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G
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3. Denote ¢ (x,t) = & (z,t) — & (). Models are validated by comparing:
Abstract

To assess the conformity of a building in case of fire,
fire engineers use numerical simulations. A popular
software for fire simulations is Fire Dynamics Sim-
ulator (FDS). It is based on a finite difference method
that takes into account the random behavior of the fire.
Thus, the response of FDS is stochastic. The mesh
size used in the numerical scheme can be chosen by the
user. When the mesh size decreases, the accuracy and
the computation time of simulations increase. At low
accuracy, one simulation takes a few minutes to run,
whereas it can be several weeks at high accuracy.

We consider the problem of estimating the behavior of
fine-mesh simulations (high-fidelity), using a combina-
tion of fine- and coarse-mesh simulations (low-fidelity).
This approach is called multi-fidelity. We propose to
extend the Bayesian multi-fidelity models proposed by

Picheny and Ginsbourger [2013] and Tuo et al. [2014]
to the case of stochastic simulators.

Fire Dynamics Simulator
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A FDS simulation at 20cm (left: high-fidelity)
and 100cm (right: low-fidelity).

F'DS has two main characteristics:
» finite difference methods = mesh size can tuned:

e random behavior of fire = stochastic simulator.
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Calculation cost (in h) along mesh size (in cm).

Objective: build a (meta-)model of FDS at high-fidelity
from low-fidelity results:

 combining results from different levels of accuracy
= multi-fidelity;

e using (Gaussian process = Bayesian framework.

Proposed model

Data:
» inputs: (z;,¢;) € (X x T) C (R x R
for the mesh size;

where t stands

)

. outputs (z;) € R.

Likelihood:

stochastic code 4+ independent observations:

(2i)1<icn ~ N (& (24, 1) ; diag (A (24, 15))) - (1)

Prior:

1. £ is a Gaussian process:
§(z,t) ~GP (m(z,t):k((z,t), (2, t);  (2)
2. & converges when t tends to 0:

& () =1limé (x,t) . (3)

2
=

&y = ideal level (¢t = 0 cm)
£ = numerical error
Ginsbourger, 2013, Tuo et al., 2014,

independent |[Picheny and

= k((xz,t), (2, 1) = ko (x,2")+k. ((z, 1), (2, 1) . (4)
4.the variations of € along T are independent:
t>s>r>0=c¢(x,t)—¢c(x,s) Le(x,s)—e(x,7)

= k. ((z,t), (2", ) = k. (x,2";min {¢,¢'}). (5
5. £ is stationary along X:

— ') ;
—2';min {¢,t'})

(6)

6. Gaussian prior on In (A (¢)),cr:
In (A (2))yep ~ N (In(Ag) ;87 + Ly (7)

independent of €, with s? > ¢2.

Other hypotheses:
« constant mean m (t) = m ~ Ug;
 Matérn covariance for &y: ko (x — 2') = M, (xz — 2');

 Separable and Matérn covariance for e:
ko (x — 2" min {¢,#'}) = min {t, '} - M, (z — 2')
e Parameters \g, s* and ¢? are fixed.

Parameter estimation

» maximization of the joint posterior density (MAP)
w.r.b. (A());eq1 L and all covariance parameters.

Numerical experiments

One numerical experiment on FDS:

« d = 8 inputs + the tuning parameter;

C

« 1 output: maximal temperature at 1,8 m, 75, .

To check efficiency of our model, 4 models are compared:
« M-Fy: our model (see above);

« M-Fy: same as M-Fy, but, instead of assumptions 3, 4,
and 5, covariance k is a stationary Matérn covariance on

X x T

« H-F[10]: a high-fidelity model. Constant mean, Matérn
covariance on X, homoscedastic noise:

« H-F[100]: same as H-F[10], but with more points. This
model serves us as reference.

The following designs are used:

Learning data Validation
Model |Cost 100cmb0cm33cm25cm20cm  20cm
M-F{/M-Fy 1 270 90 30 10 O 100
H-F|10] |~ 1.1 0 0o 0 0 10 90
H-F[100] |~ 11| 0 0O 0 0 100 LOO

(LOO = Leave One Out)

Model validation
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Predictions (posterior means) versus observations.

» predictions (posterior mean) with observations,

o distributions of normalized residual with the standard
normal distribution.
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Probability density function of normalized residuals Apg
(colored lines) versus normal distribution (dashed line).

Quality of prediction:

 H-F[10] has bad predictions;

« M-I, and M-F, give similar quality of predictions;

« H-F100] is the best, but its design is 11 times more costly.

Probability to exceed a threshold

Suppose Px a probability distribution on inputs.

NbSimu = 1e3; nbPtsPerSimu = 1e3

W D g
o o o
T T T

Posterior density

[
o
I

p (PX( QCOcm > 6000))

Estimation of probability for 75, to exceed 60°C.
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Curves of posterior distributions: 1000 conditional simula-
tions x 5000 points along Px.
By comparison with H-F[100] posterior density:

 H-F[10] and M-F5 have small variance, but their distribu-
tions do not agree the posterior distribution of H-F|[100];

« M-F; has a larger variance, but its posterior density max-
imum is inter the posterior distribution of H-F[100];

= M-F; provides a better quantification of uncertainty

Conclusion

 Contribution
2 A Bayesian model for multi-fidelity stochastic simula-
tors has been proposed.

= Our model has been shown to provide, in a numerical
experiment with FDS, a good quantification of uncer-
tainty on predictions.

e Future work

= fully Bayesian inference for hyper-parameters,

= sequential design of experiments.
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