
HAL Id: hal-01334094
https://centralesupelec.hal.science/hal-01334094

Submitted on 25 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Electromagnetic modeling of a periodic array of fibers
embedded in a panel with multiple fibers missing

Zicheng Liu, Changyou Li, Dominique Lesselier, Yu Zhong

To cite this version:
Zicheng Liu, Changyou Li, Dominique Lesselier, Yu Zhong. Electromagnetic modeling of a periodic
array of fibers embedded in a panel with multiple fibers missing. N. Yusa, T. Uchimoto, and H.
Kikuchi. Electromagnetic Nondestructive Evaluation (XIX), 41, IOS Press, pp.149-156, 2016, Studies
in Applied Electromagnetics and Mechanics, 978-1-61499-638-5 (print), 978-1-61499-639-2 (online).
�10.3233/978-1-61499-639-2-149�. �hal-01334094�

https://centralesupelec.hal.science/hal-01334094
https://hal.archives-ouvertes.fr


1Corresponding Author. E-mail: zicheng.liu@l2s.centralesupelec.fr.
2The work has been performed when the second author was in L2S.

Electromagnetic Modeling of a Periodic
Array of Fibers Embedded in a Panel with

Multiple Fibers Missing

Zicheng LIUa,1, Changyou LIb,2,
Dominique LESSELIERa, Yu ZHONGc

a Laboratoire des Signaux et Syst`emes - UMR8506 CNRS-CentraleSup´elec-U. Paris Sud 3 rue Joliot-Curie, 
91192 Gif-sur-Yvette, France

b Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore 487372
c A*STAR, Institute of High Performance Computing, Singapore 138632, Singapore

Abstract. Our goal is to detect defects in composite materials composed by multi-layer planar plates with a 
periodic set of circular cylindrical fibers embedded within each layer. As a starter, the work presented is 
electromagnetic (EM) modeling and imaging of missing fibers in a fiber array standing in air. The multiple 
scattering method is utilized to analyze the electromagnetic behavior, and the corresponding imaging model is 
established directly from Lippman-Schwinger integral formula-tion. With the imaging model, standard 
MUltiple SIgnal Classification (MUSIC), and the proposed joint sparsity which borrows the idea from sparsity 
theory, are applied to retrieve the locations of missing fibers. Various numerical results are provided to 
illustrate availability and accuracy of the modeling and imaging.
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Introduction

Fiber-based laminated composite materials are widely used in aeronautic and automotive 
industries due to their advantageous characters in terms of stiffness and strength. In the 
applications, a challenge for safety consideration is to detect and at least locate poten-tial 
defects in the fiber-based materials using electromagnetic sources and probes. As an 
example, there may be missing or misplaced fibers, or voids or other damages produced 
during manufacturing and/or in-service. Experimentations are not referred here. How-

ever, carbon-fiber composites are tested with radio frequency eddy current technology in 
[1] and glass-fiber ones with reflective terahertz time domain spectroscopy [2], which 
paved the way to the concerned case.

Two main steps follow: one needs an accurate enough scattering model (forward 
problem) and a high-resolution imaging solution (inverse problem). Here, one is con-

cerned with the time-harmonic electromagnetic response of fiber-reinforced composite
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laminates as stacks of planar layers [3] (laminates), and high-resolution imaging ap-

proaches to get the positions of defects inside.

As a preliminary to the above, emphasis is put onto a structure made of a finite set

of circular cylindrical fibers in air. All fibers are identical, orientated the same way and

periodically arranged with their centers aligned and at same distance from one another

except multiple missing fibers, which actually disorganizes the whole structure.

Both the response to a given excitation (plane wave or line source) and the specific

Green’s function of the original, intact structure (thereafter assumed to be disorganized)

can be handled by means of the multiple scattering method [4], letting the fields inside

and outside the fibers being properly multipole expanded. The background field is per-

turbed by the fact that fibers have been removed and their scattering contribution can

be evaluated via a Lippman-Schwinger integral formulation [4]. The integral in explicit

form leads to the imaging model which establishes a link between background field and

locations of missing fibers.

Since defects as missing fibers are the only ones in consideration, all that one needs

is to retrieve their indices (or labels) within the array (which associates with their loca-

tions). To do so, the classical MUltiple SIgnal Classification (MUSIC) imaging method

[5] is implemented to test the EM modeling and the defects localization. Then, to enhance

the discrimination ability, since rare defects exist in the defectuous material, a sparsity-

tailored reconstruction method, called joint sparsity, is put forth. Borrowing ideas from

pioneering works about Directions of Arrival (DOA) searches [6], the proposed method

utilizes the fact that sparsity is invariant when different illuminations are considered.

1. Electromagnetic behavior analysis

1.1. Description of configuration

Figure 1. The fiber array in free space, circles with dashed contour indicating missing fibers

The structure which one deals with is sketched in Figure1. Circular cylindrical fibers

all orientated into the same direction y with same transverse cross-section within the

x,z plane and same radius c are considered. The said cross-sections have their centers

equally spaced with distance d in the x direction (periodicity of the array, when sound,

see next). The material of each fiber is linear isotropic with relative permittivities εl and

is (for simplicity at this stage) non magnetic μl = 1, l = 1,2, . . . ,L, L being the overall

number of fibers. In this fiber array, defects seen as missing fibers are characterized by

εl = 1, and actual ones are with εl = εr. The incident field is a TM (or E-polarized) wave.
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1.2. Multiple scattering method

The electromagnetic response when a plane wave or a line source is taken as the source of

the incident wavefield impinging upon the fiber array is analyzed with the multiple scat-

tering method. Key to this approach is the field representation via a multipole expansion.

Specifically, the field in the vicinity of the l-th fiber is expressed as

Ey(r) =
∞

∑
m=−∞

[
Al

mJm(krl)+Bl
mH

(1)
m (krl)

]
eimθl , (1)

wherein i is the imaginary unit, k is the wavenumber in air, r = (rl ,θl) are the polar

coordinates of the observation point in the local coordinate system with origin at the

center of l-th fiber, Jm and H
(1)
m are the first-kind Bessel and Hankel functions of order

m, Al
m and Bl

m are the coefficients of the background incoming wave and outgoing wave

associated with the l-th fiber. Since the wave incoming upon the l-th fiber is composed

by fields scattered by all other fibers, as well as the actual incident field generated by the

emitting sources, the coefficients relate as

Al
m =

L

∑
j=1, j �=l

∞

∑
n=−∞

S
l− j
m−nB j

n +Kl
m. (2)

In the above S
l− j
m−n = H

(1)
m−n (k |l − j|d)ei(m−n)arg(l− j) are translation terms, and Kl

m are the

coefficients of actual incident field with, for a line source, H
(1)
m

(
krs

l

)
e−imθ s

l /4i and, for

a plane wave, Einc(−1)mei(k cosθincld−imθinc); in the latter expressions
(
rs

l ,θ
s
l

)
are coordi-

nates of the line source in the local polar coordinate system, Einc and θinc are the am-

plitude and incident angle of the plane wave. The short form of Eq. (2) is A = SB+K,

within which column vectors A = [Al
m], B = [Bl

m], K = [Kl
m], and matrix S = [Sl− j

m−n].
Another linear relation between A and B can be derived from the boundary condi-

tions at the fibers with field expansion inside the l-th fiber as

Ey(r) =
∞

∑
m=−∞

[
Cl

mJm(klrl)+Ql
mH

(1)
m (klrl)

]
eimθl , (3)

where kl = k
√

εl and Ql
m = χlJm(klr

s
l )e

−imθ s
l /4i are coefficients of the field scattered by

an interior line source located at
(
rs

l ,θ
s
l

)
. The term χl equals to 1 when the line source is

present and 0 otherwise. Matching tangential components of electric field and magnetic

field across fiber boundaries, coefficients in the above can be conveniently linked together

in terms of reflection matrices R and R′, and transmission matrices T and T′ by equations

B = RA+TQ,C = T′A+R′Q, where C =
[
Cl

m

]
and Q =

[
Ql

m

]
. Together with Eq. (2),

a system of linear equations in A, B, and C is built and solutions can be easily derived

from

B = (I−RS)−1 (RK+TQ) , (4)

which plays a key role in the calculation of B and C, and consequently the field in the

whole space follows.
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1.3. Imaging model for detecting defects

To link the background field and locations of missing fibers, the imaging model needs

to be established. In effect, the possibility of finding missing fibers in the fiber array by

analyzing its electromagnetic response comes from the disturbance of the background

field due to these defects. Its evaluation is carried out with the help of the Lippman-

Schwinger integral formulation

Ẽy (r)−Ey (r) =
L

∑
l=1

∫

Dl

G
(
r,r′

)(
k2

l − k2εr

)
Ẽy

(
r′
)

dr′, (5)

where Ey denotes the total field in the well-organized structure herein and parameters

with ’∼’ above are associated with the subsequently disorganized structure, Dl is the

surface area of the l-th missing fiber, and G(r,r′) is the Green’s function when the line

source is located at r′ and the fiber array is well-organized. Substituting the expression

of G(r,r′) obtained by letting K = 0 and χl = 1 , and that of Ẽy by letting Q = 0 and

kl = k into Eq. (5), the involved integral can be reduced into a simpler form

Ẽy (r)−Ey (r) =
L

∑
l=1

∞

∑
m=−∞

bl
mH

(1)
m (krl)e

imθl , (6)

which is a summation of scattered fields by the entire set of fibers with coefficients bl
m,

and bl
m calculated as

b = (I−RS)−1Tq, (7)

where b =
[
bl

m

]
, q =

[
ql

m

]
, and ql

m = (
√

εrJm+1(k
√

εrc)Jm(kc)− Jm(k
√

εrc)Jm+1(kc)) ·
ikcπχlC̃

l
m/2.

Figure 2. Sketch for physical interpretation of Lippman-Schwinger integral formulation.

The Lippman-Schwinger integral formulation Eq. (5), together with Eqs. (6) and (7),

can be physically interpreted by Figure 2, where the dot in the left part stands for a line

source located at r′, the gray fiber in the right part is the cylindrical source having same

cross-section as the removed fiber and Ed
y (r) = Ẽy (r)−Ey (r) is the background field

due to this cylindrical source. The coefficients of the field scattered by the cylindrical

source within the l-th fiber are ql
m, and the field scattered by each fiber, in the background

medium, is with coefficients bl
m. Denoting H = [H

(1)
m (krl)e

imθl ], Ed
y (r) can be written as

Ed
y (r) = H(I−RS)−1Tq. (8)

Be a receiver array with Nr elements and sources array with Ns elements utilized

for the testing. For the ν-th source, values of Ed
y (r) collected by the receiver array can
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compose a column vector gν with dimension Nr, ν = 1,2, . . . ,Ns. The data matrix Y,

or Muti-Static Response (MSR) [5], can be constructed by taking them as columns, i.e.

Y = [g1,g2, . . . ,gNs ]. Since, the expression H(I−RS)−1T is invariant with the sources,

an initial imaging model can be derived as an extension of Eq. (8),

Y = H(I−RS)−1TF, (9)

where F = [q1,q2, . . . ,qNs ].

1.4. Zero-mode approximation

The number of modes cannot be infinite in multipole expansions. As a conclusion in [4],

∑
∞
m=−∞ is truncated to ∑

M
m=−M with M = int

(
(k
√

εrc)
1/3 + k

√
εrc+5

)
, in which int is

the operator yielding the integer part. With a low-frequency incident field, (k
√

εrc)
1/3 +

k
√

εrc can be smaller than 1, then M is reduced to 0 without the security factor 5. With

this point, an approximated imaging model can be obtained by letting M = 0, i.e.,

Y =
(
H(I−RS)−1T

)0
F0 +N0, (10)

where the superscript 0 identifies matrices that are only including the zero-th mode, and

N0 is the resulting approximation error.

Benefiting from this approximation, the dimensions of the matrices involved are

largely reduced, which lightens the burden of the following reconstruction proce-

dures. Taking into account additive noise Na in the collected data, and setting Z =(
H(I−RS)−1T

)0
, S=F0 and N=N0+Na for convenience, one gets the imaging model

in the noisy case as

Y = ZS+N. (11)

From the definition of S, one can find the correspondence between the indices of missing

fibers and the positions of non-zero rows in S. Specifically, the l-th row of S will be

non-zero when the l-th is missing, and null otherwise.

2. Reconstruction methods

Standard MUSIC and the proposed joint sparsity method are adopted to solve for S in

Eq. (11). Literature about MUSIC is abundant, so only joint sparsity is commented.

2.1. MUSIC

The singular value decomposition of the matrix S reads as

Y = UDV∗, (12)

where ∗ denotes the conjugate transpose, and D is a diagonal matrix composed from the

singular values. According to the distribution of singular values [7], U can be divided

into signal space Us and noise space Un. The estimation function is defined as
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ŝl =
ZlZ

∗
l

Z∗
l UnU∗

nZl

, (13)

where Zl indicates the l-th column of Z. Since the denominator goes to zero when the

l-th fiber is missing, defects are shown as peaks in the curve of vector ŝ = [ŝl ].

2.2. Joint sparsity

In general applications, only few fibers are faulty (missing). As exhibited from the com-

position of S, each column has few non-zero elements, i.e., each column of S is sparse.

Furthermore, since the indices of missing fibers are invariant with the emitting sources,

different columns of S share joint positions of non-zero elements, i.e., different columns

enjoy joint sparsity.

To take advantage of this prior knowledge, a specific regularization is set forth. Let-

ting sl as the l2-norm of the l-th row of S, results from different rows can compose a vec-

tor s = [s1,s2, . . . ,sN ]. In this way, the knowledge about joint sparsity is converted into

the sparsity in s while the information desired is saved simultaneously. Since sparsity can

be accurately evaluated via the l0 norm which counts the number of non-zero elements,

the following optimization yields s:

min ||s||0, subject to ||Y−ZS||2F ≤ τ2 and sn = ||Sn||2, l = 1,2, . . . ,L, (14)

where ||s||0 stands for the l0-norm of s, sl is the l2-norm of the l-th row of S, and τ is the

parameter constraining the energy of residual. However, solving s in Eq. (14) is qualified

as a NP-hard problem, requiring an exhaustive enumeration of all
(

L
P

)
possible locations

of nonzero entries in s. Fortunately, optimization based on l1-norm

min ||s||1, subject to ||Y−ZS||22 ≤ τ2 and sn = ||Sn||2, l = 1,2, . . . ,L (15)

can also exactly recover s when sufficient collected data are available. This problem here

is converted into the second order cone programming (SOCP) form [8] and solved by a

standard free package SeDuMi [9].

As a further step, to reduce the effect of noise, the data matrix Y can be pre-processed

by mapping Y onto its signal subspace, i.e.,

Yv = ZSv +Nv, (16)

where Yv = YVs, Sv = SVs, Nv = NVs, and Vs is the signal subspace of V. The choice of

Vs obeys the same criterion as the one of Us in MUSIC. Since N and Vs are uncorrelated

with each other, the noise effect on the retrieval results can be reduced. And, since S is

multiplied by Vs on the right side, the information about the index of missing fibers is

saved in Sv. Thus Sv can be reconstructed in the same way as described in Eq. (15).

3. Numerical results

First, the accuracy of the multiple scattering method is validated by comparing it with the

finite-element software COMSOL, then standard MUSIC and joint sparsity method are
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applied to locate missing fibers. The proposed example is a periodic array of 65 circular

cylindrical fibers standing in air. Material in each is either carbon (εr = 12, conductivity

σ = 3×102 S/m) or glass (εr = 6). Indices run from −32 to 32. Distance between centers

of adjacent fibers is d = 0.01mm, and radius c = 0.2d. Validation of the electromagnetic

evaluation plane

Figure 3. Validation by COMSOL with (−1)-th and 1-th carbon fibers missing, incident wavelength λ inc = d.

(a) (b)

Figure 4. Validation of (a) imaginary part and (b) real part of the electric field with the disorganized structure.

modeling is conducted by letting a plane wave impinge on a disorganized carbon-fiber

array with incident angle π/4. In this array, fibers with indices −1 and 1 are missing. The

incident wave is with wavelength λ inc = d. Data for comparisons are collected from the

total field on the evaluation line, as shown in Figure 3, ranging from −5d to 5d in the x

direction. To validate both amplitude and phase, real and imaginary parts are compared.

Refer to Figure 4. The circles represent the results with the multiple scattering method,

results of COMSOL are denoted by the solid line. It can be seen that the results exhibited

are in excellent agreement.

Then, imaging results are displayed according to Figure 5. The z axis is taken as

the central line, 100 line sources and 100 receivers are uniformly placed along the lines

z = d and z = −d, respectively. The interval between adjacent sources or receivers is

d/2. Additive Gaussian noise is accounted for signal to noise ratio (SNR) of 20 dB.

Figure 6 shows the detection results with both standard MUSIC and the joint sparsity

method, the vertical dashed lines indicating the true indices of missing fibers. It can be

observed that, no matter whether the fiber be mostly conductive (carbon) or dielectric

(glass), both methods yield accurate estimates of the locations of the missing fibers.

4. Conclusions

Investigations about a fiber array with missing fibers have been performed. To model

the fields, the multiple scattering method has been utilized and independently validated.
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Figure 5. Configuration of imaging

(a) (b)

Figure 6. Imaging results of missing (a) carbon (b) glass fibers, with indices [-19, -5, 7, 15], Nr = Ns = 100,

f = 60GHz, d = 0.1mm, c = 0.2d, SNR = 20 dB

Imaging is directly derived from Lippman-Schwinger integral formulation, and then is

simplified with the zero-mode approximation. Both standard MUSIC and joint sparsity

methods have been applied to retrieve the indices of missing fibers. However, at high

frequency, the zero-mode approximation error cannot be neglected, which might call for

establishment of a new imaging model to make use of more modes. Investigations on the

single-layer structure (involving a matrix material different from air) are also foreseen.
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