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ABSTRACT

In this paper, we investigate the calibration of radio interfer-

ometers in which Jones matrices are considered to model the

interaction between the incident electromagnetic field and the

antennas of each station. Specifically, perturbation effects are

introduced along the signal path, leading to the conversion of

the plane wave into an electric voltage by the receptor. In

order to design a robust estimator, the noise is assumed to fol-

low a spherically invariant random process (SIRP). The de-

rived algorithm is based on an iterative relaxed concentrated

maximum likelihood estimator (MLE), for which closed-form

expressions are obtained for most of the unknown parameters.

Index Terms— Calibration, Jones matrices, robustness,

SIRP, relaxed concentrated maximum likelihood

1. INTRODUCTION

The new generation of radio telescopes, such as the LO-

FAR [1] and the SKA [2], are characterized by a large num-

ber of receiving elements, large collecting area and dynamic

range, wide field of view, high sensitivity and resolution,

huge amount of measurement data, etc., which entails a

certain number of scientific challenges. In radio interferom-

etry [3], one of the most important challenges is notably the

calibration [4].

Calibration involves the estimation and the correction of

different unknown perturbations introduced along the signal

path, e.g., due to the environment (atmosphere, ionosphere)

or the artifacts in the instruments (electronic gain, bandpass,

station beam shape and orientation, sidelobe contamination,

etc.). All these physical corruption effects, which may be di-

rection dependent [5], are involved in the radio interferometer

measurement equation and can be modeled with the help of

Jones matrices [6, 7]. Besides, many faint sources are present

in radio interferometric data and can be considered as outliers
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in the calibration procedure, leading to deviations from the

commonly assumed Gaussian noise model [8, 9].

To overcome these drawbacks, we intend to robustify the

calibration scheme by using a wider distribution class than

the Gaussian one, to model the noise. In doing so, we do

not specify precisely the noise distribution, unlike [10] where

the Student’s t-distribution is considered, and we use a broad

class of distributions gathered under the so-called spherically

invariant random distribution [11,12]. A spherically invariant

random process (SIRP) is described as the product of a texture

parameter: a positive random variable, and a speckle compo-

nent: a Gaussian process, resulting in a two-scale compound-

Gaussian distribution. Under SIRP noise, the maximum like-

lihood (ML) method can be used to estimate the unknown

parameters [13]. In our case, to obtain closed-form expres-

sions and to reduce the computational complexity of our prob-

lem, the ML estimates are derived in an iterative way with

a sequential updating procedure [14]. This is the iterative

concentrated ML technique. However, a numerical optimiza-

tion process still needs to be performed and can be computed

efficiently for instance with the Levenberg-Marquardt (LM)

solver [15, 16].

In this paper, we use the following notation: symbols (·)T ,

(·)∗, (·)H denote, respectively, the transpose, the complex

conjugate and the Hermitian operator. The Kronecker prod-

uct is represented by⊗, E{·} denotes the expectation operator

and bdiag{·} is the bloc-diagonal operator. The trace and de-

terminant operators are, respectively, referred to by tr {·} and

| · |. Finally, the symbol IB represents the B×B identity ma-

trix and vec(·) stacks the columns of a matrix on top of one

another.

2. DATA MODEL

Let us consider D signal sources impinging on a station of

M antennas. Each electromagnetic plane wave is observed

by M antennas and can be decomposed as two orthogonal

polarization directions (x, y). Each antenna is composed of

two receptors, which are sensitive to a particular polarization



[6]. Thus, the measured voltage at the p-th antenna due to the

i-th signal source impinging on it is written as [6, 7]

v̄ip = Jip(θ)si (1)

where the relation between each incoming radiation si =
[six , siy ]

T and the generated voltage at each antenna v̄ip =
[vipx , vipy ]

T is given by a 2 × 2 Jones matrix Jip(θ),
parametrized by the unknown vector θ. The Jones matrix

accounts for the different perturbations introduced on the

path from the i-th source to the p-th sensor. Hence, for a

given source-antenna pair, we measure two output signals,

i.e., one for each polarization. Since each Jones matrix is

associated with a source-antenna pair, the total number of

Jones matrices is DM .

Typically, in radio astronomy, signals collected by a pair

of antennas (p, q), i.e., two pairs of output signals, are corre-

lated. Then, different crosscorrelation measurements, called

visibilities, are computed for different antenna pairs, with a

specific baseline. The total number of antenna pairs is B =
M(M−1)

2 and for a given (p, q) antenna pair, the 2×2 visibility

matrix, in the noiseless case, is denoted by Ṽpq = E{v̄pv̄
H
q }

and written as

Ṽpq =

D
∑

i=1

Jip(θ)CiJ
H
iq
(θ) for p < q, p, q ∈ [1, . . . ,M ],

(2)

in which, for the i-th source, Ci = E{sisHi } is the 2×2 intrin-

sic source coherency matrix, known from prior knowledge.

As one can notice, this equation is composed of the contri-

butions from D discrete polarized calibrator sources (D > 1
to avoid calibration ambiguities [5]) with uncorellated radia-

tions and the corresponding path effect modeled by the Jones

matrices.

Using [17, p. 424], the vectorized form of (2) can be writ-

ten as

ṽpq = vec(Ṽpq) =

D
∑

i=1

uipq (θ) (3)

where uipq (θ) =
(

J⋆
iq
(θ)⊗ Jip(θ)

)

ci, in which ci =

vec(Ci). To consider a more realistic scenario, we introduce

a noise vector npq for each antenna pair (p, q) such that the

visibility vector becomes

vpq = ṽpq + npq. (4)

The full visibility vector x of length 4B is given by

x =











v12

v13

...

v(M−1)M











=
D
∑

i=1

ui(θ) + n (5)

where ui(θ) =
[

uT
i12

(θ),uT
i13

(θ), . . . ,uT
i(M−1)M

(θ)
]T

and

n =
[

nT
12,n

T
13, . . . ,n

T
(M−1)M

]T

.

3. MAXIMUM LIKELIHOOD ESTIMATION

The D signal sources correspond to the brightest sources,

while the weak ones are considered as noise. Therefore, out-

liers may appear and the Gaussian noise assumption may not

be fulfilled [18], e.g., a Student’s t-distribution may be used

[10]. To cope with different noise distributions, specifically

non-Gaussian noise modeling, and to achieve robust calibra-

tion w.r.t. outliers, we consider a spherically invariant random

process (SIRP), which is defined for each antenna pair as

npq =
√
τpq gpq (6)

where the random variable τpq is positive and real. This

power factor varies independently according to the antenna

pair considered and, in the radar context, is called texture.

The speckle component gpq is a complex zero-mean Gaus-

sian process with an unknown covariance matrix Ω, i.e.,

gpq ∼ CN (0,Ω) such that tr {Ω} = 1, (7)

where the 4 × 4 covariance matrix Ω is the same for all an-

tenna pairs and a constraint is required on its trace to remove

scaling ambiguities in model (6). Taking into account such

noise model and assuming spatial independence between an-

tenna pairs, the likelihood function is given by

f(v12, ...,v(M−1)M |θ, τ ,Ω) =

∏

pq

1

|πτpqΩ|
exp

{

− 1

τpq
aHpq(θ)Ω

−1apq(θ)

}

, (8)

with τ = [τ12, τ13, . . . , τ(M−1)M ]T and apq = vpq − ṽpq . In

the r.h.s. of (8), the product is performed for each antenna pair

so there are B elements in the product. The log-likelihood

function is written as follows

log f(v12, ...,v(M−1)M)|θ, τ ,Ω) = −4B log π

− 4
∑

pq

log τpq −B log |Ω| −
∑

pq

1

τpq
aHpq(θ)Ω

−1apq(θ).

(9)

The proposed robust calibration scheme is based on an it-

erative ML algorithm [14,19]. The principle is to optimize the

log-likelihood function w.r.t. each unknown parameter, while

fixing the others, leading to the so-called concentrated ML es-

timator. Furthermore, we use in the following a relaxed ML

estimator for which the texture parameters are assumed un-

known and deterministic. This choice is motivated by the fact

that we aim to design a broad robust estimator w.r.t. the pres-

ence of outliers but also in order to avoid a misspecification

of the probability density function of τ (i.e., we do not need

to specify the texture distribution, ensuring more flexibility).

A closed-form expression can be obtained for each texture

realization τpq and the speckle covariance matrix Ω. Gener-

ally, no closed-form expression can be obtained for θ, unless



assuming a specific linear modeling of this vector w.r.t. the

noiseless visibilities.

1) Derivation of τ̂pq: We take the derivative of the log-

likelihood function in (9) w.r.t. τpq and equate it to 0, leading

to

− 4

τpq
+

1

τ2pq
aHpq(θ)Ω

−1apq(θ) = 0. (10)

We then obtain the expression of the texture estimate,

τ̂pq =
1

4
aHpq(θ)Ω

−1apq(θ). (11)

2) Derivation of Ω̂: We take the derivative of the log-

likelihood function w.r.t. the element [Ω]k,l of the speckle co-

variance matrix and equate it to 0. Using [20, p. 2741], we

obtain

−Btr
{

Ω−1eke
T
l

}

+
∑

pq

1

τpq
aHpq(θ)Ω

−1eke
T
l Ω

−1apq(θ) = 0

(12)

where the vector ek contains zeros except at the k-th position

which is equal to unity. Using the permutation property of the

trace operator, we obtain

−BeTl Ω
−1ek +

∑

pq

1

τpq
eTl Ω

−1apq(θ)a
H
pq(θ)Ω

−1ek = 0.

(13)

Consequently,

Ω̂ =
1

B

∑

pq

1

τpq
apq(θ)a

H
pq(θ). (14)

Since we adopt here an iterative procedure with a concen-

trated ML scheme, we plug (11) into (14) leading to

Ω̂
j+1

=
4

B

∑

pq

apq(θ)a
H
pq(θ)

aHpq(θ)(Ω̂
j
)−1apq(θ)

(15)

where j represents the j-th iteration. To ensure uniquely iden-

tifiable noise parameters, as it was previously mentioned in

(7), the estimate of Ω needs to be, e.g., normalized by its

trace, as

Ω̂
j+1

=
Ω̂

j+1

tr
{

Ω̂
j+1
} . (16)

3)Estimation of θ̂: Estimating θ̂ for a givenΩ and τ leads

to

θ̂ = argmin
θ

{

∑

pq

1

τpq
aHpq(θ)Ω

−1apq(θ)

}

. (17)

Depending on the structure of the Jones matrices [21], a dif-

ferent procedure can be adopted to estimate θ. A particular

parametrization is the non-structured case, where θ is com-

posed of the entries of all Jones matrices, which is considered

in the following.

4. ESTIMATION OF θ̂ FOR NON-STRUCTURED

JONES MATRICES

The optimization in (17) may be computationally heavy and

very slow in convergence. To overcome this drawback, we

apply the expectation-maximization (EM) algorithm, as in [8]

and [9]. Since we adopt the non-structured Jones matrices

case (i.e., θ is a collection of Jones matrices’ elements), the

vector θ can be partitioned as

θ = [θT
1 , . . . , θ

T
D]T = [θT

11 , . . . , θ
T
1M , . . . , θT

D1
, . . . , θT

DM
]T

(18)

meaning that for the i-th source and the p-th antenna, we have

Jip(θ) = Jip(θip) in which θip denotes the parametrization

of the path i-p.

The EM algorithm [22,23] is an iterative procedure to ap-

proximate the ML estimation technique and reduce its com-

putational cost. First, the E-step computes the conditional ex-

pectation of the complete data given the observed data and the

current fit for parameters. Second, the M-step maximizes the

log-likelihood function of the conditional distribution, previ-

ously computed. This may not result in a closed-form expres-

sion and requires a numerical optimization procedure. The

Levenberg-Marquardt (LM) algorithm is notably particularly

appropriate for non-linear problems. The E- and the M-steps

are repeated until convergence or until the maximum number

of iterations is reached. The complexity is reduced since the

unknown parameter vector is partitioned over the sources and

optimization is carried out w.r.t. to θi instead of θ. This leads

to single source sub-optimization problems of smaller sizes.

1) E-step: We introduce the complete data vector w =
[wT

1 , . . . ,w
T
D]T where, for the i-th source, the 4B × 1 vector

wi is given by

wi = ui(θi) + ni (19)

such that x =
∑D

i=1 wi. The noise vectors ni are supposed

to be statistically independent such that ni ∼ CN (0, βiΨ)

where
∑D

i=1 βi = 1 and Ψ is the covariance matrix of n. The

covariance matrix of each noise vector npq is given by τpqΩ.

Making use of the independence property, we obtain Ψ =
bdiag{τ12Ω, . . . , τ(M−1)MΩ} and the covariance matrix of

w is given by Ξ = bdiag{β1Ψ, . . . , βDΨ}.
Using [24, p. 36], we obtain the conditional expectation

of the complete data ŵ = E{w|x; θ, τ ,Ω}, in the jointly

Gaussian case, that is,

ŵi = ui(θi) + βi

(

x−
D
∑

l=1

ul(θl)

)

. (20)

2) M-step: Once ŵ is evaluated, θi is estimated through
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Fig. 1. Evolution of the relative MSE of a given unknown

parameter as a function of the SNR.

optimization. Independence of wi leads to

f(ŵ|θ, τ ,Ω) =

D
∏

i=1

1

|πβiΨ|

exp

{

−
(

ŵi − ui(θi)
)H

(βiΨ)−1
(

ŵi − ui(θi)
)

}

. (21)

For the i-th source, the cost function to minimize is given by

ζi(θi) =
(

ŵi − ui(θi)
)H

(βiΨ)−1
(

ŵi − ui(θi)
)

. At the

(h+1)-th iteration of the LM-like algorithm, we have:

θ
h+1
i = θ

h
i −(∇θi

∇T
θi
ζi(θi)+λI4M )−1∇θi

ζi(θi)|θh
i
. (22)

Proposed algorithm:

input : D, M , B, Ci, βi, x

output : estimate of θ

initialize: Ω̂← Ωinit,τ̂ ← τ init

while stop criterion unreached do

1 θ̂i ← θiinit , i = 1, . . . , D
while stop criterion unreached do

2 E-step: ŵi obtained with (20)

3 M-step: θ̂i obtained with (22)

end

4 Obtain Ω̂ with (15) then (16)

5 Obtain τ̂ with (11)

end

5. NUMERICAL SIMULATIONS

In the following simulations, we consider D = 2 sources and

M = 16 antennas. Therefore, the number of antenna pairs is

B = 120, each providing a 4×1 observation vector, and there

are 128 unknown parameters to estimate, corresponding to
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Fig. 2. Relative MSE of the 128 unknown parameters for a

given SNR.

the entries of the Jones matrices. The source coherency Ci is

defined thanks to the Stokes parameters [6,7], which represent

the polarization state of the i-th signal source considered. The

number of Monte Carlo runs is set to 100.

In Fig. 1, we plot the relative mean square error (MSE)

vs. (residual) signal-to-noise ratio (SNR), for a given param-

eter representative of the overall behavior (by residual SNR,

we mean the SNR computed using only the off-diagonal terms

of the covariance matrix since the diagonal terms have been

deleted, i.e., equivalently Ṽpp is not considered in the ob-

servation model (2)). We represent the following cases: i)

the proposed algorithm as exposed in the pattern (blue curve)

which intends to propose a robust estimator, ii) the case when

gaussian noise is assumed with a known covariance matrix

(equivalently Ω is known and τ is set to a vector filled with

ones during the whole estimation procedure (green curve))

and iii) the case when gaussian noise is assumed with an iden-

tity covariance matrix (equivalently Ω is set to the identity

matrix and τ is filled with ones (red curve)). The two last

cases correspond to Gaussian modeling, with spatially cor-

related and i.i.d. noise. For all cases, the observations are

generated using the true noise covariance matrix, structured

as described in (6). In Fig. 2, we plot the relative MSE of

each unknown parameter for a SNR of 15 dB.

The lowest MSE is achieved with the proposed algorithm,

which estimates iteratively both texture and speckle compo-

nents and the Jones matrices for calibration. Such perfor-

mance is due to the SIRP noise assumption which includes

many various distributions. The calculations were performed

without precising the distribution considered, thus ensuring

robust calibration to the presence of outliers in the noise (faint

sources). If we do not characterize precisely the noise (i.e.,

we dot not take into account the probability density function

of τ ), we have less information (relaxed ML estimator) but

we reach robustness. The two other curves do not take into

account the noise model as presented in (6), leading to mis-

specifications and poor accuracy in calibration.



6. CONCLUSION

In this paper, we propose a robust calibration algorithm of ra-

dio interferometers, where non-structured Jones matrices are

used to model the different perturbations introduced along the

signal path. The derived scheme is based on an iterative re-

laxed concentrated ML method, in which a SIRP noise model

is introduced, without fixing the texture distribution. Closed-

form expressions are obtained for the noise parameters (tex-

ture components and speckle covariance matrix) while the es-

timation of the unknown vector θ is performed via an opti-

mization process. The computational complexity of the prob-

lem is reduced with the use of the EM algorithm and the par-

tition per source.
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