
HAL Id: hal-01332628
https://centralesupelec.hal.science/hal-01332628v1

Submitted on 16 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scaling of Distributed Multi-Simulations on Multi-Core
Clusters

Cherifa Dad, Stephane Vialle, Mathieu Caujolle, Jean-Philippe Tavella,
Michel Ianotto

To cite this version:
Cherifa Dad, Stephane Vialle, Mathieu Caujolle, Jean-Philippe Tavella, Michel Ianotto. Scaling of
Distributed Multi-Simulations on Multi-Core Clusters. 25th IEEE International Conference on En-
abling Technologies: Infrastructure for Collaborative Enterprises (WETICE-2016), Jun 2016, Paris,
France. �hal-01332628�

https://centralesupelec.hal.science/hal-01332628v1
https://hal.archives-ouvertes.fr


Scaling of Distributed Multi-Simulations on
Multi-Core Clusters

Cherifa Dad∗, Stephane Vialle∗, Mathieu Caujolle†, Jean-Philippe Tavella†, Michel Ianotto∗
∗CentraleSupelec, University Paris-Saclay, 57070 Metz, France

†EDF Lab Saclay, 91120 Palaiseau, France

Abstract—DACCOSIM is a multi-simulation environment for
continuous time systems, relying on FMI standard, making easy
the design of a multi-simulation graph, and specially developed
for multi-core PC clusters, in order to achieve speedup and
size up. However, the distribution of the simulation graph
remains complex and is still the responsibility of the simula-
tion developer. This paper introduces DACCOSIM parallel and
distributed architecture, and our strategies to achieve efficient
multi-simulation graph distribution on multi-core clusters. Some
performance experiments on two clusters, running up to 81
simulation components (FMU) and using up to 16 multi-core
computing nodes, are shown. Performances measured on our
faster cluster exhibit a good scalability, but some limitations of
current DACCOSIM implementation are discussed.

I. INTRODUCTION

Complex systems are characterized by the interconnection
of numerous and heterogeneous cyber components (e.g. con-
trollers) and physical components (e.g. power grids). For
EDF (the major French utility company), the smart power
grids will extensively rely on new control functions (i) to
increase the grid efficiency, reliability, and safety, (ii) to enable
better integration of new assets (e.g. distributed generation and
alternative energy sources), (iii) to support market dynamics
and manage new interactions between established and new
energy players. Cyber-Physical Systems (CPS) design involves
multiple teams working simultaneously on different aspects of
the system. Especially, the development of a smarter electrical
grid requires to reuse models and tools often based on separate
areas of expertise.

This heterogeneity led EDF to investigate coupling stan-
dards such as the Functional Mock-up Interface (FMI) initiated
by Daimler AG within the ITEA2 MODELISAR project
and now maintained by the Modelica Association1. More
precisely, EDF chose its FMI-CS (FMI for co-simulation) part
because this operation mode allows to export models as active
components called FMUs (Functional Mock-up Units), each
FMU being a self-contained archive file including a model
and a numerical solver. As an additional benefit, the model IP
is readily protected.

For EDF, it is vital to develop agile modelling and sim-
ulation in order to design and validate distributed operating
functions a long time before performing tests on experimen-
tal sites. The Distributed Architecture for Controlled CO-
SIMulation (DACCOSIM software [1]) developed by EDF and

1https://www.fmi-standard.org/downloads

CentraleSupelec is a part of the answer to this problematic.
It is aimed at simulating large and complex multi-physics
systems on multi-core PC clusters (the standard scalable
computing architecture), despite some load unbalance and
important communications inherent in our multi-simulations.
This paper introduces the parallel and distributed architecture
of DACCOSIM, and some scaling experiments on PC clusters
(running up to 81 FMUs and using up to 16 multi-core cluster
nodes). Finally we list some issues and future works to achieve
better speedup and size up.

These researches are carried out by the RISEGrid2 institute,
founded by EDF and CentraleSupelec with the ultimate goal
to simulate the smart electric grids of the future.

II. CONTEXT AND RELATED WORKS

A FMI based multi-simulation is defined by a FMU graph,
where all inputs and outputs need to be correctly initial-
ized during a mainly iterative phase called co-initialization.
EDF has achieved the co-initialization phase of DACCOSIM
reusing its expertise in the Newton-Raphson algorithm (very
popular for power flow calculations) in conjunction with recent
works done at UC Berkeley on dependency cycles analysis [2]
(which are now possible with the latest version 2.0 of the
FMI standard). The global dependencies graph automatically
deduced from the FMU graph is valuable to solve algebraic
loops with a parallel Newton-Raphson algorithm staged at the
initialization mode of the multi-simulation. Then, the FMU
graph enters a loop of parallel multi-simulation time steps,
concurrently running each FMU at each time step, without
the need for additional power flow calculations between two
consecutive steps. From this point of view, the current version
2.0 of the FMI standard seems sufficient for EDF as its current
use cases do not report non convergence examples due to
algebraic loops in the step mode.

So, our problematic is to distribute a FMU graph on a
multi-core PC cluster. This looks like a task graph distribution
problem, which is an important research field. For example,
[3] proposes a scheduling algorithm on heterogeneous dis-
tributed architectures for static tasks modeled by Directed
Acyclic Graph (DAG), and [4] introduces mapping strategies
of hierarchically structured multiprocessor tasks on multi-
core clusters, which is our target architecture. However, our
DACCOSIM FMU graph is not hierarchically structured, and

2http://www.supelec.fr/342_p_36889/risegrid.html



Fig. 1. DACCOSIM GUI: FMU graph definition and configuration

is a DAG with very few task dependencies. All FMU tasks can
run in parallel when starting a new time step, and when all
computations are finished all inter-FMU communications can
start and occur in parallel [1]. Then, when all communications
are achieved, all FMUs can enter a new time step. There
are no dependencies between our FMU task computations,
and usual solutions of task graph distribution are not really
adapted to our problem. The basic version of our FMU graph
working is closer a classical Bulk Synchronous Parallel (BSP)
model [5], which is well known in parallel computing, but our
FMU tasks are heterogeneous and load unbalanced. Moreover,
a computationally big FMU can not be split into smaller
ones as it would require to design new mathematical models.
So, our problem is not a classical Simple Program Multiple
Data (SPMD) scheme following a BSP model. Our FMU
graph has heterogeneity and load unbalance typical of generic
task graphs. It is also possible to consider our FMU graph
like a kind of time stepped Multiple Program Multiple Data
application running on a computing cluster and aiming to
reach high performances [6]. Identification of an efficient
distribution of our FMU graph thus requires to design a
specific algorithmic solution.

Some others multi-simulation environments interconnect
some continuous time based simulators, like EPOCHS [7] and
INSPIRE [8], or even some FMUs, like C2WT [9], through a
HLA logical event bus [10]. This bus relies on a Run-Time
Infrastructure (RTI), ensuring event routage and right syn-
chronization between simulators. Many RTI implementations
are distributed, and can activate concurrently simulators on
different computing nodes. However, parallelism of the system
depends on the abundance of safe events concentrated in a
lookahead time interval [11], [12], and our time stepped FMU
graph contains more potential parallelism.

III. DACCOSIM ENVIRONMENT

A. DACCOSIM software suite

DACCOSIM has been designed to achieve multi-
simulations of continuous time systems, discretized with time
steps, and running solvers using constant or variable time
steps (to maintain the requested accuracy with the minimal
amount of computations, whatever the dynamic of the system).
It consists in two complementary parts: a friendly Graphic
User Interface (GUI) and a dedicated computation package.

Fig. 2. Distributed DACCOSIM architecture, with a hierarchical master

Fig. 3. Multithreaded implementation of a virtual node

The GUI developed in Java facilitates the complex systems
studies by designing the multi-simulation graph (Figure 1), i.e.
the FMUs involved and the variables exchanged in-between,
defining the resources used by the simulation (local machine
or cluster), configuring the simulation case (duration, co-
initialization method, time step control strategy. . . ) and im-
plementing the graph into DACCOSIM master tasks managing
the simulation.

The dedicated computation package controls all task exe-
cution issues relative to the multi-simulation: co-initialization,
local or distributed computation steps, fixed or variable time
step control strategies, detection of state events generated
inside FMUs, inter-FMU communications, distributed and hi-
erarchical decision process. . . The Java version of DACCOSIM
relies on JavaFMI3 and is available for both Windows and
Linux operating systems, whether 32-bit or 64-bit.

B. Parallel and distributed runtime architecture

The dedicated computation package of DACCOSIM in-
cludes a parallel and distributed runtime architecture, de-
signed to take maximal advantage of any cluster of multi-core
nodes. A DACCOSIM simulation executes a series of time
steps composed of three stages: the time step computations of
the FMUs (independent computations), the communication of
the FMU outputs to the connected inputs (many small com-
munications), and the simulation control by the hierarchical
control master (information gathering, next operations decision
and order broadcasting). All these operations include potential
parallelism exploited by DACCOSIM runtime.

As inside one computing step all FMUs can achieve
their computation concurrently, DACCOSIM architecture dis-
tributes FMUs on cluster nodes, encapsulates FMUs of a same
node in different threads and implements a hierarchical (and

3SIANI, University of Las Palmas, Spain: JavaFMI (2016),
https://bitbucket.org/siani/javafmi/wiki/Home



Fig. 4. Two orchestration modes of a multi-simulation step

distributed) control master to manage all threads and FMU op-
erations. Figure 2 illustrates this architecture. The hierarchical
control master is composed of a unique global master located
on one cluster node, in charge of aggregating the control data
coming from the local masters located on the different nodes,
and taking decisions based on these information. The global
master also assumes the role of the local master on its node.
Every local master aggregates control data from the FMUs
on its node, and sends synthesized control information to the
global master. All master tasks run concurrently.

DACCOSIM uses FMUs in co-simulation mode: they em-
bed their solvers and are implemented as dynamic libraries
(enhanced with meta-data XML files). A FMU wrapper thread
encapsulates each FMU, calls its computation function to
achieve a time step progress, and sends each of its outputs
to the connected inputs. Three others threads are associated
to each FMU, as illustrated on Figure 3: one receipts the
output values coming from other computing nodes (currently
across ZMQ middleware), one achieves similar receipt but
from FMUs located on the same node (not going through the
middleware to run faster), and one stores simulation results on
disk (asynchronously and per block). Received input values
are stored into buffers and distributed to the real FMU inputs
before the start of each FMU computation step, so that the
inputs remain stable during the computations.

When using variable time steps, the control master gathers
and analyses some time step results. It decides if they are
valid and if the simulation can enter the next step with the
same or a larger time step, or if the simulation has to roll
back and continue with a smaller time step (to reach the
required accuracy). Two orchestration modes are available in
DACCOSIM (see Figure 4). The ordered mode executes the
three phases of each time step in order: (1) FMU computations,
(2) communication and control with the hierarchical master,
and (3) inter-FMU communications if the master has validated
the time step results. The overlapped mode overlaps the
inter-FMU communications with the control master operations
(phases 2 and 3). If the control master requires a rollback, the
received input values are forgotten and the FMU states at the
beginning of the time step are restored. But when the dynamic
of the simulated system is limited (no turbulence), there are
few rollbacks and the overlapped mode reduces the simulation
time. When the dynamic is high, many rollbacks can appear
and a lot of inter-FMU communication phases can be achieved
needlessly. Currently the orchestration mode has to be set by
the user when running the multi-simulation. In the future it
could be auto-tuned dynamically depending on the frequency
of the rollbacks.

Fig. 5. Best distribution (4 nodes) of cl5 benchmark with 1 building

Fig. 6. Scaling on 16 nodes of heat transfer cl5 benchmark with 4 buildings

A deployment tool (dacrun) completes the DACCOSIM
software suite, and makes easy the deployment of a multi-
simulation on a set of cluster nodes. It is compliant with the
OAR4 environment, allowing to allocate nodes and run interac-
tive or batch jobs on a PC cluster, but can be easily adapted to
any similar cluster management environment. However, design
of a multi-simulation graph distribution on different cluster
nodes is the responsibility of the multi-simulation developer.
An automatic distribution of the FMUs is under investigation,
according to the lessons learnt from our experiments (see next
sections).

IV. PARALLEL AND DISTRIBUTED EXPERIMENTS

This section introduces our scalable benchmarks and PC
clusters, and our methodology to identify the best distribution
patterns of elementary multi-simulation benchmarks. Then we
detail our scaling approach, and our size up experiments on
larger benchmarks.

A. Testbed introduction

Our test case is a simplified industrial case provided by
EDF R&D, representing heat transfers in a set of n three-floor
buildings, with two zones per floor separated by an indoor
wall. The entire multi-simulation includes 1 + 10× n FMUs,
interconnected as illustrated in Figures 5 and 6. The unique
FMU BC is in charge of the thermal boundary conditions
(e.g. actual temperatures recorded in a French suburb) which
are supposed identical for all the floors in every building. A
complementary FMU CS models the crawl space temperature
for the lower floor of a building, and each building having a
specific FMU CS. The FMUs ZNx (resp. ZSx) represent the
Northern (resp. Southern) part of every floor, each being de-
signed with Modelica differential equations modeling physical
phenomena such as conduction, convection and solar radiation.
The FMUs IWx detail the behavior of the wall between
the floor zones depending on different insulating properties.
All these FMUs are equation-based only, and modeled by

4https://oar.imag.fr/



Fig. 7. cl3 benchmark on one Nehalem node Fig. 8. cl3 benchmark on our Nehalem cluster

strategy 1: "load"
load: 26.0s; 26.0s; 23.0s
nb intra-comm: 14

strategy 2: "load+comm"
load: 29.8s; 26.0s; 24.0s
nb intra-comm: 16

Fig. 9. Load balancing and number
of intra-node communications on 3
nodes

Fig. 10. Best distribution (3 nodes) of cl3 benchmark with 1 building

encapsulated arrays of records with changeable size to propose
5 levels of complexity (size/weight) for each FMU. No control
or temperature regulation is considered in this benchmark, the
data exchanged between these FMUs are temperatures and
thermal flows. We designed two benchmarks running 1+10×n
FMUs. The cl5 benchmark includes high complexity level
FMUs, and exhibits negligible communication times compared
to the computation ones. The cl3 benchmark includes medium
complexity level FMUs and has significant communications.

Two PC clusters of CentraleSupelec have been used for
our experiments. The first one has a 10 Gigabit/s Ethernet
interconnect, and each node includes one Intel Sandy Bridge
processor with 6 hyperthreaded physical cores (6 Cores/12
Threads) at 3.2 GHz, and 8 GByte of RAM. The second one
has a 1 Gigabit/s Ethernet interconnect, and each node includes
one Intel Nehalem processor with 4 hyperthreaded physical
cores (4 Cores/8 Threads) at 2.6 GHz, and 6 GByte of RAM.

B. Speedup tracking strategy

Identifying the optimal distribution of a multi-simulation
graph on a multi-core PC cluster encounters several locks.
First, strong differences appear after measuring the computing
load of each FMU. FMUs are heterogenous tasks leading
to complex load balancing between computing nodes. More-
over, splitting time consuming FMUs into several smaller
ones would require if possible to redesign their mathematical
models and would imped to quickly reuse existing simulation
components.

Second, installing only one FMU per multi-core node would
be a waste, requiring many under-used nodes and increasing
the inter-node communication time. But running less than
k FMUs in parallel on a k-core node leads to a global
computation time greater than the longer FMU one. Figure 7
shows the computation time of a mix of big and medium (half
a big) load FMUs on one 4-cores/8-threads Nehalem node. Up
to 4 FMUs, the computation time should match the horizontal

thin lines, but it appears to follow the thick curves (we also
observed this behavior on other multi-core nodes). Most of
parallel codes are memory bound, excepted when achieving
very regular memory accesses and implemented with tiling
(subdivided and blocked in cache memories). When codes are
not tiled, parallel computing time on each multi-core node
becomes hard to predict, specially with heterogenous tasks.
Computing a load balanced distribution of a FMU set on a
multi-core cluster is thus not obvious.

Third, a multi-simulation graph achieves many communi-
cations between FMUs, as well as between each FMU and
the hierarchical master. Our measures have shown there are
numerous and small communications, sensitive to the inter-
node network latency. Communication times can be significant
compared to computation times (like in our cl3 benchmark),
and inter-node communications remain longer than intra-node
communications. So, the distribution strategy of our multi-
simulation graphs has to take into account both computations
and communications issues.

To achieve our first investigations we adopted an experi-
mental methodology: (1) measuring each FMU computation
time (running our real multi-simulation with only one FMU
per node to avoid FMUs disturb each others), (2) measuring
computation times of different mix of FMUs on one multi-
core node, (3) deducing FMU distributions with best load
balancing on different numbers of nodes, and (4) tuning these
load balanced oriented distribution in order to decrease the
number of inter-node communications when communications
appear to be important. We applied this methodology to our
cl3 benchmark with 1 building. Figure 8 shows the multi-
simulation times we measured on our Nehalem cluster function
of the number of used nodes. Two distribution strategies
(s1 focuses on load balancing while s2 takes into account
both computations and communications) and two orchestration
modes are considered (see section III). Finally, the best distri-
bution we identified and experimented for our cl3 benchmark
with 1 building uses 3 nodes and is illustrated on Figure 10
(FMUs with the same color will be located on the same node).
Figure 9 shows the little tuning (sacrifice) of load balancing
successfully achieved by strategy s2 on 3 nodes to increase the
number of intra-node communications (decreasing the number
of inter-node ones). For our cl5 benchmark with 1 building,
including huge computations and negligible communications,
the best distribution we identified on our Nehalem cluster uses
4 nodes and is illustrated on Figure 5.



Fig. 11. Size up experiments on cl5 benchmark

Fig. 12. Size up experiments on cl3 benchmark

One of our objectives is now to automatize this investigation
methodology, in order to quickly analyze new FMU graphs
and define some efficient distribution patterns, like the optimal
distributions of our cl3 and cl5 benchmarks with 1 building.
Then, these patterns will be reused in the distribution of larger
multi-simulation graphs.

C. Scaling and size up experiments

All experiments introduced in this section use the over-
lapped orchestration mode, and avoid to go through the mid-
dleware for internal node communications. This configuration
appears the most efficient on our benchmarks and clusters. We
measured multi-simulation time with result storage (approxi-
mately 850MB per run), however we stored these results on
the computing nodes local disks, in order to avoid fluctuations
due to network traffic on our LAN.

We conducted many experiments to measure size up of our
multi-simulation benchmarks: we increased both the problem
size (number of buildings simulated) and the number of
computing ressources (number of cluster nodes), attempting
to keep constant the execution time. When processing larger
multi-simulations we replicate the best distribution pattern
identified for one building (see figure 5 and 6). So we attempt
to obtain:

T (b buildings, b× n1 nodes) = T (1, 1× n1)

With n1: the optimal number of nodes to simulate 1 building

Our previous experiments has shown the optimal distribution
for one cl5 building requires 4 nodes, so we simulated 2, 3 and
4 buildings on 2× 4, 3× 4 and 4× 4 nodes. Figure 11 shows
this approach has fully succeeded for the cl5 benchmark. We
obtained approximately the same execution time: 53s on our
Nehalem cluster with an Eth 1Gb/s interconnect and 45s on

Fig. 13. cl3 benchmark time with 4, 5 and 8 buildings on 1Gb/s cluster

Fig. 14. cl3 benchmark time with 4, 5 and 8 buildings on 10Gb/s cluster

our Sandy Bridge cluster with an Eth 10Gb/s. These results
were expected, as the cl5 benchmark includes mainly com-
putations and our replication strategy of distribution pattern
avoids the building simulations disturb each others.

At the opposite, the cl3 benchmark includes significant
amount of communications compared to the amount of com-
putations. We replicated our 3 nodes best distribution pattern,
and we simulated 2, 3, 4 and 5 buildings on 2 × 3, 3 × 3,
4×3 and 5×3 nodes. Figure 12 shows we obtained unperfect
but interesting performances on our 10Gb/s cluster (bottom
thick curve). Multi-simulation times increase by +31%: from
58s up to 76s when processing 1 building on 3 nodes up to 5
buildings on 15 nodes. On our 1Gb/s cluster the times increase
by +72% (top thick curve). This experiment shows the impact
of the cluster network bandwidth, but we also observed the
FMUs exchange mainly small messages. So, a high bandwidth
and a low latency seem both necessary to achieve good size
up of DACCOSIM simulations.

Thin curves on figure 12 show the execution time when
the multi-simulation results are not stored. No result storage
means no asynchronous IO thread running in parallel with all
others on each node, and no time spent writing on disks. On
cl3 benchmark it leads to smaller execution times but size up
benchmarks still exhibit regular increase of execution time.
So, we can probably improve our result storage mechanism,
but it is not the main limitation of our size up benchmark.

Finally, figures 13 and 14 exhibit multi-simulation times
of cl3 benchmark for 4, 5 and 8 buildings, when increasing
the number of computing nodes. We replicated our best
distribution pattern (1 building on 3 nodes for cl3 benchmark),
to deploy for example 4 buildings on 12 = 4× 3 nodes. Then
we grouped 2 buildings per 3-node block to deploy 4 buildings
on 6 nodes, and finally we grouped the 4 buildings on 3 nodes.



So, all our deployments are based on the previously identi-
fied optimal deployment of 1 building. This straightforward
approach does not track a global optimized deployment, but
allows to quickly configure large scale experiments.

Logarithmic scales on both axis lead to expect straight
lines with −1 slope for ideal distributions, corresponding to
theoretical times T (n nodes) = T (1 node)/n. Experimental
time curves roughly look like straight lines, but the slope
appears stronger on 10Gb/s cluster, showing again the impact
of the interconnect performance on our distributed multi-
simulations. When simulating 4 or 5 buildings (middle and
bottom curves), it was bearable to run and measure execution
times on 1 multi-core node and to compute speedup. On
10Gb/s cluster we achieved significant speedup close to 7 on
12 nodes and to 9.7 on 15 nodes (see figure 14), compared
to multi-threaded executions on one node. When simulating 8
buildings we did not waste time to run long computations
on one node: large problems are not intended for mono-
node executions (and perhaps could not fit into one node
memory). But we observe the 8-building curves are similar
to the 4-building ones with better decrease. So, DACCOSIM
can efficiently run larger problems on greater number of nodes
and scale our multi-simulations (with a fast cluster network).

Executions on 6 nodes (for 4 and 8 buildings) should
be 2 times longer than executions on 12 nodes. Computing
ressources are 2 times less numerous, but communication
achievement is also different. The BC FMU is connected to 6
local FMUs instead of 3 and achieves 2 times more intra-node
communications, and the network switch is solicited on 6 ports
instead of 12. Deep investigations would be required to analyse
the origin of these abnormally good performances on 6 nodes,
but they point out our straightforward deployment (replicating
the 1-building best one) is not optimal. A global deployment of
b buildings (i.e. 1+10×b FMUs) on n multi-core nodes could
achieve better performances, but is not currently available.

V. CONCLUSION AND FUTURE WORK

Our FMI based multi-simulation environment (DAC-
COSIM) is multithreaded and distributed, and allows the user
to distribute FMU graphs on clusters of multi-core nodes.
According to our distribution strategies, our experiments have
achieved significant speedup and satisfying size up on an Eth-
ernet 10Gb/s cluster of hexa-cores, running up to 81 FMUs and
using up to 16 nodes to simulate heat transfer inside buildings.
Complementary large benchmarks replicating an elementary
distribution have shown DACCOSIM can scale (efficiently
running larger problems on more computing nodes). In order
to improve DACCOSIM performances, our next works will
consist in: (1) exchanging more compact messages, (2) using
high performance MPI communication library instead of 0MQ
middleware, (3) exploiting low latency and high bandwidth
Infiniband cluster network by relying on MPI.

Automatic distribution of the FMU graph is also under
investigation. Numerous experiments have allowed to define
a first distribution strategy, that we aim to automatize. DAC-
COSIM should be able to point out the ideal number of nodes

and the associated distribution of the FMU graph, and also to
compute the optimal distribution when the number of nodes
is constrained by the cluster availability.

Finally, the use case considered in this paper was based
on multi-floor buildings with equation-based models only. In
the future, EDF R&D intends to run hybrid multi-simulations
involving cyber and physical models mixing piecewise con-
stant signals and continuous time signals. As FMI-CS has been
designed only for continuous time signals, some extensions to
the standard FMI are required and some proposals are on the
table (see [13] from UC Berkeley). EDF also leads a French
working group on this topic with partners (CentraleSupélec,
Dassault Systèmes and CEA List). From the point of view
of the optimal distribution of a multi-simulation on clusters,
the control FMUs will certainly be very light and ought to be
handled by the deployment algorithm without disturbing the
distribution of the heavily calculative FMUs.

ACKNOWLEDGMENT

Authors thank Region Lorraine for its constant support.

REFERENCES

[1] V. Galtier, S. Vialle, C. Dad, J.-Ph. Tavella, J.-Ph. Lam-Yee-Mui,
and G. Plessis, “FMI-Based Distributed Multi-Simulation with DAC-
COSIM,” in Proceedings of the 2015 Spring Simulation Multiconference
(TMS/DEVS’15), 2015.

[2] D. Broman, C. X. Brooks, L. Greenberg, E. A. Lee, M. Masin,
S. Tripakis, and M. Wetter, “Determinate composition of FMUs for
co-simulation,” in International Conference on Embedded Software
(EMSOFT), 2013.

[3] M. I. Daoud and N. Kharma, “A high performance algorithm for
static task scheduling in heterogeneous distributed computing systems,”
Journal of Parallel and Distributed Computing, vol. 68, no. 4, 2008.

[4] J. Dummler, T. Rauber, and G. Runger, “Mapping algorithms for
multiprocessor tasks on multi-core clusters,” in Parallel Processing,
2008. ICPP’08. 37th International Conference on, Sept 2008.

[5] L. G. Valiant, “A bridging model for parallel computation,” Commun.
ACM, vol. 33, no. 8, pp. 103–111, Aug. 1990.

[6] C.-C. Chang, G. Czajkowski, T. von Eicken, and C. Kesselman, “Eval-
uating the Performance Limitations of MPMD Communication,” in
Supercomputing, ACM/IEEE Conference, 1997.

[7] K. Hopkinson, X. Wang, R. Giovanini, J. Thorp, K. Birman, and
D. Coury, “Epochs: a platform for agent-based electric power and com-
munication simulation built from commercial off-the-shelf components,”
IEEE Transactions on Power Systems, vol. 21, no. 2, May 2006.

[8] H. Georg, S. C. Müller, N. Dorsch, C. Rehtanz, and C. Wietfeld,
“Inspire: Integrated co-simulation of power and ict systems for real-time
evaluation,” in Smart Grid Communications (SmartGridComm), 2013
IEEE International Conference on, Oct 2013.

[9] Model-Based Integration Platform for FMI Co-Simulation and Hetero-
geneous Simulations of Cyber-Physical Systems, vol. Proceedings of the
10th International Modelica Conference. Modelica Association and
Linkoping University Electronic Press, March 2014.

[10] F. Kuhl, R. Weatherly, and J. Dahmann, Creating Computer Simulation
Systems: An Introduction to the High Level Architecture. Prentice Hall
PTR, 1999.

[11] R. M. Fujimoto, Parallel and Distributed Simulation Systems, A. Y.
Zomaya, Ed. Wiley, 2000.

[12] S.-Y. Wang, C.-C. Lin, Y.-S. Tzeng, W.-G. Huang, and T.-W. Ho,
“Exploiting event-level parallelism for parallel network simulation on
multicore systems,” IEEE Transactions on Parallel and Distributed
Systems, vol. 23, no. 4, April 2012.

[13] F. Cremona, M. Lohstroh, S. Tripakis, C. Brooks, and E. A. Lee,
“FIDE - An FMI Integrated Design Environment,” October 2015, poster
presented at the Eleventh Biennial Ptolemy Miniconference, Berkeley.
[Online]. Available: http://chess.eecs.berkeley.edu/pubs/1138.html


