIOT Paul, BECT Julien, VAZQUEZ Emmanuel

Context : problem formulation

 
Minimize 𝑓 𝑥

Subject to 𝑥 ∈ 𝕏 and 𝑐 𝑥 ≤ 0

• 𝑓 = 𝑓𝑗 1≤𝑗≤𝑝
is a vector of objective functions to be minimized.

• 𝕏 ⊂ ℝ𝑑 is the design space.

• 𝑐 = 𝑐𝑖 1≤𝑖≤𝑞 is the vector of constraint functions.

Both the objective functions 𝑓𝑗 and the constraint functions 𝑐𝑖 are
assumed to be smooth, nonlinear, expensive-to-evaluate black-box
functions.
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Method proposed

The following presents a Bayesian approach for solving constrained
multi-objective optimization problems. The functions of the problem
are modeled by random processes [5,8,9] and we use an extended
domination rule taking both constraints and objectives into account
in a multi-objective framework to define a proper expected
improvement (EI) criterion.

Extended domination rule
Let 𝑦 = 𝑦1, … , 𝑦𝑟 ∈ 𝕐 and z = 𝑧1, … , 𝑧𝑟 ∈ 𝕐 , where 𝕐 ⊆ ℝ𝑟

denotes the output space. We usually say that 𝑦 dominates 𝑧, which
is denoted by 𝑦 ≺ 𝑧, if the following holds:

 
∀𝑖 ∈ 1, r , 𝑦𝑖 ≤ 𝑧𝑖
∃𝑗 ∈ 1, r , 𝑦𝑗 < 𝑧𝑗

In order to adapt this domination rule to the constrained setup [3],
we define the following function:

𝜓 ∶ 𝔽 × ℂ → ℝ𝑝 × ℝ𝑞

𝑦𝑓 , 𝑦𝑐 ↦  
𝑦𝑓 , 0 if 𝑦𝑐 ≤ 0

+∞,max 𝑦𝑐 , 0 otherwise

where 𝔽 ⊂ ℝ𝑝 and ℂ ⊂ ℝ𝑞 are respectively the objective and
constraint spaces. The new domination rule ⊲ is then defined by

𝑦 ⊲ 𝑧 ⇔ 𝜓 𝑦 ≺ 𝜓 𝑧 , 𝑦, 𝑧 ∈ 𝔽 × ℂ

Fig. 1. Illustration of the extended domination rule in different situations. The region
dominated by each point is represented by a shaded area. Darker shades of gray indicate
overlapping regions. (a) Feasible solutions are compared with respect to their objective
values using the usual domination rule in the objective space. (b) Non-feasible solutions are
compared using the Pareto domination rule applied to the vectors of constraint violations.
(c) Feasible solutions always dominate non-feasible solutions; other cases are handled as in
the first two figures.

Expected Improvement
Much like [2,4,10], we then define the improvement yielded by the
observation of a new point as the volume increase of the dominated
region (see figure 2 bellow).

Fig. 2. Illustration of the improvement 𝐼𝑛 yielded by the observation of a new point at
location 𝑥𝑛+1

Denote by 𝐻𝑛 the subset of 𝕐 dominated by the observations 𝑋𝑛 =
𝑥1, … , 𝑥𝑛 ∈ 𝕏𝑛 and 𝐻𝑛 𝕐 its volume.

∀𝑥𝑛+1 ∈ 𝕏, 𝐼𝑛 𝑥𝑛+1 = 𝐻𝑛+1 𝕐 − 𝐻𝑛 𝕐

The Expected Improvement follows by taking the expectation of the
above defined improvement:

𝐸𝐼𝑛 𝑥 =  
𝐻𝑛
𝑐
ℙ𝑛 𝜉 𝑥 ⊲ 𝑦 d𝑦,

where ℙ𝑛 denotes the probability conditioned on the observations
and 𝜉 is a vector of Gaussian process priors associated with the
functions of the problem.

Illustration

The method is illustrated on a 2D toy problem with two objective
functions and one constraint function. The feasible subset consists in
three small regions (see figure below) and the Pareto front is
composed of three corresponding disconnected fronts. In particular,
note that no feasible point is given to begin with.

Criterion calculation
The integrand of the EI formula can be calculated in closed form for 
any 𝑥 ∈ 𝕏 and any 𝑦 = 𝑦𝑜, 𝑦𝑐 ∈ 𝕐

ℙ𝑁 𝜉 𝑥 ⊲ 𝑦

=

 

𝑖=1

𝑝

𝜙
𝑦𝑜,𝑖 −  𝜉𝑜,𝑖,𝑛 𝑥

𝜎𝑜,𝑖,𝑛 𝑥
 

𝑗=1

𝑞

𝜙 −
 𝜉𝑜,𝑗,𝑛 𝑥

𝜎𝑜,𝑗,𝑛 𝑥
if 𝑦𝑐 ≤ 0

 

𝑗=1

𝑞

𝜙
max 𝑦𝑐,𝑗 , 0 −  𝜉𝑜,𝑗,𝑛 𝑥

𝜎𝑜,𝑗,𝑛 𝑥
otherwise

Its integration over 𝕐\H𝑛 however is not trivial. In particular, we
cannot use decomposition methods due to the dimension of 𝕐 [12].
To address this difficulty, we propose to use a Monte Carlo
approximation of the integral:

𝐸𝐼𝑛 𝑥 ≈
1

𝑚
 

𝑘=1

𝑚

ℙ𝑛 𝜉 𝑥 ⊲ 𝑦𝑘 ,

where 𝒴𝑛 = 𝑦𝑛,𝑘 1≤𝑘≤𝑚
is a set of particles targeting the uniform

density over 𝕐\H𝑛.

In principle, sampling uniformly over 𝕐\H𝑛 could be achieved using
an accept-reject method [13]. However, when the dimension of 𝕐 is
high, 𝕐\H𝑛 will probably have a small volume with respect to that of
𝕐. In this case, the acceptance rate of an accept–reject method
becomes small and the cost of generating a uniform sample on 𝕐\H𝑛
becomes prohibitive.

In this work, we use a variant of a technique called subset
simulation[11,14]. Given a set of particles 𝒴𝑛 = 𝑦𝑛,𝑘 1≤𝑘≤𝑚
uniformly distributed on 𝕐\H𝑛, one obtains a sample 𝒴𝑛+1 uniformly
distributed over 𝕐\H𝑛+1 using the following Remove-Resample-
Move procedure:

1) Remove particles 𝑦𝑛,𝑘 ∈ 𝒴𝑛 that are not in 𝕐\H𝑛+1

2) Replicate randomly the surviving particles until the population
size is 𝑚 again

3) Move particles using a Metropolis-Hastings algorithm with
invariant density 𝟙𝕐\H𝑛+1

This procedure is illustrated in the illustration panel.

Criterion optimization

The optimization of the criterion is also a difficult problem because
the EI criterion is known to be highly multi-modal and hard to
optimize. Our proposal is to conduct the optimization on a restrained
set of good candidates provided at each iteration by a Sequential
Monte Carlo approach in the spirit of [1,6]. This enables us to use
results from past iterations to save computational time and converge
hopefully to higher precisions.

Let 𝒳𝑛 = 𝑥𝑛,𝑘 , 𝑤𝑛,𝑘 1≤𝑘≤𝑚
be a cloud of weighted particles

distributed according to 𝜋𝑛 𝑥 ∝ ℙ𝑛 𝜉 𝑥 ∈ 𝕐\H𝑛 (this is actually
the probability of improvement). When a new sample is observed,
the incremental weights of the particles can be updated to fit the
new density:

 𝑤𝑘,𝑛+1 =
𝜋𝑛+1 𝑥𝑛,𝑘

𝜋𝑛 𝑥𝑛,𝑘
 

𝑘=1

𝑚
𝜋𝑛+1 𝑥𝑛,𝑘

𝜋𝑛 𝑥𝑛,𝑘

−1

The incremental weights can be used to resample the particles in the
regions of high density for 𝜋𝑛+1 . Then a Metropolis-Hastings
algorithm with invariant density 𝜋𝑛+1 is used to mix the particles.
Below is a summary of the proposed method [7]:

1) Reweight particles using the incremental weights

2) Resample with a residual resampling scheme

3) Move the new particles with a metropolis Hastings algorithm

In practice, the probability of improvement can't be calculated
analytically in the general case. However, the posterior density of
𝜉 𝑥 is Gaussian and it can be simulated empirically. If 𝑧𝑘 1≤𝑘≤𝑁are
𝑁 simulations of 𝜉 𝑥 , an estimator of ℙ𝑛 𝜉 𝑥 ∈ 𝕐\H𝑛 is the
following counting measure:

ℙ𝑛 𝜉 𝑥 ∈ 𝕐\H𝑛 ≈  

𝑘=1

𝑁

𝟙𝕐\H𝑛
𝑧𝑘

The optimization method is illustrated in the illustration panel.


