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Controlling bulk Reynolds number and bulk temperature in channel flow
simulations

Y. F. Zhanga,1, R. Vicquelina,∗

aLaboratoire EM2C, CNRS, CentraleSupélec, Université Paris-Saclay, Grande Voie des Vignes, 92295 Chatenay-Malabry cedex, France

Abstract

Bulk Reynolds number and bulk temperature are key quantities when reporting results in channel flow simulations.
There are situations are when one wishes to accurately control these parameters while changing some numerical
or physical conditions. A method to control the bulk Reynolds number and the bulk temperature in channel flow
simulations is detailed. An ordinary differential equation is prescribed for the additional source term in the momentum
balance equation so that the transient regime of the simulation is thoroughly tuned in order to efficiently and accurately
reach the target Reynolds number value. A similar treatment is applied for the additional volume heat source term in
the energy balance equation. The proposed method is specifically interesting when studying complex multi-physics
in channel flow configurations when non-dimensionalization of the equations is no longer practical.
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1. Introduction

Channel flow is a simple configuration that has been widely studied numerically in order to analyze turbulent
boundary layers and validate models [1, 2]. For fully developed channel flows, periodic conditions are considered in
the infinite spanwise direction, and also along the streamwise direction. A homogeneous source term S i is then added
to the momentum equations to compensate for viscous forces and drive the flow at a given bulk velocity. In direct
numerical simulations, the momentum equation in the streamwise direction (i = 1) reads

∂

∂t
(ρu1) +

∂

∂x j
(ρu ju1) = −

∂p
∂x1

+
∂τ1 j

∂x j
+ S 1 (1)

where S 1 is the homogeneous source term in the streamwise direction while S 2 = S 3 = 0. The source term S 1
enforces the flow mass flow rate and then determines the obtained Reynolds number. In standard flows with constant
flow properties and without multiple physical phenomena (chemistry, radiation, ...), non-dimensional equations can
be written and this source term is directly related to the intended bulk or friction Reynolds number. Alternatively,
the source term can be simply be updated step by step to compensate for the change of the intended mass flux
[3]. However, in more complex flows featuring variable properties due to an explicit dependency on temperature for
example [4], or involving multiphysics such as chemistry [5] or radiation [6, 7], equations are kept in their dimensional
form and S 1 must be determined differently to reach a target bulk Reynolds number Ret

b.
A first method to determine S 1 consists in taking a fixed constant in time S ref [5, 6] that is either chosen arbitrarily

or more carefully evaluated from friction coefficient formulae that depend on the Reynolds number. Usually, the
considered formulae are accurate for simple flows (constant properties, no multiphysics) but can become considerably
erroneous as the studied flow is more and more complex. In such a case, the final Reynolds number that is obtained is
different from the intended one.
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A second kind of method consists in dynamically adapting the source term value after each iteration so that the
Reynolds number is brought towards its target value [8, 4, 5, 9]. However, none of these methods have been carefully
characterized with a dedicated study. The procedures reported in [4, 9] are similar to

S n+1
1 = S ref +

ρt
b ut

b −

∫
V ρ

nun dV ′

V

τref , (2)

where S n+1
1 is the updated value of the uniform momentum source term at iteration n + 1, ρt

b is the target value of bulk
density and ut

b is the target value of bulk velocity. Equation 2 describes the adaptation of S n+1
1 because of the difference

between the bulk mass flux at iteration n and its target value ρt
b ut

b. This difference is related to the difference between
the simulation bulk Reynolds number and the target value Ret

b. The relaxation time τref used in Eq. 2 is typically
expressed in terms of the channel time scale δ/uτ. When using Eq. 2, the permanent regime is reached after a transient
stage and S n+1

1 tends towards a constant value denoted by S 1, and

ρt
b ut

b −

∫
V ρ

nun dV ′

V
=

(
S 1 − S ref

)
τref. (3)

Since the obtained stationary value S 1 is different from the empirically determined S ref in complex flows, a finite
bias between Reb and Ret

b unfortunately remains in such flows. This biais is not present in the formulation from
Lenormand et al. [8] which can be reformulated as a PI controller with constant coefficients and a time response close
to the computation time step. The efficiency of the approach was established a posteriori.

Equation 2 was thus a first attempt to control the bulk Reynolds number. This objective is here pursued by propos-
ing an approach which ensures that the channel flow converges exactly and efficiently to the target bulk Reynolds
number a priori and a posteriori. The approach appears as a modified PI controller with time varying coefficients.
Carefully tuning the time varying coefficients allows to derive a second order ordinary differential equation with
constant coefficients for Reb whose time response can then be exactly controlled. The method is described in the
following section. Its efficiency is then demonstrated in several channel flow configurations. Similarly, the method is
derived and applied for the equivalent control of bulk temperature when studying turbulent heat transfer. Finally, a
strategy for the control of both bulk Reynolds number and bulk temperature with variable thermo-physical properties
accounted for is derived and validated in the section 4.

2. Control of the bulk Reynolds number

2.1. Formulation
Integration of Eq. 1 over the whole computational domain V gives

d
dt

(∫
V
ρu1 dV ′

)
=

∫
τ1 jn j dS + S 1 V (4)

where n j is the outward surface normal vector. The integration of the pressure gradient and the convective terms is
null because of the applied periodic boundary conditions in the X and Z directions.

The integrated term on the left side of Eq. 4 is related to the bulk Reynolds number Reb =
ρbubδ
µb

,∫
V
ρu1 dV ′ = ρb ub V =

µb Reb V
δ

(5)

where δ is the half-width of the channel and the subscript b is related to the aforementioned bulk quantities.
The integrated wall shear stress is split into two contributions,∫

τ1 jn j dS = −(τw,1 + τw,2)S w (6)

as τw,1 and τw,2, the average wall shear stresses on the lower and upper wall respectively, can be different in the general
case. S w denotes the surface area of each wall.
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Neglecting variations of the bulk dynamic viscosity and noticing that V = 2δS w, Eq. 4 becomes

dReb

dt
= −

τw,1 + τw,2

2 µb
+
δ

µb
S 1. (7)

Differentiating Eq. 7 to make dS 1
dt appear gives

d2Reb

dt2 = −
d
dt

(
τw,1 + τw,2

2 µb

)
+
δ

µb

dS 1

dt
. (8)

As in many control algorithms, we choose the evolution of the homogeneous source term S 1 to be determined by the
dynamics of the controlled quantity Reb:

dS 1

dt
= a1(t)

dReb

dt
+ a2(t), (9)

where a1(t) and a2(t) are to be determined. Equation 8 is then written as

d2Reb

dt2 −

(
a1(t)

δ

µb

)
dReb

dt
− a2(t)

δ

µb
+

d
dt

(
|τw,1| + |τw,2|

2 µb

)
= 0. (10)

In order to obtain a controlled relaxation towards the target value Ret
b, Eq. 10 is transformed into the following

second-order ordinary differential equation with constant coefficients α and β for the difference (Reb − Ret
b),

d2

dt2 (Reb − Ret
b) + α

d
dt

(Reb − Ret
b) + β (Reb − Ret

b) = 0, (11)

by setting a1(t) and a2(t) as

a1(t) = −α
µb

δ
, (12)

a2(t) =
µb

δ

[
β (Ret

b − Reb(t)) +
d
dt

(
|τw,1| + |τw,2|

2 µb

)]
. (13)

The dynamics of Reb(t) is then controlled by the discriminant ∆ = α2 − 4β. Among the different possible regimes,
the critically damped regime (∆ = 0) gives the shortest decay time in order for the controlled bulk Reynolds number
to reach the desired targeted value. It is therefore chosen, leading to α = 2β1/2. Defining τ = 2

α
introduces the

controlling decay time that can be chosen arbitrarily. Accounting for the initial conditions Reb

∣∣∣
t=0 and dReb

dt

∣∣∣
t=0, the

temporal evolution obtained for the bulk Reynolds number is

Reb(t) = Ret
b +

[(
Reb

∣∣∣
t=0 − Ret

b

) (
1 +

t
τ

)
+

dReb

dt

∣∣∣
t=0 t

]
e−

t
τ , (14)

The final formulation for the source term is therefore:

dS 1

dt
= −

µb

δ

[
2
τ

dReb

dt
+

Reb(t) − Ret
b

τ2 −
d
dt

(
τw,1 + τw,2

2 µb

)]
, (15)

which appears as a modified PI controller with thoroughly tuned coefficients. Indeed, equation 15 contains time
varying terms (apart from Reb(t) and dReb

dt ) instead of constants. Beside, their values are determined from the exact
evolution law of the bulk Reynolds number rather than by linearization of the system equations around a mean state.
Hence, any non-linear effects in the physical response due to a change in the source term is accounted for. The
temporal evolution described by Eq. 14 is exact when bulk dynamic viscosity is constant. This is the only assumption
that has been made. Even when this is not true, Eq. 15 ensures that the statistically steady state will always correspond
to Reb = Ret

b.
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Figure 1: Channel flow configuration of half-width δ. In heat transfer simulations, both wall temperatures Tw,c (lower wall) and Tw,h (upper wall)
are prescribed where Tw,h ≥ Tw,c.

Initial condition S 1(0) could be determined from Eq. 7 to impose an smooth departure from the initial Reynolds
number by imposing dReb

dt

∣∣∣
t=0 = 0. Alternatively, the initial source term value is here fixed to S ref =

τref
w
δ

a reference
value that estimates the source term for the targeted Reynolds number. Equation 15 is coupled with the set of Navier-
Stokes conservative equations. Using forward Euler time integration, the value of the momentum source term is
updated at each new iteration. This approach has been applied successfully in direct numerical simulations and
large-eddy simulations of channel flows with or without radiative energy transfer for identical bulk Reynolds number
[7, 10].

Sometimes, the source term in the momentum equation is expressed as a body force ρS 1. In variable density flows,
the source term ρS 1 is then not uniform but the proposed approach to determine S 1 can be simply adapted to this case.

2.2. Validation

The computational domain is shown in figure 1 is 2πδ × 2δ × πδ. The mesh resolution is the same as in case C3
reported in [7]. The set of governing equations is solved with the finite-volume solver YALES2 [11, 12] under a low
Mach-number approximation. As detailed in [7], the numerical setup is composed of a centered fourth-order spatial
discretization and a fourth-order time integration.

2.2.1. Isothermal case
The only assumption made in the previous derivation is neglecting the variations of the bulk dynamic viscosity.

The first studied case is isothermal (T = 1000 K) and the constant viscosity assumption is correct. Three different
decay times τ are considered: 0.33δ/ure f

τ , 0.033δ/ure f
τ , and 0.0033δ/ure f

τ . They are set as proportionate to the estimated
channel time scale δ/ure f

τ . The initial state of the channel flow simulation is a statistically steady turbulent flow at
Reb = 5850. The control method is applied to obtain Reb = Ret

b = 7000. The mesh resolution remains adequate for
this larger Reynolds number.

Figure 2 (a) shows that, whatever the imposed time scale τ, the temporal evolution of the bulk Reynolds number
expressed in non-dimensional time units t/τ follows the theoretical solution given by equation 14. It is then possible
to reach the target value Ret

b at any speed. Obviously, the time scale must still be chosen in order not to penalize the
stability of time integration of the full set of equations. The very small deviation from the theoretical solution of the
case with the smallest time response is due to numerical errors in the time integration because of the time decay τ
becoming of the same order as the simulation time step.

Figure 2 (b) shows the corresponding temporal evolution of the friction Reynolds number defined as Reτ =

ρwuτδ/µw where uτ is the actual friction velocity averaged in homogeneous directions on both walls, ρw and µw

are the density and dynamic viscosity at the wall. Reτ is here plotted against the normalized time t ure f
τ /δ to highlight

that, for short decay times τ, the adaptation of the flow field to the change in the bulk Reynolds number takes a given
amount of time that roughly scales with uτ/δ.
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Figure 2: Temporal evolution of Reb (a) and Reτ (b) for an isothermal case (T=1000K). Circles: theoretical solution; Black plain line: τ =

0.33δ/ure f
τ ; Gray plain line: τ = 0.033δ/ure f

τ ; Black dashed line: τ = 0.0033δ/ure f
τ .

2.2.2. Case with variable flow properties
Another computational case is now considered to study the impact of the constant bulk viscosity assumption made

to derive the controlling method. Wall temperatures are set to Tw,c = 950 K and Tw,h = 2050 K for the cold and hot
wall, respectively. From the instantaneous turbulent field of temperature, the dynamic viscosity µ is computed from a
tabulated function of temperature built from detailed computation with the CHEMKIN package [13, 14]. This time,
the initial state for the control method is a turbulent channel flow at Reb = 5850 whose statistically steady state is
reached with the modified wall temperatures Tw,c and Tw,h. The target value for the bulk Reynolds number is set to
Ret

b = 7000.
The equation for dS 1

dt can be adapted to account rigorously for a variable bulk viscosity (see section 4). It was
chosen here to rely instead on the robustness of the derived controller. Results are shown in figure 3 for two different
decay times τ. In this case, the evolution of the bulk Reynolds number follows the ideal response with very small
deviations. Then, the target value of the bulk Reynolds number is effectively reached as imposed by Eq. 15. Because of
the different density and viscosity at each wall, a friction Reynolds number Reτ is defined for each side. As observed
in the isothermal case, the adaptation of the mean wall shear stress takes a given physical time different from the
prescribed value of τ.

3. Bulk Temperature

The analogical issue of bulk Reynolds number control raises when studying compressible flows or turbulent heat
transfer in channel flow simulations. The bulk temperature or enthalpy is then controlled by the wall heat transfer.
When both walls have a different temperature or when heat is generated by viscous dissipation in high-speed flows,
the bulk temperature is physically determined by the problem setup. In other configurations ([15] for example), one
might want to control the bulk temperature by adding a new source term in the enthalpy or energy balance equation.
The introduction of an energy source term is also required to maintain the bulk temperature Tb in periodic simulations
when considering identical temperatures at both walls that are different from Tb without any physical heat source
term. By adding an energy source term Ω, the enthalpy transport equation is given by

∂

∂t
(ρh) +

∂

∂x j
(ρu jh) = −

∂q j

∂x j
+
∂p
∂t

+ u j
∂p
∂x j

+ τi j
∂ui

∂x j
+ Q̇ + S iui︸                                     ︷︷                                     ︸

Q̇tot

+Ω (16)

where pressure effects, viscous heating, additional physical energy source term Q̇ and the work S iui due to the added
momentum source term are considered in the general case and gathered in Q̇tot. The previous method is now derived
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Figure 3: Temporal evolution of Reb (a), Reτ on the cold and hot sides (b) for a non-isothermal case (Tw,c=950K,Tw,h=2050K). Circles: theoretical
solution; Black plain line: τ = 0.33δ/ure f

τ ; Gray plain line: τ = 0.033δ/ure f
τ .

for the controlling source term Ω. It is first validated when temperature is considered as a passive scalar field and
where the bulk Reynolds number is fixed. Then, results for simultaneous control of the bulk Reynolds number and
temperature are presented.

3.1. Formulation
The control method is obtained similarly to the one developed for the bulk Reynolds number, i.e. it is exact for a

flow with constant properties. More complex expressions are given in section 4 by accounting for effects of variables
flow properties. Integrating the enthalpy balance equation gives

d
dt

(∫
V
ρhdV ′

)
= −

∫
q jn jdS +

∫
V

Q̇totdV ′ + ΩV, (17)

where a bulk enthalpy hb can be introduced, with∫
V
ρhdV ′ = ρbhbV. (18)

When variable properties are considered, the thermal capacity at constant pressure cp is not constant and the bulk
temperature Tb can be defined by inverting the relation hb = h(Tb). Neglecting temporal variations of bulk density,
equation 17 becomes

ρbV
dhb

dt
= −

∫
q jn jdS +

∫
V

Q̇totdV ′ + ΩV. (19)

The integrated wall heat flux is split into two parts,∫
q jn jdS = (qw,1 + qw,2)S w (20)

where qw,1 and qw,2 are the average wall conductive fluxes on the lower and upper wall, respectively. Neglecting
variations of cp gives, dhb

dt = cpb
dTb
dt , and the temporal evolution of the bulk temperature is described by

dTb

dt
= −

qw,1 + qw,2

2δ ρbcpb

+
1

ρbcpb V

∫
V

Q̇totdV ′ +
1

ρbcpb

Ω (21)

Differentiating in respect to time gives

d2Tb

dt2 = −
1
2δ

d
dt

(
qw,1 + qw,2

ρbcpb

)
+

d
dt

(
1

ρbcpb V

∫
V

Q̇totdV ′
)

+
1

ρbcpb

dΩ

dt
(22)
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Figure 4: Temporal evolution of Tb in Kelvin (a), qw in W/m2 (b) and Nu for Reb = 5850 with contant properties. Circles: theoretical solution;
Black plain line: τ = 0.33δ/ure f

τ ; Gray plain line: τ = 0.033δ/ure f
τ .

Taking the following form for the source term Ω,

dΩ

dt
= b1(t)

dTb

dt
+ b2(t), (23)

the time functions b1(t) and b2(t) are adapted to give a second-order ordinary differential equation with constant
coefficients for Tb − T t

b whose response is set to the critically damped regime. It is then found that

b1(t) = −
2ρbcpb
τ

b2(t) = ρbcpb

[
T t

b−Tb(t)
τ2 + 1

2δ
d
dt

(
qw,1+qw,2

ρbcpb

)
− d

dt

(
1

ρbcpb V

∫
V Q̇totdV ′

)] (24)

Different choices are possible for the initial condition Ω(t = 0). It is set to a reference value Ωre f =
qre f

w
δ

which is
estimated from empirical Nusselt number formula for the desired operating condition.

3.2. Validation

3.2.1. Temperature as a passive scalar
Temperature is first treated as a passive scalar in order to validate the proposed method in the case of a flow with

constant thermo-physical properties. The bulk Reynolds number is then not sensitive to the variations of temperature
and is set as Reb = 5850. The wall temperature are identical Tw,c = Tw,h = 1000 K and the initial instantaneous field
of temperature is obtained for a channel flow simulation where Tb = 1100 K. The target bulk temperature is set to
T t

b = 2000 K. The wall heat flux averaged in homogeneous directions on both walls can be expressed as a Nusselt
number Nu defined as

Nu =
4qwδ

λw(Tb − Tw)
, (25)

where the reference length scale 4δ corresponds to the channel flow hydraulic diameter and where λw is the thermal
conductivity at the walls. Figure 4 (a) shows for two different decay times τ that the bulk temperature follows the
theoretical response curve. Similarly, to the wall shear stress, for small imposed value of τ, the average wall heat flux
shown in figure 4 (b) needs an incompressible physical time to adapt to the change of Tb. As expected, the obtained
steady value of the wall heat flux is larger than its initial value due to the significant change in the bulk temperature.
The Nusselt number is shown in figure 4 (c). Its final value remains close to the initial one because of the weak
dependency of Nu with the parameter Tb/Tw.

3.2.2. Simultaneous control of bulk Reynolds number and bulk temperature
The temperature field is now coupled to the velocity field by taking into account the change of properties with

temperature. Applying the control method for both Reb and Tb is necessary as controlling and varying one quantity
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Figure 6: Temporal evolution of Tb in Kelvin (a), qw in W/m2 (b) and Nusselt number (c) for varying Reb at the same time . Circles: theoretical
solution; Black plain line: τ = 0.33δ/ure f

τ ; Gray plain line: τ = 0.033δ/ure f
τ .

alone would change the other. The controllers derived for constant-properties flow are here considered. The initial
state of the simulation corresponds to a steady turbulent channel flow accounting for variable properties with Reb =

5850, Tb = 1100 K and Tw,c = Tw,h = 1000 K. Target values to be reached are set to Ret
b = 7000 and T t

b = 2000 K
with two different decay times τ = 0.33δ/ure f

τ and τ = 0.033δ/ure f
τ . The temporal evolution of bulk and friction

Reynolds numbers are presented in figure 5. Deviation of the bulk Reynolds number is larger compared to results
in section 2.2.2 due to the variation of the bulk temperature from 1100 K to 2000 K which induces large temporal
changes in physical properties such as the bulk dynamic viscosity. Despite such strong perturbations, the controlling
approach derived for constant properties flow remains robust and brings Reb to its target within a duration close to the
desired decay time.

Similarly, the bulk temperature shown in figure 6 (a) deviates slightly from the theoretical response curve before
reaching a plateau at the desired target value T t

b=2000 K. Corresponding wall heat flux and Nusselt number are given
in figure 6 (b) and (c), respectively. This time, the final value taken by the Nusselt number changes because of the
modified bulk Reynolds number.

This coupled case with simultaneous control of the bulk Reynolds number and the bulk temperature demonstrates
the adequacy of the method even with strong deviations from the assumptions made to derive the controllers. As
mentioned previously, the equations to derive the method can be modified to account for the temporal evolutions
of bulk variable properties ( see next section). As shown here, relying instead on the robustness of the obtained
constant-properties controllers is also a good strategy.
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4. Accounting for variable flow properties during control of bulk Reynolds number and bulk temperature

For the sake of completeness, controllers that account for temporal variations of thermo-physical properties of the
mixture are derived. The equations 7 and 21 and for the derivative of Reb and Tb are then replaced by

dReb

dt
= −

τw,1 + τw,2

2 µb
+
δ

µb
S 1 − Reb

1
µb

dµb

dt
(26)

dTb

dt
= −

qw,1 + qw,2

2δ ρbcpb

+
1

ρbcpb V

∫
V

Q̇totdV ′ +
1

ρbcpb

Ω −
hb

ρbcpb

dρb

dt
(27)

Computing the temporal derivative of theses expressions gives modified expressions for the control equations. Hence,
the momentum source term is still set by the differential equation dS 1

dt = a1(t) dReb
dt +a2(t) but with modified coefficients:

a1(t) = −
2
τ

µb

δ
, (28)

a2(t) =
µb

δ

Ret
b − Reb(t)
τ2 +

d
dt

(
|τw,1| + |τw,2|

2 µb

)
+
δS 1

µ2
b

dµb

dt
+

d
dt

(
Reb

µb

dµb

dt

) . (29)

Similarly, it is found that

b1(t) = −
2ρbcpb

τ
(30)

b2(t) = ρbcpb

[
T t

b − Tb(t)
τ2 +

1
2δ

d
dt

(
qw,1 + qw,2

ρbcpb

)
−

d
dt

(
1

ρbcpb V

∫
V

Q̇totdV ′
)

(31)

−Ω
d
dt

(
1

ρbcpb

)
+

d
dt

(
hb

ρbcpb

dρb

dt

) ]
with the energy source term determined by dΩ

dt = b1(t) dTb
dt + b2(t).

The same simulation case as in section 3.2.2 is carried out with these new equations. The obtained temporal
evolutions of bulk Reynolds number and temperature are shown in figures 7 and 8 with their corresponding profiles of
Reτ and Nusselt number. Thanks to the modified equations to take into account temporal variations of thermo-physical
properties, the bulk quantities henceforth follow their prescribed behavior.
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Figure 8: Temporal evolution of Tb in Kelvin (a) and Nusselt number (b) for varying Reb at the same time with the control equations. Circles:
theoretical solution; Black plain line: τ = 0.33δ/ure f

τ ; Gray plain line: τ = 0.033δ/ure f
τ .

5. Conclusion

Bulk Reynolds number and bulk temperature are key quantities when reporting results in channel flow simula-
tions. There are situations are when one wishes to control these parameters although they are actually results of the
simulations when imposing a fixed source term in the momentum and energy equations. A control strategy has been
developed to carefully set the desired target values for the bulk Reynolds number and bulk temperature by temporally
adapting the prescribed source terms. Final equations appear as PI controllers with a thorough setting of the coeffi-
cients so that the dynamics of the quantities of interest is exactly controlled when the flow thermo-physical properties
are constant or even variable. The controlling method is validated in several cases and is shown to be robust and
efficient. Such a method enables to safely study the effect fo different numerical or physical description of the flow
while safely maintaining identical bulk Reynolds numbers and/or bulk temperatures.
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