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We demonstrate that the energy transport of surface phonon-polaritons can efficiently be observed
in a crystal made up of a three-dimensional assembly of spheroidal nanoparticles of silicon carbide.
The ultralow phonon thermal conductivity of this nanostructure along with its high surface area-
to-volume ratio allows the predominance of the polariton energy over that generated by phonons.
The polariton dispersion relation, propagation length, and thermal conductance are numerically
determined as functions of the size, shape, and temperature of the nanoparticles. It is shown that
the thermal conductance of a crystal with prolate nanoparticles at 500 K and a minor (major) axis
of 50 nm (5 µm) is 0.5 nW· K−1, which is comparable to the quantum of thermal conductance
of polar nanowires. We also show that a nanoparticle size dispersion up to 200 nm, does not
change significantly the polariton energy, which supports the technological feasability of the proposed
crystal.fg

PACS numbers: 65.60.+a; 65.80.-g; 65.90.+i

I. INTRODUCTION

Surface phonon-polaritons (SPhPs) are coupled states
of optical phonons and electromagnetic waves that can
significantly enhance the thermal energy transport along
the interface of polar nanomaterials [1–4]. Theoretical
[5–7] and experimental [8, 9] studies have shown that
the propagation length of SPhPs can be more than three
orders of magnitude larger than the phonon mean free
path, which is of a few nanometers upward, for a wide
variety of materials at room temperature [10, 11]. This
sizeable difference on the mean free path of phonons and
SPhPs yields a SPhP thermal conductivity of nanofilms
[5, 7, 12] and a SPhP thermal conductance of nanowires
[13] that could be comparable to the corresponding ones
of phonons [14–21].

SPhP energy transport is determined by the permit-
tivity and geometry of the involved polar nanomaterials
and hence it can be modified by material discontinuities.
Given that SPhPs are electromagnetic waves that propa-
gate along the material interface, their energy transport
is expected to increase as the material size is scaled down
to nanoscales, due to the strengthening of the surface ef-
fects. This is the case of the SPhP thermal conductivity
of nanofilms, which increases with the inverse third power
of the film thickness mainly [6, 7]. The SPhP thermal
conductivity of a 40-nm-thick thin film of silicon dioxide
at 500 K and suspended in air is 4 W·m−1·K−1 [5, 12],
which is more than twice the corresponding phonon coun-
terpart. Higher values are found for thinner films and
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higher temperatures. In a nanowire, on the other hand,
SPhPs propagates ballistically and their contribution to
the its thermal conductance is quantized and given by
π2k2BT/3h [13], which is comparable to the phonon con-
tribution, at low temperature [14, 15]. This comparabil-
ity between the phonon and SPhP thermal conductivities
and thermal conductances makes difficult to experimen-
tally observe the SPhP energy transport. A nanostruture
able to support the SPhP propagation and quench the
phonon heat conduction is therefore desirable.

The purpose of this work is to theoretically demon-
strate that the SPhP energy transport can efficiently be
observed in a three-dimensional (3D) crystal made up of
spheroidal polar nanoparticles. This is done by deter-
mining the SPhP thermal conductance of the proposed
crystal and showing that its values can be as high as
those of the quantum of thermal conductance of polar
nanowires. The effects of the nanoparticle size, shape,
and temperature are analyzed in detail.

II. SPhP ENERGY TRANSPORT

Let us consider a 3D assembly of polar nanoparticles
in contact, as shown in Fig. 1(a). The nanoparticles are
spheroids with semiaxis lengths along the x, y, and z axes
of b, a, and a, respectively (Fig. 1(b)). The thermal en-
ergy transport along this nanoparticle crystal is expected
to be dominated by SPhPs due to two main reasons:
First, the relatively small nanoparticles along with their
multiple interfaces act as thermal barriers that diminish
remarkably the phonon heat conduction [22]. Second,
the high surface area-to-volume ratio of the nanoparti-
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cles favors the propagation of SPhPs along their surfaces.
This crystal can be fabricated by the well-established mi-
cro/nanofabrication technique of focused ion beam direct
writing, which has a relatively low deposition rate (nor-
mally, 0.05 µm3/s), but a comparatively high resolution
of 80 nm [23]. Two other alternative techniques of fabri-
cation are the 3D printing and the high-resolution stere-
olithograpy [24], which have been recently applied to fab-
ricate 3D phononic crystals used for tailoring the phonon
thermal conductivity [25, 26].

To quantify the energy transport of SPhPs propagat-
ing in the nanoparticle crystal shown in Fig. 1(a), we put
it in thermal contact with two thermal baths set at the
temperatures T1 and T2 (T1 > T2), as shown in Fig. 1(c).
Under this thermal excitation, the polar molecules of the
nanoparticles emit an electric field, as a result of their
oscillating electrical dipoles. This field induces the ex-
citation of neighboring electrical dipoles, which keep the
propagation of the field (SPhP) along the z axis. Assum-
ing that the thermal contacts between the thermal baths
and the crystal are good enough [13] to allow the trans-
mission of SPhPs from the left thermal bath to the right
one, the SPhP propagation length Λ will be longer than
the crystal length along the z axis and the thermal bath
will exchange a net heat flux. Under this condition and
taking into account that SPhPs follow the Bose-Einstein
statistics [5], the net heat flux q of SPhPs propagating
with speed V is given by [27]

q =
1

4π

∫
~ωV cos(θ) [f (T1)− f (T2)]D (ω) dωdΩ, (1)

where 2π~ is the Planck’s constant, ω is the excitation
frequency, f(T ) = [exp(~ω/kBT )− 1]

−1
is the Bose-

Einstein distribution function, D(ω) = β2
R(ω)/(2π2V )

is the 3D density of SPhP states, βR being the SPhP
wave vector along the heat flux direction (+z axis),
and dΩ = sin(θ)dθdφ is a differential of solid angle
in spherical coordinates, with θ the angle between the
SPhP velocity and heat flux. Equation (1) represents
an extension of the Landauer formula [17, 28–30] for
3D heat transport. Considering that the difference of
temperature ∆T = T1 − T2 << T = (T1 + T2)/2, the
change of distribution functions in Eq. (1) reduces to
f (T1) − f (T2) = ∆T∂f (T ) /∂T . After performing the
angular integration in Eq. (1), the thermal conductance
G = qS/∆T of the SPhP crystal can be expressed as

G =
S

8π2

∫ ωmax

ωmin

~ωβ2
R

∂f (T )

∂T
dω. (2)

where S = πab is the nanoparticle cross-section area
”seen” by the SPhPs propagating along the z axis and
ωmin and ωmax stand for the lowest and highest frequen-
cies allowing their propagation. Equation (2) shows that
G increases with the SPhP wave vector βR, which de-
pends on the material properties and geometry of the
nanoparticles. The comparison of the thermal conduc-
tance in Eq. (2) with that for a linear chain of nanoparti-
cles [31, 32], indicates that the 3D effect onG is taken into
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FIG. 1: (a) Surface phonon-polariton crystal made up
of (b) spheroidal polar nanoparticles. (c) Heat

transport along the SPhP crystal excited by two
thermal baths.The purple glow around the

nanoparticles represents the coupled electromagnetic
field induced by their surface polarization.

account by means of the non-dimensional factor Sβ2
R/4π,

which is associated with the confinement of SPhPs to the
nanoparticle surfaces [31]. Thus, Eq. (2) physically es-
tablishes that the stronger the confinement, the higher
the energy transport of SPhPs, as expected.

The wave vector βR = Re(β) is determined by the dis-
persion relation of the SPhPs propagating along the z
axis of the nanoparticle crystal shown in Fig. 1(a). The
polar nanoparticles have a relative permittivity ε1 and
are embedded in a dielectric medium of relative permit-
tivity ε2. Both media are assumed to be non-magnetic
(µ1 = µ2 = 1) and that the electrical dipoles inside the
nanoparticles are aligned parallel to the z axis, as es-
tablished by the thermal excitation of the thermal baths
shown in Fig. 1(c). In view of this alignment, the dipole-
dipole interactions occur along the z axis mainly, and
therefore the SPhP propagation in the 3D crystal can be
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FIG. 2: Chain of spheroidal polar nanoparticles
supporting the propagation of SPhPs due to the

dipole-dipole interactions. The continuous line stands
for the decay of SPhP electromagnetic field as it

propagates along the chain.

modelled as that along a single chain of nanoparticles, as
shown in Fig. 2. By solving the Maxwell equations under
proper boundary conditions required for the existence of
SPhPs [1, 5] along a chain of nanoparticles with longi-
tudinal polarization, the following dispersion relation for
the complex wave vector β is obtained [31]

−i+ α−1e =
3

X3
[f3(K,X)− iXf2(K,X)] , (3)

where X = 2ak2, K = β/k2, fj(K,X) = Lij(e
iX(1+K))+

Lij(e
iX(1−K)), and Lij(z) =

∑∞
n=1 z

n/nj is the polylog-
arithm function of order j = 2, 3 [33]. The wave vec-
tor k2 =

√
ε2ω/c and normalized polarizability αe =

αsk
3
2/(6πε2), ω being the excitation frequency, c the

speed of light in vacuum, and αs the electrostatic polariz-
ability of the nanoparticles, which depends on their per-
mittivity ε1 and geometry [31]. The absorption of energy
by the polar nanomaterials is accounted for their complex
permittivity ε1, which turns αe and K = KR + iKI , into
complex parameters as well. The real (KR > 0) and
imaginary (KI > 0) parts of the normalized wave vec-
tor K are associated with the propagation (along the +z
direction) and attenuation factor, respectively. For the
case of interest, in which the SPhP propagation length
Λ = (2k2KI)−1[12] is much larger than the center-to-
center distance between the nanoparticles (Λ� 2a), the
condition KIX � 1 is fulfilled and the linear approxima-
tion of the Taylor series expansion of Eq.(3) in powers
of KIX allows the decoupling of its real and imaginary
parts to yield

Re
(
α−1e

)
=

3

X3

[
g+3 (KR, X) +Xg+2 (KR, X)

]
, (4a)

KI = −X
2

3

Im
(
α−1e

)
g−2 (KR, X)−Xg−1 (KR, X)

, (4b)

where the functions g±j are independent of KI and given
by

g±j (KR, X) = Clj [X(1 +KR)]± Clj [X(1−KR)] , (5)

Clj(θ) being the real-valued Clausens functions of order
j = 1, 2, 3 [33, 34]. For low frequencies and/or small
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FIG. 3: (a) Dispersion relation and (b) propagation
length of SPhPs as a function of frequency, for SPhP

crystals with different shapes of SiC nanoparticles
surrounded by air.

interparticle distances, such that X � 1, the contri-
bution of g+2 disappears and the SPhP propagation is
therefore driven by g+3 mainly. Equation (4b) allows
us to determine KI and therefore the SPhP propaga-
tion length Λ = (2k2KI)−1, after solving numerically Eq.
(4a) for KR = βR/k2. In absence of energy absorption
(Im

(
α−1e

)
= 0), KI = 0 and Eq. (4a) reduces to the

previous one [34], derived for ideal lossless nanoparticles.
The obtained dispersion relation and propagation

length are now numerically quantified for SPhP crystals
with SiC nanoparticles surrounded by air, which is trans-
parent (ε2 = 1) within the range of frequencies where
the SiC supports the SPhP propagation. The permit-
tivity ε1 of the crystalline SiC at room temperature is
well described by the damped harmonic oscillator model
[5, 35]

ε1(ω) = ε∞

(
1 +

ω2
L − ω2

T

ω2
T − ω2 − iΓω

)
, (6)

where ωL = 182 Trad/s and ωT = 149 Trad/s are the
longitudinal and transversal optical frequencies, respec-
tively; Γ = 0.892 Trad/s is a damping constant and
ε∞ = 6.7 is the high frequency permittivity [36]. The
maximum of the imaginary part of ε1 occurs at ω = ωT ,
which indicates that SiC absorbs more energy from the
SPhPs at this frequency. Furthermore, the real part
Re(ε1) takes negative values within the frequency inter-
val ωT < ω < ωL, which renders the main contribution
to the propagation and energy transport of SPhPs [5], as
shown below. These values of the permittivity are ex-
pected to be valid for nanoparticle sizes larger than 5 nm
[37] and temperature lower than 600 K [38].

III. RESULTS AND DISCUSSIONS

The dispersion relation and propagation length of
SPhPs traveling along the nanoparticles/air interface of
the SPhP crystal are shown in Figs. 3(a) and 3(b), re-
spectively. At low frequency, the SPhP wave vector βR
tends to be parallel to the light line (βR = k2), which
shows the photon-like nature of the SPhPs. As the fre-
quency increases, βR takes larger values and separates
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from the light line, what enhances the confinement of the
SPhPs to the nanoparticle surface [31] and their energy
transport, as established by Eq. (2). The major con-
tribution to the SPhP thermal conductance arises there-
fore from the high frequency regime. This confinement
strengthens as the nanoparticle radius a reduces, due to
the stronger surface dipole interactions as the aspect ratio
b/a of the nanoparticles increases. However, the increase
of βR comes along with the reduction of the SPhP prop-
agation length Λ, as shown in Fig. 3(b). The trade-off
between βR and Λ indicates that the excitation frequen-
cies of SPhPs should be high enough to enhance their
confinement and energy transport, but low enough not
to significantly reduce their propagation length. For the
three nanoparticle radii a under consideration, Λ is al-
most independent of a, within all the frequency range of
SPhP propagation. This is due to the large aspect ratio of
the nanoparticles (b/a ≥ 10), for which the propagation
length Λ = (b/6)

(
Xg−1 − g

−
2

)
Im [(ε1 − ε2) / (ε1 + ε2)]

(see Eq. (4b)) becomes weakly dependent on a and
reaches its longest asymtoptic values. Shorter propa-
gation lengths are obtained for smaller aspect ratios,
what indicates that cylindrical nanoparticles with high
aspect ratios (b/a > 10) are able to maximize the prop-
agation distance of SPhPs as well as to enhance their
confinement (Fig. 3(a)). For SPhPs propagating with
a frequency ω = 150 Trad/s along nanoparticles with
(a, b) = (50, 1000) nm, their propagation length is 90 µm
(900 nanoparticles). This distance represents the maxi-
mum size of the SPhP crystal along its z axis (Fig.1(c)),
to ensure the exchange of thermal energy between the
thermal baths. Furthermore, Figs. 4(a) and 4(b) show
that when the vertical radius of the nanoparticles in-
creases from b = 900 nm to b = 1100 nm, neither the
dispersion relation nor the propagation length are signif-
icantly modified. This is reasonable due to the fact that
the SPhP propagation is mainly driven by the dipole in-
teractions along the z axis, and hence by the nanoparticle
radius a. Therefore, a 200 nm-dispersion on b, which is
expected to be present in real crystals, does not change
remarkably the SPhP energy of the crystal (Eq. (2)).
Greater size dispersions or the presence of other imper-
fections can remarkably weaken the dipole interactions
and consequently the energy transport of polaritons. For-
tunately, the resolution of the focused ion beam direct
writing technique is 80 nm [23] and hence the fabrication
of the proposed 3D crystal with the required regular (not
perfect) arrangement of particles is feasible.

Figures 5(a) and 5(b) show the SPhP thermal conduc-
tance G of the crystal as a function of the nanoparticle
radius a and temperature T , respectively. Note thatG in-
creases as a reduces, due to the increasing SPhP confine-
ment shown by the dispersion relation in Fig. 3(a). This
enhancement of G is strengthened by the temperature
rise of the crystal, especially from 300 K to 500 K. When
a is scaled down from 200 nm to 20 nm, G increases by
more than one order of magnitude, which points out that
long cylindrical nanoparticles are the suitable candidates
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FIG. 4: Frequency dependence of the (a) Dispersion
relation and (b) propagation length of SPhPs, for
crystals with different shapes of SiC nanoparticles

surrounded by air.
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FIG. 5: Thermal conductance of the SPhP crystal
made up of spheroidal SiC nanoparticles, as a function
of their (a)horizontal radius and (b) temperature. The

quantum of thermal conductance is given by
G0 = π2k2BT/3h [13].

to observe a sizeable energy transport by SPhPs. This
is confirmed in Fig. 5(b), which shows that the SPhP
thermal conductance of a crystal with spherical (b = a)
and oblate (b = a/5) nanoparticles is much smaller than
that for oblate (cylindrical) ones. The longer the as-
pect ratio b/a, the higher the thermal conductance. For
(b, a) = (5000, 50) nm, G is comparable to the quantum
of thermal conductance, which shows that the proposed
SPhP crystal can be as good polariton conductor as a po-
lar nanowire. However, the advantage of this crystal is
its ultralow phonon heat conduction, which can facilitate
the observation of the SPhP heat transport.

The SPhP thermal conductance of the crystal could be
measured generating SPhPs by thermal excitation at one
surface of the crystal, and detecting their diffraction at
the opposite parallel surface. This diffracted signal con-
tains information about the SPhP heat flux and can be
recorded through an IR microscope, over a wide range of
frequencies and temperatures comparable to room tem-
perature. Given that the phonon energy contribution is
negligible, the experimental data are expected to yield
a SPhP thermal conductance with a quasi linear depen-
dence on temperature (Fig. 5(b)), which is the signature
of the SPhP energy transport in the nanoparticle crystal.
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IV. CONCLUSIONS

The thermal conductance due to the propagation of
surface phonon-polaritons in a 3D crystal made up of
spheroidal SiC nanoparticles has been determined and
shown to be comparable to the quantum of thermal con-
ductance of polar nanowires, within a wide range of tem-
perature. This relatively high thermal conductance along

with the ultralow phonon counterpart demonstrates that
the energy transport of these polaritons could be unam-
biguously observed in a polariton crystal with cylindrical
nanoparticles. Furthermore, it has been shown that the
slight size dispersion of the nanoparticles, along the di-
rection perpendicular to the propagation one, does not
change significantly the polariton energy, which supports
the technological viability of the proposed approach.
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