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Convex Liftings: Theory and Control Applications
N. A. Nguyen1, M. Gulan2, S. Olaru3, P. Rodriguez-Ayerbe3

Abstract—This paper presents the so-called convex lifting
concept which will be proven to enable considerable imple-
mentation benefits for the class of piecewise affine controllers.
Accordingly, two different algorithms to construct a convex lifting
for a given polyhedral/polytopic partition will be presented.
These two algorithms rely on either the vertex or the halfspace
representations of the related polyhedra. Also, we introduce an
algorithm to refine a polyhedral partition, which does not admit
a convex lifting, into a convexly liftable one. Furthermore, two
different schemes will be put forward to significantly reduce both
the memory footprint and the runtime complexity which play a
key role in implementation of piecewise affine controllers. Finally,
these results will be illustrated via a numerical example.

Index Terms—Convex lifting, model predictive control, explicit
solutions, parametric programming.

I. MOTIVATION

Explicit model predictive control (MPC) has received sig-
nificant attention in control community due to its relevance
for rather small-dimensional systems [9]. However, even if
controllers are explicitly obtained, there exist major problems
in terms of implementation once the number of regions in the
state-space partition becomes large. In particular, they require
storing all the regions at the hardware level, making their
implementation, namely on embedded computing platforms,
difficult due to their limited memory storage and computa-
tional performance.

Different efficient implementation algorithms have been put
forward [20], [21], however the requirement of substantial
memory for storing the given partition is inevitable. Another
contribution about efficient storage strategy has been presented
in [6]. This proposal can avoid storing the state-space parti-
tion, however the point-location problem, determining which
region the current state belongs to, becomes more demanding,
see among the other point-location algorithms [7], [8], [35].
Therefore, it is necessary to investigate other implementation
approaches for this class of controllers which can avoid storing
the state-space partition and possibly facilitate the point-
location problem. This work presents a convex lifting concept
which allows for efficient piecewise affine (PWA) controllers’
implementation.

For ease of presentation, let us start with some special cases
of parametric linear programming problem where the optimal
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cost function presents an interesting property. To illustrate
these, consider a linear MPC problem with respect to a linear
cost function. Such a problem can be easily transformed into
a parametric linear programming problem as follows:

u∗(x) = arg min
u
CTu subject to Gu ≤W + Ex. (1)

It has been shown through Theorems IV-3 and IV-4 in [15] that
CTu∗(x) is a convex, continuous, PWA function defined over
a polyhedral partition {Xi}i∈IN , where IN = {1, 2, . . . , N} .
Let us denote the optimal cost function and optimal solution
of (1) as follows:

CTu∗(x) = aTi x+ bi for x ∈ Xi,
u∗(x) = Hix+Gi for x ∈ Xi.

(2)

Since CTu∗(x) is also a convex function, this optimal cost
function can be alternatively written in the following form:

CTu∗(x) = max
j∈IN

(aTj x+ bj). (3)

Accordingly, as advocated in [6], if the optimal solution to
the parametric linear programming problem (1) is unique,
then implementation of the optimal control law u∗(x) can be
carried out according to Algorithm 1.

Algorithm 1 Efficient implementation of PWA controllers

1: Store (Hi, Gi) and (ai, bi)
2: At each sampling time, measure the state x
3: Find index i ∈ IN such that:

aTi x+ bi = max
j∈IN

(aTj x+ bj).

4: Evaluate controller u∗(x) = Hix+Gi.
5: Return to step 2.

Significant advantages of this implementation are to avoid
storing the state-space partition and facilitate the point-location
problem. However, as emphasized above, this implementation
only holds if the optimal solution to (1) is unique, because
in this case for any pair of different regions (Xi,Xj), their
optimal cost function satisfies (ai, bi) 6= (aj , bj). Note also
that in case the uniqueness of the optimal solution to (1) is
fulfilled, the optimal cost function of the parametric linear
programming problem (1) is, from a geometrical point of view,
nothing other than a convex lifting associated with the state-
space partition {Xi}i∈IN (this will be formally proven later in
Theorem II.7), since a convex lifting is defined as a convex,
continuous, piecewise affine function defined over a polyhedral
partition such that any pair of different regions are lifted onto
two distinct hyperplanes. Otherwise, so far, in case optimal
solution to (1) is not unique or the state-space partition resulted
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from a linear MPC problem with respect to a quadratic cost
function, this implementation is no longer applicable, even if
the state-space partition admits a convex lifting. Motivated by
this limitation, control theory related to the PWA control laws
lacks:
• algorithms to verify whether the given state-space parti-

tion admits convex liftings,
• algorithms to construct convex liftings for the given state-

space partition if they exist,
• algorithms to refine a partition, which does not admit

a convex lifting (henceforth referred to as a convexly
non-liftable partition), into one admitting a convex lifting
(convexly liftable partition).

Accordingly, if the algorithms above are available, then Algo-
rithm 1 will be directly applicable for implementation of PWA
controllers obtained from both parametric linear and quadratic
programming problems. This would bring a significant interest
and allow the piecewise affine control laws to be implemented
on embedded platforms with low computational performance
and memory storage. In this paper, all these problems will be
addressed.

II. PRELIMINARIES

R,R+,N>0 denote the field of real numbers, the set of non-
negative real numbers and the positive integer set, respectively.

Given an arbitrary set S, conv(S) denotes the convex hull
of S; aff(S) denotes the affine hull of S. Also, dim(S) stands
for the dimension of aff(S). If S is a full-dimensional set, then
int(S) denotes its interior. Given a set S ⊆ Rd and a subspace
S of Rd, then Proj SS denotes the orthogonal projection of S
onto the space S.

A polyhedron is defined as the intersection of finitely
many closed halfspaces. A polytope is defined as a bounded
polyhedron. Given a polyhedron S, we use V(S) to denote
the set of its vertices and R(S) denotes the set of its extreme
rays. Further, if S ⊆ Rd is a full-dimensional polyhedron, a
face of S is the intersection of S and one of its supporting
hyperplanes. k−face represents a face of dimension k. A
0−face is called a vertex, an 1−face is called an edge, a
(d − 1)−face is called a facet. Also, F(S) denotes the set
of all facets of the polyhedron S.

Given two sets S1, S2, we use S1\S2 to denote the following
set: S1\S2 := {x : x ∈ S1, x /∈ S2} .

Let us recall also some useful definitions.

Definition II.1 A collection of N ∈ N>0 full-dimensional
polyhedra Xi ⊂ Rd, denoted by {Xi}i∈IN , is called a
polyhedral partition of a polyhedron X ⊆ Rd if:

1) X =
⋃
i∈IN Xi,

2) int(Xi)
⋂

int(Xj) = ∅ with i 6= j, (i, j) ∈ I2N ,
(Xi,Xj) are called neighbors or adjacent if (i, j) ∈ I2N , i 6= j
and dim(Xi ∩ Xj) = d − 1. Also, if X is a polytope then
{Xi}i∈IN is called polytopic partition.

In case X is not a polyhedron, {Xi}i∈IN is still called a
polyhedral/polytopic partition but of a nonconvex polyhedral
set.

The definition of a cell complex was presented by Grünbaum
in [16]. For simplicity, a cell complex should be hereafter
understood as a polyhedral partition whose face-to-face prop-
erty is fulfilled, i.e., for any pair of regions, the intersection
of faces is either empty or a common face. Also, if X is
a polyhedron, then a cell complex of X is understood as a
polyhedral partition whose facet-to-facet property is satisfied,
meaning any pair of neighboring regions share a common
facet. For illustration, the polytopic partition in Fig.1 is a cell
complex.
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Fig. 1: A cell complex of a polytope in R2.

Definition II.2 For a given polyhedral partition {Xi}i∈IN of
a polyhedron X ⊆ Rd, a piecewise affine lifting is described
by a function z : X → R with:

z(x) = aTi x+ bi for any x ∈ Xi, (4)

and ai ∈ Rd, bi ∈ R, ∀i ∈ IN .

Definition II.3 Given a polyhedral partition {Xi}i∈IN of a
polyhedron X ⊆ Rd, a piecewise affine lifting

z(x) = aTi x+ bi for x ∈ Xi,

is called a convex piecewise affine lifting if the following
conditions hold true:
• z(x) is continuous over X ,
• for each i ∈ IN , z(x) > aTj x+ bj for all x ∈ Xi\Xj and

all j 6= i, j ∈ IN .

The second condition in the above definition implies that z(x)
is a convex function defined over X . Moreover, the strict
inequalities ensure that any pair of neighboring regions are
lifted onto two distinct hyperplanes. For ease of presentation,
a slight abuse of notation is used henceforth: a convex lifting
is understood as a convex piecewise affine lifting.

From the above definition, if a polyhedral partition
{Xi}i∈IN admits a convex lifting, then it has to be a cell
complex. This observation is stated via the following propo-
sition.
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Proposition II.4 A polyhedral partition of a polyhedron,
which admits a convex lifting, is a cell complex.

Proof: Suppose the given polyhedral partition {Xi}i∈IN
of a polyhedron X ⊆ Rd, which admits a convex lifting, is
not a cell complex. Let z(x) = aTi x + bi for x ∈ Xi denote
this convex lifting of {Xi}i∈IN . Then there exists a pair of
neighboring regions, denoted by Xi,Xj , whose facet-to-facet
property is not fulfilled.

Following the definition of convex liftings, the hyperplane
denoted by H0, containing Xi ∩ Xj , can be described by

H0 =
{
x ∈ Rd : aTi x+ bi = aTj x+ bj

}
.

Also, due to the violation of the facet-to-facet property, there
exists a point, denoted by x0, such that x0 ∈ H0 ∩ Xi but
x0 /∈ Xj . x0 ∈ H0 implies

aTi x0 + bi = aTj x0 + bj . (5)

On the other hand, x0 ∈ Xi, x0 /∈ Xj lead to

aTi x0 + bi > aTj x0 + bj . (6)

The inclusions (5) and (6) are clearly contradictory. Therefore,
the partition {Xi}i∈IN has to be a cell complex.
According to Proposition II.4, a convex lifting is always
defined over a cell complex. However, the cell complex
characterization of {Xi}i∈IN is a necessary condition for the
existence of a convex lifting, but not a sufficient one.

Remark II.5 Note also that Proposition II.4 does not neces-
sarily restrict {Xi}i∈IN to polyhedral partition of a polyhe-
dron. In other words, a polyhedral partition of a suitable set
X ⊆ Rd, which admits a convex lifting, should also be a cell
complex.

Definition II.6 A given cell complex {Xi}i∈IN in Rd has
an affinely equivalent polyhedron if there exists a polyhedron
X̃ ⊂ Rd+1 such that for each i ∈ IN :

1) ∃Fi ∈ F(X̃ ) satisfying: ProjRd Fi = Xi,
2) if z(x) = min

z
z s.t.

[
xT z

]T ∈ X̃ , then
[
x
z(x)

]
∈ Fi for

x ∈ Xi.

An illustration can be found in Fig.2 where a cell complex in
R consists of the multicolored segments along the horizontal
axis. One of its affinely equivalent polyhedra in R2 is the pink
shaded region. Moreover, the lower facets of this polytope are
an illustration of the facets Fi appearing in Definition II.6.
Notice that given a polyhedron X̃ ⊂ Rd+1, if z denotes the
last coordinate of X̃ such that

[
xT z

]T ∈ X̃ , then the opti-
mal solution to the following parametric linear programming
problem:

z∗(x) = min
z
z subject to

[
xT z

]T ∈ X̃ . (7)

is nothing other than a convex lifting for the cell complex
associated with this optimal solution. This observation will be
proven in the sequel.

First, consider the parametric linear programming problem
(1) and its optimal solution (2). We will prove that if the
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Fig. 2: An illustration of an affinely equivalent polyhedron.

optimal solution to (1) is unique, then the optimal cost function
of (1) is a convex lifting for the polyhedral partition associated
with the optimal solution (2).

Theorem II.7 If the optimal solution to the parametric linear
programming problem (1) is unique, then the optimal cost
function CTu∗(x) is a convex lifting for the polyhedral par-
tition associated with u∗(x).

Proof: According to Theorems IV-3 and IV-4 in [15],
CTu∗(x) is a convex and continuous piecewise affine func-
tion defined over the polyhedral partition {Xi}i∈IN , associ-
ated with the optimal solution u∗(x). Accordingly, to prove
CTu∗(x) is a convex lifting for {Xi}i∈IN , it suffices to show
that for any pair of different regions (Xi,Xj),

(CTHi, C
TGi) 6= (CTHj , C

TGj).

Suppose the converse situation happens, i.e., there exist two
different regions (Xi,Xj), i 6= j, (i, j) ∈ I2N such that

(Hi, Gi) 6= (Hj , Gj), (CTHi, C
TGi) = (CTHj , C

TGj).

Consider x1 ∈ int(Xi), x2 ∈ Xj and a scalar α ∈ [0, 1] . Due
to the convexity of CTu∗(x), we can see that

CTu∗(αx1 + (1− α)x2)

≤ αCT (Hix1 +Gi) + (1− α)CT (Hjx2 +Gj).
(8)

If we choose α close enough to 1 such that αx1+(1−α)x2 ∈
Xi, then

CTu∗(αx1 + (1− α)x2) = CT (Hi(αx1 + (1− α)x2) +Gi).
(9)

Note also that according to the assumption (CTHi, C
TGi) =

(CTHj , C
TGj), it follows that

αCT (Hix1 +Gi) + (1− α)CT (Hjx2 +Gj)

= CTHi(αx1 + (1− α)x2) + CTGi.
(10)

Also, since Hix1 +Gi, Hjx2 +Gj satisfy the constraint set in
(1), so does α(Hix1 +Gi) + (1−α)(Hjx2 +Gj). According
to (8), (9), (10), α(Hix1+Gi)+(1−α)(Hjx2+Gj) is also an
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optimal solution to (1). Due to the uniqueness of the optimal
solution to (1), we obtain the following:

Hi(αx1+(1−α)x2)+Gi = α(Hix1+Gi)+(1−α)(Hjx2+Gj),

leading to
Hix2 +Gi = Hjx2 +Gj . (11)

It is worth emphasizing that (11) holds true for all x2 ∈ Xj .
Since (Hi, Gi) 6= (Hj , Gj), the set of x ∈ Rd satisfying Hix+
Gi = Hjx+Gj represents a polyhedron of dimension lower
than d, while Xj is a full-dimensional polyhedron in Rd. This
is clearly contradictory. Therefore, the initial hypothesis is not
true. In other words, if the optimal solution to (1) is unique,
the optimal cost function CTu∗(x) describes a convex lifting
for the associated polyhedral partition {Xi}i∈IN .
Now, let us come back to prove that the optimal solution to
(7) stands for a convex lifting of the associated polyhedral
partition.

Lemma II.8 Given the parametric linear programming prob-
lem (7), if {Xi}i∈IN denotes the polyhedral partition associ-
ated with z∗(x), then z∗(x) is a convex lifting for {Xi}i∈IN .

Proof: First, we will prove that the optimal solution to (7)
is unique. Indeed, suppose there exist two optimal solutions
to (7), denoted by z∗1(x) and z∗2(x), respectively. Without loss
of generality, suppose z∗1(x), z∗2(x) are defined on the same
polyhedral partition {Xi}i∈IN . Consider a region Xi in this
polyhedral partition and denote these optimal solutions over
Xi as follows:

z∗1(x) = (a
(1)
i )Tx+ b

(1)
i for x ∈ Xi,

z∗2(x) = (a
(2)
i )Tx+ b

(2)
i for x ∈ Xi.

Since z∗1(x), z∗2(x) represent optimal cost function of (7), we
thus obtain:

(a
(1)
i )Tx+ b

(1)
i = (a

(2)
i )Tx+ b

(2)
i . (12)

Note that (12) holds for all x ∈ Xi, as a full-dimensional poly-
hedron. Accordingly, this case holds true only if (a

(1)
i , b

(1)
i ) =

(a
(2)
i , b

(2)
i ). In other words, the optimal solution to (7) is

unique. According to Theorem II.7, the optimal cost function
of (7) stands for a convex lifting of {Xi}i∈IN .

III. CONSTRUCTIONS OF CONVEX LIFTINGS

A. Existing results on convex liftings

The definition of a convex lifting has been presented earlier.
In control theory, so far, convex liftings have been used
to solve the inverse parametric linear/quadratic programming
problem [24]–[31].

Many necessary and sufficient conditions for the existence
of convex liftings for cell complexes were investigated in
different studies [2]–[4], [12], [13], [23], [32], [34]. It is shown
in [32] that there exists a convex lifting for a cell complex in
Rd if and only if one of the following holds:
• it admits a strictly positive d−stress;
• it is an additively weighted Dirichlet-Voronoi diagram;
• it is an additively weighted Delaunay decomposition;

• it is the section of a (d+1)-dimensional Dirichlet-Voronoi
partition1.

Interested readers are referred to [24] for details of the above
notation. Note that the above results cover the general class of
cell complexes in Rd. Unfortunately, despite the mathematical
completeness of the existing results, the verification of these
conditions are expensive. Furthermore, they do not provide
any hint for the construction of a convex lifting. On the other
hand, applications in control theory need specific algorithms
to verify the convex liftability of the cell complexes and
construct their convex liftings whenever these exist. These
elements are detailed in the coming subsections. We remark
that the construction of convex liftings for some special cases,
e.g., Voronoi diagrams and Delaunay triangulations and their
recognition were already investigated in [4], [14], [18].

B. Construction of convex liftings based on the vertex repre-
sentation

In this subsection, the main objective is to present an
algorithm for the construction of a convex lifting for a given
cell complex via linear/quadratic programming. This algorithm
exploits the continuity and the convexity of a convex lifting
for two neighboring regions. This construction is limited to
polytopic partitions since it hinges on suitable constraints
imposed at the vertices of this partition. Extension of this
construction to polyhedral partitions of unbounded polyhedra
can be found in [26].

Given a cell complex {Xi}i∈IN of a polytope X ⊂ Rd,
X̃ ⊂ Rd+1 denotes an affinely equivalent polyhedron of
{Xi}i∈IN . For each region Xi, i ∈ IN , the hyperplane,
containing the lower facet of X̃ whose orthogonal projection
onto Rd coincides with Xi, has the following form:

Hi =

{[
x

zi(x)

]
∈ Rd+1 : zi(x) = aTi x+ bi

}
, (13)

for suitable ai ∈ Rd, bi ∈ R.
Let (i, j) ∈ I2N be an index pair such that (Xi,Xj)

are neighbors. The continuity conditions between them are
described as follows:

∀x ∈ Xi ∩ Xj , zi(x) = zj(x), i 6= j. (14)

In addition, the convexity conditions between them can be
handled as:

∀x ∈ Xi\Xj , zi(x) > zj(x). (15)

The conditions (14) and (15) represent the fundamental prop-
erties of a convex lifting, therefore they can be used for its
construction by considering (ai, bi) as variables. Algorithm 2
summarizes such a constructive procedure which allows for
the computation of the gains (ai, bi), ∀i ∈ IN of a convex
lifting for the given polytopic partition {Xi}i∈IN .

Now, we step by step prove that the feasibility of the
optimization problem (18) serves as another necessary and

1Other related results can be found in Konstantin Rybnikov’s thesis [32],
equally in [2]–[4]. Note that an additively weighted Dirichlet-Voronoi diagram
is in fact a generalization of a power diagram.
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Algorithm 2 Construction of a convex lifting for a given cell
complex {Xi}i∈IN of a polytope X ⊂ Rd.
Input: {Xi}i∈IN and a given constant c > 0.
Output: (ai, bi), ∀i ∈ IN .

1: Register all pairs of neighboring regions in {Xi}i∈IN .
2: For each pair of neighboring regions (Xi, Xj), (i, j) ∈
I2N :
• add continuity conditions ∀v ∈ V(Xi ∩ Xj):

aTi v + bi = aTj v + bj ; (16)

• add convexity conditions ∀u ∈ V(Xi), u /∈ V(Xi ∩
Xj):

aTi u+ bi ≥ aTj u+ bj + c. (17)

3: Solve the following convex optimization problem by min-
imizing a chosen cost function, e.g.,

min
ai, bi

N∑
i=1

(aTi ai + bTi bi) subject to (16), (17). (18)

sufficient condition for the convex liftability of the given
polytopic partition of a polytope.

Proposition III.1 If problem (18) is feasible, then function

z(x) = aTi x+ bi for x ∈ Xi
is a convex lifting over the given cell complex {Xi}i∈IN .

Proof: If the optimization problem (18) is feasible, then
the continuity conditions of function z(x) and the convexity
conditions of z(x) are all fulfilled. Accordingly, for two
neighboring regions (Xi,Xj), it follows that:

aTi v + bi = aTj v + bj for all v ∈ V(Xi ∩ Xj),
aTi u+ bi ≥ aTj u+ bj + c for all u ∈ V(Xi)\V(Xj).

Therefore, any point x =
∑
v∈V(Xi∩Xj)

α(v)v with∑
v∈V(Xi∩Xj)

α(v) = 1 and α(v) ∈ R, satisfies

aTi x+ bi = aTj x+ bj . (19)

In other words, any point x ∈ aff(Xi ∩ Xj) satisfies
(19). Furthermore, any point x =

∑
v∈V(Xi)

α(v)v with∑
v∈V(Xi)

α(v) = 1, α(v) ∈ R,

aTi x+ bi > aTj x+ bj for α(v) ≥ 0 ∀v ∈ V(Xi)\V(Xj)
{α(v) : v ∈ V(Xi)\V(Xj)} 6= {0 : v ∈ V(Xi)\V(Xj)} .

(20)

Strictly speaking, any point x in the halfspace containing Xi
but x /∈ aff(Xi ∩ Xj), satisfies (20).

Similarly, the same relations (19) and (20) hold for the other
pairs of neighboring regions. This leads to the continuity of
z(x) and for each i ∈ IN :

aTi x+ bi > aTj x+ bj for all x ∈ Xi\Xj , ∀j 6= i, j ∈ IN .

Therefore, function z(x) = aTi x+ bi for x ∈ Xi is a convex
lifting defined over the cell complex {Xi}i∈IN , as defined in
Definition II.3.

Note that the cost function in (18) is chosen to avoid the
unboundedness of optimal solution. Other choices of this
cost function are possible as long as the boundedness of
optimal solution is guaranteed. Also, as seen in (17), the
strict inequality (15) can be easily transformed into inequality
constraints in an optimization problem by adding a positive
constant c on the right-hand side of (17), thus > can be
replaced with ≥ . Theoretically, if the given cell complex is
convexly liftable, then any positive value of c does not have
any effect on the feasibility of the optimization problem (18).
This observation is proven in the sequel.

Proposition III.2 Given a cell complex {Xi}i∈IN of a poly-
hedron X ⊆ Rd, if z(x) = aTi x+bi for x ∈ Xi is a convex lift-
ing for this cell complex, then so is z̃(x) = (αai)

Tx+(αbi)+β
for x ∈ Xi, for any α > 0, β ∈ R.

Proof: In fact, if z(x) represents a convex lifting for the
given cell complex {Xi}i∈IN , according to the definition of a
convex lifting, for each pair of neighboring regions (Xi,Xj),
it follows that:

aTi x+ bi = aTj x+ bj for x ∈ Xi ∩ Xj
aTi x+ bi > aTj x+ bj for x ∈ Xi\Xj .

(21)

Accordingly, for any α > 0, β ∈ R, (21) amounts to:

(αai)
Tx+ αbi + β = (αaj)

Tx+ αbj + β for x ∈ Xi ∩ Xj ,
(αai)

Tx+ αbi + β > (αaj)
Tx+ αbj + β for x ∈ Xi\Xj .

(22)

Inclusion (22) means that z̃(x) = (αai)
Tx + (αbi) + β for

x ∈ Xi is also a convex lifting for the given cell complex for
any α > 0, β ∈ R.
We now prove that the feasibility of the optimization problem
(18) serves as a necessary and sufficient condition for the
convex liftability of the given polytopic partition {Xi}i∈IN
of polytopes.

Theorem III.3 The given polytopic partition {Xi}i∈IN of a
polytope X , is convexly liftable if and only if the optimization
problem (18) is feasible for any constant c > 0.

Proof: ←− This inclusion directly follows according to
Proposition III.1.
−→ If the given polytopic partition, denoted by {Xi}i∈IN ,
is convexly liftable, then there exists a constant c̃ > 0 and a
function z(x) = aTi x + bi for x ∈ Xi such that for any pair
of neighboring regions (Xi,Xj), the following holds:

aTi v + bi = aTj v + bj for v ∈ V(Xi ∩ Xj)
aTi u+ bi ≥ aTj u+ bj + c̃ for u ∈ V(Xi)\V(Xj).

(23)

According to Proposition III.2, if we choose α = c/c̃ > 0, β =
0, (23) is equivalent to:

(αai)
T v + (αbi) = (αaj)

T v + (αbj) for v ∈ V(Xi ∩ Xj)
(αai)

Tu+ (αbi) ≥ (αaj)
Tu+ (αbj) + c

for u ∈ V(Xi)\V(Xj).
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In other words, (αai, αbi) for all i ∈ IN also make the con-
straint set (16) and (17) feasible. Therefore, the optimization
problem (18) is feasible with any given constant c > 0.

Remark III.4 Note that Theorem III.3 holds true not only for
polytopic partitions of polytopes but also for cell complexes
of nonconvex polyhedral sets in Rd.

Remark III.5 According to Proposition II.4, if a polyhedral
partition is convexly liftable, then it should be a cell complex.
Therefore, the optimization problem (18) is infeasible for the
polytopic partitions of polytopes whose facet-to-facet property
is not fulfilled.

To illustrate Algorithm 2, a cell complex of a polytope is
presented in Fig.3. One of its convex liftings is also presented
therein. Further, Fig.4 depicts a cell complex of a nonconvex
set which is the underlying partition. One of its convex liftings
is also illustrated above.

−2
−1

0
1

2

−2
-1

0
1

2
0

0.05

0.1

0.15

Fig. 3: A cell complex of a polytope and its convex lifting
resulted from Algorithm 2.
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0.15

Fig. 4: A cell complex of a nonconvex set and its convex
lifting resulted from Algorithm 2.

C. Construction of convex liftings based on the halfspace
representation

Recall that Algorithm 2 relies on the vertex representation
of related polytopes. It is worth recalling that the pivoting
algorithm, by Avis and Fukuda in [5], can carry out the vertex
enumeration in time O(ndv), where d denotes the dimension
of the given polytope, v represents the number of vertices
of this polytope and n denotes the number of facets of this
polytope. Note however that the vertex enumeration in many
cases is not necessary, particularly in control theory where
the implementation of state-space partition mostly hinges on
the halfspace representation. Moreover, the construction of
convex liftings based on the vertex representation is limited to
polytopic partitions, therefore, this construction for partitions
of unbounded polyhedra may cause computational complica-
tions, see [26]. Motivated by these limitations, this subsection
presents an approach to construct convex liftings based on the
halfspace representation.

Given a convexly liftable cell complex {Xi}i∈IN of a
polyhedron X ⊆ Rd, as denoted in Definition II.3, we use

z(x) = aTi x+ bi for x ∈ Xi, (24)

to denote a convex lifting for {Xi}i∈IN . As a convex lifting,
z(x) has to fulfill the continuity and convexity conditions.
More precisely, for any pair of neighboring regions (Xi, Xj),
the corresponding affine functions aTi x + bi and aTj x + bj
have to satisfy:

aTi x+ bi ≥ aTj x+ bj for all x ∈ Xi, (25a)

aTj x+ bj ≥ aTi x+ bi for all x ∈ Xj . (25b)

It can be easily observed that according to (25a) and (25b):

aTi x+ bi = aTj x+ bj for all x ∈ Xi ∩ Xj , (26)

implies the continuity of z(x) at any point x ∈ Xi ∩ Xj .
Furthermore, given the halfspace representation of region Xi,
i.e., Xi =

{
x ∈ Rd : Hix ≤ Ki

}
, (25a) holding for all x ∈

Xi, leads to:

Xi =
{
x ∈ Rd : Hix ≤ Ki

}
⊆ P =

{
x ∈ Rd : (aj − ai)Tx ≤ bi − bj

}
.

(27)

According to the extended Farkas lemma [33], (27) leads to
the existence of a suitable vector λij such that:

λij ≥ 0, λijHi = (aj − ai)T , λijKi ≤ bi − bj . (28)

Similarly, given the halfspace representation of region Xj , i.e.,
Xj =

{
x ∈ Rd : Hjx ≤ Kj

}
, (25b) leads to the existence of

a suitable vector λji such that

λji ≥ 0, λjiHj = (ai − aj)T , λjiKj ≤ bj − bi. (29)

It is worth emphasizing that the constraints in (25) cannot
guarantee that the affine functions corresponding to regions
Xi and Xj are distinct, i.e., (ai, bi) 6= (aj , bj). Therefore, in
order to ensure this property of a convex lifting, one needs to
impose additional constraints. A simple way to avoid nonlinear
constraints is to require:

aTi x0 + bi ≥ aTj x0 + bj + c, (30)
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for a given scalar constant c > 0 and x0 ∈ int(Xi). Constraint
(30) is meaningful to guarantee (ai, bi) 6= (aj , bj). In fact,
if the converse situation happens, constraint (30) will be
infeasible. Also, x0 can be freely chosen as long as it lies
in the interior of Xi; the Chebyshev center is also a possible
candidate. Recall that Chebyshev center of a polyhedron X is
the center of the largest inscribed ball of X . More precisely,
finding Chebyshev center xc of polyhedron X amounts to
solving the following problem

max
xc,r

r s.t.

xc ∈ X ,
{
x ∈ Rd : (x− xc)T (x− xc) ≤ r

}
⊆ X .

Note also that this problem can be easily transformed into a
linear programming problem, see [11].

For completeness, a procedure to construct convex liftings
based on the halfspace representation for a given convexly
liftable cell complex is summarized in Algorithm 3.

Algorithm 3 Construction of a convex lifting for a given
convexly liftable cell complex {Xi}i∈IN of a polyhedron
X ⊆ Rd

Input: {Xi}i∈IN of a polyhedron X ⊆ Rd, the halfspace
representation of Xi =

{
x ∈ Rd : Hix ≤ Ki

}
and a scalar

constant c > 0.
Output: gains ai, bi.

1: Find Chebyshev center for each region Xi, denoted by xi.
2: Register all pairs of neighboring regions in {Xi}i∈IN .
3: For each pair of neighboring regions (Xi, Xj), (i, j) ∈
I2N :
• add constraints:

λij ≥ 0, λijHi = (aj−ai)T , λijKi ≤ bi−bj ; (31)

• add constraints:

λji ≥ 0, λjiHj = (ai−aj)T , λjiKj ≤ bj−bi; (32)

• add constraint:

aTi xi + bi ≥ aTj xi + bj + c. (33)

4: Solve the following convex optimization problem by min-
imizing a chosen cost function, e.g.,

min
ai,bi,λij ,λji

N∑
i=1

(aTi ai + bTi bi) subject to (31), (32), (33).

(34)

Remark III.6 Note that Chebyshev center of a polyhedron
may not always be unique or may lie at infinity. As emphasized
above, other candidate of this point is possible as long as it
lies in the interior of Xi.

The following results present important formal properties of
the construction resulting from Algorithm 3.

Proposition III.7 If the optimization problem (34) is feasible,
then the function z(x) = aTi x + bi for x ∈ Xi represents a
convex lifting for cell complex {Xi}i∈IN .

Proof: If the optimization problem (34) is feasible, then
the constraints (31), (32) and (33) are all feasible. According
to the extended Farkas lemma [33], constraint (31) leads to:

aTi x+ bi ≥ aTj x+ bj for all x ∈ Xi. (35)

Similarly, it follows from constraint (32) that

aTj x+ bj ≥ aTi x+ bi for all x ∈ Xj . (36)

According to (35) and (36), the continuity of z(x) at the
common boundary of Xi and Xj is verified by

aTi x+ bi = aTj x+ bj for all x ∈ Xi ∩ Xj .

This leads to the following inclusions for the vertices and the
extreme rays of Xi ∩ Xj :

aTi v + bi = aTj v + bj for all v ∈ V(Xi ∩ Xj),
aTi r = aTj r for all r ∈ R(Xi ∩ Xj).

(37)

Moreover, constraint (33) implies

aTi xi + bi ≥ aTj xi + bj + c > aTj xi + bj . (38)

From (37) and (38), any point x, described in the following
form:

x = γxi +
∑

v∈V(Xi∩Xj)

α(v)v +
∑

r∈R(Xi∩Xj)

µ(r)r

with α(v), µ(r) ∈ R, γ +
∑
v∈V(Xi∩Xj)

α(v) = 1 satisfies:

aTi x+ bi > aTj x+ bj for all γ > 0, (39a)

aTi x+ bi = aTj x+ bj for γ = 0. (39b)

In other words, any point x, in the halfspace containing Xi
but not in aff(Xi ∩ Xj), satisfies (39a). Otherwise, any point
x ∈ aff(Xi ∩ Xj), satisfies (39b).

The same inclusion holds for the other pairs of neighboring
regions, leading to the fact that:

aTi x+ bi > aTj x+ bj for all x ∈ Xi\Xj and j 6= i. (40)

Therefore, function z(x) = aTi x+ bi for x ∈ Xi represents a
convex lifting for {Xi}i∈IN according to Definition II.3.
Similar to Subsection III-B, any value of the given scalar c in
Algorithm 3 does not affect the feasibility of the optimization
problem (34) as long as c > 0.

Theorem III.8 The given cell complex {Xi}i∈IN of a poly-
hedron X ⊆ Rd, is convexly liftable if and only if the
optimization problem (34) is feasible for any constant c > 0.

Proof: ←− This inclusion directly follows according to
Proposition III.7.
−→ If the given cell complex {Xi}i∈IN is convexly liftable,
then there exists a function z(x) = aTi x+ bi for x ∈ Xi such
that for any pair of neighboring regions (Xi,Xj), the following
holds:

aTi x+ bi ≥ aTj x+ bj for x ∈ Xi
aTj x+ bj ≥ aTi x+ bi for x ∈ Xj .

(41)
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According to the extended Farkas lemma, inclusion (41) leads
to the existence of two suitable vectors λij , λji such that:

λij ≥ 0, λijHi + (ai − aj)T = 0, λijKi ≤ bi − bj , (42a)

λji ≥ 0, λjiHj + (aj − ai)T = 0, λjiKj ≤ bj − bi, (42b)

where Xi =
{
x ∈ Rd : Hix ≤ Ki

}
, Xj ={

x ∈ Rd : Hjx ≤ Kj

}
.

Also, since z(x) is a convex lifting for {Xi}i∈IN , there
exists a constant cij > 0 for each pair of neighboring regions
(Xi,Xj) such that

aTi xi + bi ≥ aTj xi + bj + cij , (43)

where xi represents Chebyshev center of Xi. Let c̃ be the
minimal value of cij for the pairs of neighboring regions
(Xi,Xj), i.e.,

c̃ = min
(i,j)∈I2N | dim(Xi∩Xj)=d−1

cij .

Accordingly, for any pair of neighboring regions (Xi,Xj), we
obtain:

aTi xi + bi ≥ aTj xi + bj + c̃.

Choose δ = c/c̃ > 0, it follows that

(δai)
Txi + (δbi) ≥ (δaj)

Txi + (δbj) + c. (44)

According to (42a), (42b) and (44), it can be deduced that
(δai, δbi) for all i ∈ IN make the constraints (31), (32)
and (33) feasible, since δλij , δλji ≥ 0. In other words, the
optimization problem (34) is feasible with any given constant
c > 0.

Remark III.9 Note that according to Theorem III.8, the fea-
sibility of the optimization problem (34) serves as another
necessary and sufficient condition for the convex liftability of
the polyhedral partitions of polyhedra.

Remark III.10 As proved in Proposition II.4, a polyhedral
partition admitting a convex lifting should be a cell complex.
Accordingly, for any polyhedral partitions of polyhedra whose
facet-to-facet property is not fulfilled, the optimization prob-
lem (34) is infeasible.

D. Convexly non-liftable partitions

This subsection addresses polyhedral partitions whose con-
vex liftability is not fulfilled. This is usually the case in control
theory, in particular for polyhedral partitions obtained from lin-
ear model predictive control problems with respect to quadratic
cost functions. It is worth emphasizing that rearranging a given
polyhedral partition is allowed. However, any modification of
the initial boundaries of the given polyhedral partition is not
permitted due to the fact that it destroys the original structure
of PWA controller. This may lead to the case where two
different affine control laws are defined over the same region
of state space. Therefore, the problem is formulated as follows:
by preserving the internal boundaries, is it possible to refine
a given polyhedral partition in order to recover the convex
liftability property?

It will be proven that there exists at least one subdivision
which can retrieve the convex liftability for a given polyhedral
partition. The proof will show that the so-called hyperplane
arrangement technique, defined as the decomposition of a
space by a set of hyperplanes, can carry out this subdivision.

Theorem III.11 Given a convexly non-liftable polyhedral
partition {Xi}i∈IN of a polyhedron X ⊆ Rd, there exists
at least one subdivision, preserving the internal boundaries
of this partition, such that the new cell complex is convexly
liftable.

Proof: Let H(Xi) be the set of supporting hyperplanes of
Xi at its facets; also define H(X ) =

⋃
i∈IN H(Xi). We will

show that the decomposition of X by H(X ) leads to a new
cell complex which is convexly liftable. As presented above,
such a decomposition is denoted as hyperplane arrangement.
The convex liftability of such a decomposition can be proven
by returning to the concept of stresses. (Details about stresses
can be found in [24]).

In fact, considering any (d − 2)−face F0 lying in the
interior of X , this (d − 2)−face F0 is the intersection of
finitely many hyperplanes in H(X ). If F (d−1)(F0) denotes
the set of all (d − 1)−faces in the star of F0, then for each
F

(d−1)
i ∈ F (d−1)(F0), there exists a unique F (d−1)

j 6= F
(d−1)
i

and F
(d−1)
j ∈ F (d−1)(F0) such that F (d−1)

i , F
(d−1)
j lie in a

common hyperplane of H(X ) and they have a common facet
F0. Accordingly, it can be seen that the inward unit normal
vectors to the faces F

(d−1)
i , F

(d−1)
j at their common facet

F0, denoted by n(F0, F
(d−1)
i ), n(F0, F

(d−1)
j ), respectively,

satisfy:
n(F0, F

(d−1)
i ) = −n(F0, F

(d−1)
j ).

Thus, a pair of coefficients of strictly positive stresses
s(F

(d−1)
i ), s(F

(d−1)
j ) exists ( e.g. s(F (d−1)

i ) = s(F
(d−1)
j ) =

1) such that:

s(F
(d−1)
i )n(F0, F

(d−1)
i ) + s(F

(d−1)
j )n(F0, F

(d−1)
j ) = 0.

Applying the same argument for all elements of F (d−1)(F0),
one can obtain a strictly positive d−stress such that F0 is in
equilibrium.

Remark III.12 Note that Theorem III.11 states the existence
of a suitable refinement, whereas the proof points to a specific
technique for the refinement. In a broader perspective, for a
given polyhedral partition which does not admit a convex
lifting, there exist multiple practical solutions for suitable
refinements into a convexly liftable cell complex, hyperplane
arrangement is only one of them. An alternative, fitting planar
cell complexes into Voronoi diagrams, can be found in [1].

Return to the hyperplane arrangement technique, an algorithm
to carry out this decomposition is presented in Algorithm 4
for a given polyhedral partition.

To illustrate Algorithm 4, consider the cell complex in Fig.5,
the result is depicted in Fig.6. Again, the convex liftability of
this cell complex can be verified by the feasibility of problem
(18) or (34).
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Algorithm 4 An algorithm to carry out the hyperplane ar-
rangement technique for a given polyhedral partition.
Input: Convexly non-liftable partition Ω = {Xi}i∈IN in Rd.
Output: Convexly liftable cell complex Ω̃ =

{
X̃i
}
i∈I

Ñ

.

1: M = [ ]
2: For i = 1 : N
3: Xi = {x : Hix ≤ Ki} , M = [M ;Hi Ki]
4: End
5: Remove redundant rows of matrix M.
6: For i = 1 : size(M, 1)
7: Ω̃ = ∅
8: For j = 1 : length(Ω)
9: Xj = {x : Hjx ≤ Kj}

10: Y(1) =

{
x :

[
Hj

M(i, 1 : d)

]
x ≤

[
Kj

M(i, d+ 1)

]}
11: Y(2) =

{
x :

[
Hj

−M(i, 1 : d)

]
x ≤

[
Kj

−M(i, d+ 1)

]}
12: If dim(Y(1)) = d & dim(Y(2)) < d then

Ω̃← Ω̃ ∪
{
Y(1)

}
13: Elseif dim(Y(1)) < d & dim(Y(2)) = d then

Ω̃← Ω̃ ∪
{
Y(2)

}
14: Elseif dim(Y(1)) = d & dim(Y(2)) = d then

Ω̃← Ω̃ ∪
{
Y(1), Y(2)

}
15: End
16: End
17: Ω← Ω̃
18: End
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Fig. 5: A convexly non-liftable cell complex in R2.

IV. APPLICATIONS OF CONVEX LIFTINGS IN CONTROL

This section aims to apply convex liftings to facilitate the
implementation of PWA control laws. Note that earlier studies
in this subject can be found in [17], [24]. In control theory,
since the performance of physical systems is always limited,
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Fig. 6: Cell complex resulted from Algorithm 4.

the control signal is usually bounded. Therefore, without
loss of generality, the constraints on current control variable
denoted by u ∈ Rdu , is assumed to be in the following form:

umin ≤ u ≤ umax.

For ease of presentation, we use u(i) to denote the ith com-
ponent of vector u. By an unsaturated region, we denote a
region whose associated control law is not of componentwise
saturation, i.e., u(i)min < u(i) < u

(i)
max for at least one i ∈ Idu .

Furthermore, a saturated region implies a region correspond-
ing to a componentwise saturated control law, i.e., either
u(i) = u

(i)
min or u(i) = u

(i)
max for all i ∈ Idu . Accordingly, given

a state-space partition, the unsaturated partition consists of the
unsaturated regions. Such a partition may not be a partition
of a polyhedron but of a nonconvex set. The developments of
this section are motivated by two following observations:
• the complexity of state-space partitions is mainly due

to the saturation, thus the boundaries between saturated
regions of the same controller can be appropriately mod-
ified;

• in most practical MPC problems, the unsaturated partition
is convexly liftable.

Note that the existence of unsaturated partition is the premise
of works on complexity reduction in explicit MPC controllers
in [20], [21].

For ease of presentation, the following assumptions are
necessary for the next developments.

Assumption IV.1 The control input is a scalar variable, i.e.,
dim(u) = du = 1.

Assumption IV.2 The unsaturated partition is a convexly
liftable polytopic partition.

Assumption IV.3 The state space X is a polytope.

Assumption IV.4 The given PWA control law is continuous.

Assumption IV.1 is not restrictive, since the development
presented in the sequel can be easily extended to multivariable
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cases. Note also that even if the unsaturated partition is not
convexly liftable, one can use Algorithm 4 to split it into a
convexly liftable cell complex. This is meaningful to avoid a
complete hyperplane rearrangement of the initial state-space
partition. Therefore, Assumption IV.2 loses no generality of
the proposed schemes. Also, Assumption IV.3 restricts our
attention to polytopic partitions of the state space. This is not
restrictive, since the construction can be easily extended to
polyhedral partitions. Finally, we are exclusively interested
in implementation of the continuous PWA controllers as
presented in Assumption IV.4.

Given a PWA controller

u(x) = Hix+Gi for x ∈ Xi, (45)

defined over a polytopic partition {Xi}i∈IN of a polytope
X ⊂ Rd satisfying Assumptions IV.1, IV.2 and IV.4, let
Iuns ⊂ IN denote the index set such that {Xi}i∈Iuns rep-
resents the unsaturated partition of {Xi}i∈IN and u(x). Also,
we use `uns(x) to denote a convex lifting for {Xi}i∈Iuns , i.e.,

`uns(x) = (aunsi )Tx+ bunsi for x ∈ Xi, i ∈ Iuns. (46)

Now, in order to use Algorithm 1, we need to construct a
convex lifting, denoted by `(x), which is defined over the
whole X and coincides with `uns(x) over {Xi}i∈Iuns . To
perform this task, two different constructions will be presented
in the sequel; the first one aims to rearrange the saturated
regions to reduce the number of regions and in the meantime
find a suitable convex lifting over the rearranged paritition,
whereas the second one incorporates suitable clippings of
control signal with convex liftings.

A. Construction based on convex liftings for the vertices of
the state space X

The first construction aims to compute an appropriate height
h corresponding to the vertices of X . This height has to
satisfy that the augmented vertices

[
vT `uns(v)

]T
for v ∈⋃

i∈Iuns V(Xi) and
[
vT h

]T
for v ∈ V(X )\

⋃
i∈Iuns V(Xi)

create a convex lifting `(x) over X , as mentioned previously.
This construction is presented in Algorithm 5.

The following lemma represents the most important prop-
erty of `(x) resulted from Algorithm 5.

Lemma IV.5 `(x) resulted from Algorithm 5 satisfies:

`(x) = `uns(x) for all x ∈
⋃

i∈Iuns

Xi.

Proof: Consider any point
[
xT z

]T ∈ Π, defined in (48).
This point can be described as a convex combination of the

Algorithm 5 Construct a convex lifting over X ⊂ Rd, coinci-
dent with `uns(x) over the unsaturated partition {Xi}i∈Iuns .
Input: {Xi}i∈Iuns , `uns(x) defined in (46), X and a given
constant c > 0.
Output: h, `(x).

1: Solve the problem:

min
h
h s.t. h ≥ c+ (aunsi )T v + bunsi , ∀i ∈ Iuns,

for all v ∈ V(X ), v /∈
⋃

i∈Iuns
V(Xi)

(47)

2: Construct the polytope

P1 =

{[
v

`uns(v)

]
: v ∈

⋃
i∈Iuns

V(Xi)

}
⊂ Rd+1,

P2 =

{[
v
h

]
: v ∈ V(X )\

⋃
i∈Iuns

V(Xi)

}
⊂ Rd+1,

Π = conv {P1 ∪ P2}

(48)

3: Solve the following parametric linear programming prob-
lem:

z∗(x) = arg min
z
z subject to

[
xT z

]T ∈ Π. (49)

4: `(x) = z∗(x).

points in P1, P2 as follows:

α(v), β(v) ≥ 0,∑
v∈

⋃
i∈Iuns V(Xi)

α(v) +
∑

v∈V(X )\
⋃

i∈Iuns V(Xi)

β(v) = 1,

[
x
z

]
=

∑
v∈

⋃
i∈Iuns V(Xi)

α(v)

[
v

`uns(v)

]

+
∑

v∈V(X )\
⋃

i∈Iuns V(Xi)

β(v)

[
v
h

]
.

Denote also z(x) = max
j∈Iuns

(aunsj )Tx+bunsj for x ∈ X . Clearly,

z(x) = `uns(x) for x ∈
⋃
i∈Iuns Xi and is known to be a

convex function over X . According to (47), it follows that:∑
v∈

⋃
i∈Iuns V(Xi)

α(v)`uns(v) +
∑

v∈V(X )\
⋃

i∈Iuns V(Xi)

β(v)h

≥
∑

v∈
⋃

i∈Iuns V(Xi)

α(v)z(v)

+
∑

v∈V(X )\
⋃

i∈Iuns V(Xi)

β(v)(c+ z(v))

≥ z(x) +
∑

v∈V(X )\
⋃

i∈Iuns V(Xi)

β(v)c

≥ z(x).

If x ∈ Xi for i ∈ Iuns, then the equality only happens when
β(v) = 0 for v ∈ V(X )\

⋃
i∈Iuns V(Xi). In other words, when
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x ∈
⋃
i∈Iuns Xi the minimal cost function of (49) satisfies

`(x) = z∗(x) = z(x) = `uns(x).
Let {Yj}j∈IM denote the state-space partition associated with
`(x) obtained from Algorithm 5. The following corollary
presents another property of `(x) resulted from Algorithm 5.

Corollary IV.6 `(x) resulted from Algorithm 5, represents a
convex lifting for the polytopic partition {Yj}j∈IM of the state
space X .

Proof: The proof follows as a direct consequence of
Lemma II.8.
According to Lemma IV.5, for each region Xi of the un-
saturated partition {Xi}i∈Iuns , there exists a region Yj of
{Yj}j∈IM such that Yj = Xi. If Imax ⊂ IN (Imin ⊂
IN ) denotes the set of indices such that each region Xj ,
j ∈ Imax (j ∈ Imin) is associated with saturated controller
u(x) = umax (u(x) = umin) for x ∈ Xj . Accordingly,
IN = Iuns ∪ Imax ∪ Imin. Define the following controller,
denoted by f̃pwa(x), associated with {Yj}j∈IM :

f̃pwa(x) =



u(x) if x ∈ Yj s.t. ∃i ∈ Iuns,Yj = Xi
umax if x ∈ Yj s.t. Yj ⊂

⋃
i∈Imax

Xi

umin if x ∈ Yj s.t. Yj ⊂
⋃

i∈Imin

Xi

Note that the new PWA control law f̃pwa(x) is equivalent
to the given one u(x) in the sense that f̃pwa(x) = u(x) for
all x ∈ X . Therefore, it suffices to implement f̃pwa(x) as in
Algorithm 1.

Remark IV.7 In case the given PWA control law u(x) is of
multiple inputs, then implementation of this controller accord-
ing to the construction of convex liftings as in Algorithm 5
should be carried out componentwise. Roughly speaking, the
implementation of u(x) can be wrapped up as follows:
• construct a convex lifting (`uns)(i)(x) for the unsatu-

rated partition, denoted by {Xj}j∈I(i) , of the state-space
partition {Xj}j∈IN (I(i) ⊆ IN ) associated with the ith

component u(i)(x) of the given PWA controller u(x);
• construct an extended convex lifting, denoted by `(i)(x)

defined over X for (`uns)(i)(x) as in Algorithm 5;
• rearrange each component u(i)(x) of the given PWA con-

troller u(x) according to `(i)(x); denote this rearranged
component by ũ(i)(x)

• implement each rearranged component ũ(i)(x) as in Al-
gorithm 1.

Note also that in this multiple-input case, the unsaturated parti-
tions {Xj}j∈I(i) of {Xj}j∈IN associated with the components
u(i)(x) of u(x), may not be identical.

B. Construction based on convex lifting and clipping

Although the construction of `(x) in Algorithm 5 shows
an advancement in terms of efficient storage, the number of
affine functions composing `(x) is still relatively large. We will
present a more efficient construction which can considerably

reduce the number of affine functions. This construction
employs convex liftings and the concept of clipping presented
in [20].

As mentioned in the proof of Lemma IV.5, we can choose
such a convex lifting `(x) as follows:

`(x) = max
j∈Iuns

(aunsj )Tx+ bunsj for x ∈ X . (50)

Obviously, this construction ensures that `(x) = `uns(x) for all
x ∈

⋃
i∈Iuns Xi. Let {Yi}i∈IM denote the polytopic partition

of X associated with the convex lifting `(x) defined in (50).
For ease of presentation, denote `(x) as follows:

`(x) = ãTi x+ b̃i for x ∈ Yi. (51)

According to the new state-space partition {Yi}i∈IM , a (non-
equivalent) rearrangement of the given control law u(x),
denoted by f̃pwa(x), is put forward as follows:

f̃pwa(x) = H̃ix+ G̃i = Hjx+Gj for x ∈ Yi
such that j ∈ Iuns, Xj ⊆ Yi.

(52)

The following corollary represents a property of f̃pwa(x)
constructed in (52).

Corollary IV.8 If u(x) defined in (45) is continuous, then
f̃pwa(x) is continuous over

⋃
i∈Iuns Xi.

Proof: It can be observed that f̃pwa(x) = u(x) over⋃
i∈Iuns Xi. Obviously, the proof directly follows.

Note also that the continuity of f̃pwa(x) may not be guaranteed
over X\

⋃
i∈Iuns Xi, as this property is not accounted for in

the definition of f̃pwa(x) in (52). However, in implementation,
f̃pwa(x) will be saturated over this region such that the given
constraints are respected. The implementation is summarized
in Algorithm 6.

Algorithm 6 Efficient implementation of PWA controllers
based on convex liftings and clippings

1: Store `(x) defined in (50), denoted as in (51) and the PWA
controller f̃pwa(x) defined as in (52).

2: At each sampling time, obtain the current state x.
3: Find index i ∈ IM such that:

ãTi x+ b̃i = max
j∈IM

(ãTj x+ b̃j).

4: Evaluate control law

u∗(x) =


H̃ix+ G̃i if umin ≤ H̃ix+ G̃i ≤ umax

umax if H̃ix+ G̃i > umax

umin if H̃ix+ G̃i < umin.

5: Return to step 2.

Note that by the saturation at Step 4, u∗(x) is equivalent to
the given PWA controller, i.e., u∗(x) = u(x), see [17], [20].

Remark IV.9 Algorithm 6 can be easily extended to the
multiple-input case. More precisely, unlike the implementation
in Subsection IV-A, this implementation, based on convex
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liftings and clippings, only requires the construction of a
single convex lifting for the unsaturated partition of {Xi}i∈IN
associated with u(x) instead of a convex lifting for each
component of u(x). Accordingly, the given multiple-input
u(x) can be implemented as in Algorithm 6 where Step 4
has to be modified to carry out the componentwise saturation.
Namely, if du denotes the dimension of u(x), then

u∗(x) =
[
(u∗)(1)(x) . . . (u∗)(du)(x)

]T
,

where (u∗)(j)(x) for j ∈ Idu are defined as follows:

(u∗)(j)(x) =


H̃

(j)
i x+ G̃

(j)
i if u(j)min ≤ H̃

(j)
i x+ G̃

(j)
i ≤ u

(j)
max

u(j)max if H̃
(j)
i x+ G̃

(j)
i > u(j)max

u
(j)
min if H̃

(j)
i x+ G̃

(j)
i < u

(j)
min,

and H̃(j)
i , G̃

(j)
i , u

(j)
max, u

(j)
min again denote the jth row of matri-

ces H̃i, G̃i, umax, umin.

C. Complexity analysis

In the following, we assess memory and runtime complexity
of the proposed approaches in the context of implementation of
PWA controllers. As a reference, the total memory consumed
by the original PWA control law together with its underlying
partition, {Xi}i∈IN , is

∑N
i=1(ci + du)(d + 1) real numbers,

where ci denotes the number of halfspaces defining the i-th
region. On the other hand, storing the simpler controller ob-
tained via Section IV-A and its associated control law requires
M(1 + du)(d + 1) real numbers, where M is the number of
affine terms of the convex lifting, resulted from Algorithm 5.
Finally, the memory footprint of the implementation proposed
in Section IV-B amounts to |Iuns|(1 + du)(d+ 1) + 2du real
numbers, where the second term denotes a negligible memory
needed to encode the clipping function in Algorithm 6.

In addition, we quantify the necessary on-line computational
effort. Specifically, the standard implementation of the original
PWA control laws consists of the point location problem,
i.e., finding index i of the region Xi that contains x, and
evaluation of the corresponding control law. In the worst
case, this amounts to

∑N
i=1 ci(2d+ 1) + 2dud floating point

operations (FLOPs). Note that the proposed implementations
based on convex lifting may perform this task in a very
efficient way, in particular the one described by Algorithm 6
exploiting clipping, without the need to carry out expensive
point location. In total, it requires a constant number of
2|Iuns|d+2dud+2du FLOPs, which is a significant reduction
in runtime complexity, even if |Iuns| = N was the case
(typically |Iuns| �

∑N
i=1 ci).

It should be noted that all the above figures do not consider
evaluating and storing the full optimizer as only its first
element is required for implementation of PWA controllers
in a receding horizon fashion.

In terms of complexity reduction in explicit MPC, one may
compare the proposed convex lifting approach, e.g., with the
clipping-based implementation of [20] as they both exploit the
concept of clipping. The latter, however, relies on replacing
some of the saturated regions by extensions of the unsaturated

ones, whereas the achievable reduction may range from none
to the case when the new partition has |Iuns| regions. Another
technique of [21] in turn requires to only store the unsaturated
regions by employing a separating function. Clearly, both of
the aforementioned approaches necessitate storing a modified
state-space partition, and hence performing the point location
at each sampling instant. Alternatively, a region-free imple-
mentation of explicit MPC was proposed in [10], and recently
extended in [22]. Its nature, however, renders it applicable for
MPC problems with rather larger parametric space and short
prediction horizons.

V. ILLUSTRATIVE EXAMPLE

To illustrate the above proposed schemes, consider the
double integrator system:

xk+1 =

[
1 0.5
0 1

]
xk +

[
0.125
0.5

]
uk. (53)

We design a PWA controller based on linear model predictive
control which minimizes the following quadratic cost function:
Np−1∑
i=0

(
xTk+i|kQxk+i|k + uTk+i|kRuk+i|k

)
+xTk+Np|kPxk+Np|k,

where Q =

[
1 0
0 1

]
, R = 10, P is set to be the solution

of discrete-time Riccati equation and the prediction horizon
Np equal to 10. This problem is subject to the following
constraints:

− 2 ≤ uk+i|k ≤ 2 for 0 ≤ i ≤ Np − 1,

xk+Np|k ∈ Xf ,

where Xf denotes the terminal constraint set as the maximal
positively invariant set associated with the local control law
u =

[
−0.2554 −0.7590

]
x. The above problem is explicitly

solved using MPT 3.0 [19]. The resulting PWA controller is
presented in Fig.7 with the red and green controllers denoting
where the control action attains the minimal and maximal
values, respectively. In particular, the corresponding state-
space partition consists of 73 unsaturated regions, 160 regions
where u(x) = −2 and 160 regions where u(x) = 2. Storing
all the 393 regions in this case amounts to 4758 real numbers,
with additional 1179 real numbers needed to encode the
PWA control law. Assuming double precision arithmetics, the
total memory footprint of the original MPC controller is 48
kilobytes. The worst-case computational effort required for its
online evaluation is 7934 FLOPs.

Fig.8 in turn depicts a convex lifting obtained from Algo-
rithms 2 and 5. The associated state-space partition is shown
merely for illustration and it needs not to be constructed. This
region-free MPC implementation hence requires to only store
the convex lifting and the corresponding PWA feedback, which
in total amounts to 6.7 kB, implying a reduction by a factor of
7.2. Evaluating the optimal control action requires 559 FLOPs,
which is 14.2 times less than in the case of the original explicit
solution.

Finally, a convex lifting constructed per Algorithm 2 and
equation (50) is depicted in Fig.9. The total memory footprint
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of the resulting region-free controller is 3.5 kB, i.e., the mem-
ory consumption is reduced by a factor of 13.7. Accordingly,
the online evaluation effort reduces to mere 298 FLOPs, which
is 26.6 times faster than the worst-case runtime of the original
controller.
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Fig. 7: The original PWA controller.
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Fig. 8: A convex lifting obtained from Algorithms 2 and 5 and
its associated state-space partition.

To assess how the controller complexity in the considered
MPC example scales with problem size, in particular with the
prediction horizon, we report the related memory consumption
data in Table I. The proposed approaches are also compared
with the clipping and separation based MPC implementations
of [20] and [21], respectively. One may observe the significant
complexity reduction of explicit solutions achieved via the
convex lifting based techniques (denoted by CL), in particular
the latter one, described in Section IV-B. The online evaluation
effort is omitted here for brevity, however, it scales better
in favor of the convex lifting based approach as it does not
perform the traditional point location (c.f. Section IV-C). This
clearly allows for controller deployment even on low-end em-
bedded microcontroller platforms with limited storage capacity

−80−4004080

−10

0

10

0

20

40

60

80

x1

x2

`(
x

)

Fig. 9: A convex lifting obtained from Algorithms 2 and
equation (50) and its associated state-space partition.

and computational power. Similarly, the offline computational
time is substantially lower for the proposed approach (1-2 s to
obtain `uns(x) for Np = 50). We remark that the approach is
accordingly applicable for problems involving a higher number
of parameters or optimization variables.

TABLE I: Memory consumption in kilobytes for different
implementations of the MPC example

Np= 20 30 40 50
Original explicit solution 133.4 265.1 445.7 681.7
Clipping-based approach [20] 49.6 95.3 242.8 401.9
Separation-based approach [21] 12.1 14.5a 17.0a 21.1a

CL-based approach per Sec. IV-A 10.8 14.6 18.5 24.1
CL-based approach per Sec. IV-B 4.8 5.7 6.7 8.3
a These figures were obtained from theoretical formulas since the computation failed

in these cases.

VI. CONCLUSION

This paper presented the concept of convex liftings and
its application in control theory. Accordingly, two different
algorithms to construct convex liftings have been put forward.
This concept was also shown to be useful for efficient im-
plementation of PWA controllers via two proposed schemes.
These allow for significant reduction of both their storage
requirements and runtime complexity. Finally, a numerical ex-
ample was considered to illustrate advantages of the proposed
technique compared with existing methods.
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