
HAL Id: hal-01347041
https://centralesupelec.hal.science/hal-01347041

Submitted on 25 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

LabVIEW Perturbed Particle Swarm Optimization
Based Approach for Model Predictive Control Tuning

Mohamed Derouiche, Soufiene Bouallègue, Joseph Haggège, Guillaume Sandou

To cite this version:
Mohamed Derouiche, Soufiene Bouallègue, Joseph Haggège, Guillaume Sandou. LabVIEW Perturbed
Particle Swarm Optimization Based Approach for Model Predictive Control Tuning. 4th IFAC Inter-
national Conference on Intelligent Control and Automation Sciences (ICONS 2016), Jun 2016, Reims,
France. �hal-01347041�

https://centralesupelec.hal.science/hal-01347041
https://hal.archives-ouvertes.fr


LabVIEW Perturbed Particle Swarm
Optimization Based Approach for Model

Predictive Control Tuning

Mohamed Lotfi Derouiche ∗ Soufiene Bouallègue ∗∗
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Abstract: In this paper, a new Model Predictive Controller (MPC) parameters tuning strategy
is proposed using a LabVIEW-based perturbed Particle Swarm Algorithm (pPSA). This original
LabVIEW implementation of this metaheuristic algorithm is firstly validated on some test
functions in order to show its efficiency and validity. The optimization results are compared
with the standard PSO approach. The parameters tuning problem, i.e. the weighting factors
on the output error and input increments of the MPC algorithm, is then formulated and
systematically solved, using the proposed LabVIEW pPSA algorithm. The case of a Magnetic
Levitation (MAGLEV) system is investigated to illustrate the robustness and superiority of the
proposed pPSA-based tuning MPC approach. All obtained simulation results, as well as the
statistical analysis tests for the formulated control problem with and without constraints, are
discussed and compared with the Genetic Algorithm Optimization (GAO)-based technique in
order to improve the effectiveness of the proposed pPSA-based MPC tuning methodology.

Keywords: Model Predictive Control, parameters tuning problem, perturbed Particle Swarm
Optimization, Genetic Algorithm, LabVIEW implementation, MAGLEV system.

1. INTRODUCTION

Being part of robust and optimal control techniques, the
Model Predictive Control (MPC) approach is almost per-
vasive in various engineering applications Mayne (2014);
Rawlings and Mayne (2013); Bao-Cang (2010); Rossiter
(2004). The first generation of predictive control algo-
rithms tried to solve constrained control problems manip-
ulating several variables in the petrochemical field in the
late 80s. MPC applications are present in many systems
where the PID controller reaches its limits. It covers both
the Single-Input Single-Output (SISO) and Multi-Inputs
Multi-Outputs (MIMO) problems for linear and nonlinear
systems.

However, for model predictive controller design, the re-
lationship between the adjustment parameters and phys-
ical phenomena is shady which make tuning task te-
dious, error-prone and out of reach of non-expert users.
Therefore, this type of tuning still presents a difficulty
for manufacturers who do not have particular expertise.
Well tuning MPC parameters is still challenging in control
engineering field. This challenge leads the MPC tuning
to be the subject of several research projects. In Lino
et al. (1993), authors proposed a tuning method taking
into account the robust stability based on the frequency

response analysis. Rowe and Maciejowski (2000) proposed
a tuning method using the H∞ loop-shaping concept. A
heuristic method based on setting rules established by
experts has been proposed in Drogies and Geest (1999).
The methods of C. Rowe and Y. Lino require complicated
calculation procedures and keep the need for qualified or
rather expert user. In practice, the method presented by
S. Drogies must be modified for each specific problem.
Thus, none of the above mentioned methods has led to a
systematic tuning procedure allowing a user to well design
an MPC controller without resort to an expert as it is the
case for PID controllers.

The MPC parameters tuning problem can be formulated
as an optimization program. Many approaches are pro-
posed in the literature for dealing with hard choice of MPC
parameters. See Sandou and Olaru (2009); Sandou (2009).
Knowing that the predictive control is treated as a black
box, classic gradient-based optimization techniques will
not be able to solve this problem. However, metaheuristics
algorithms Yang (2010); Dréo et al. (2006); Siarry and
Michalewicz (2008); Gendreau and Potvin (2010), which
have reached a remarkable maturity, especially the Parti-
cle Swarm Optimization technique, present a solution to
such problems. Recently, Suzuki et al. (2008) introduced
an automatic tuning of predictive controller parameters



using the standard PSO technique. Newly, Xinchao (2010)
introduced a new “perturbed PSO” algorithm, denoted as
pPSA. This metaheuristic comes to refine the standard
PSO technique, which after a premature convergence, is
often dropped into local minima. Based on the principle
of the possibility measure, the pPSA pursues to update the
optimum position of the particle swarm noted gbest using
the “possibility at gbest” strategy that seeks to model
the lack of information regarding the true optimality of
gbest. The pPSA is proposed so as to escape from the
local optimal trap and the rapid loss of diversity during the
optimization process. The new particle updating strategy
aims to promote exploration capabilities in the search
space. In this paper, a LabVIEW implementation of this
efficient metaheuristic algorithm is proposed for using in
MPC parameters tuning problem. An application to a po-
sition control of the suspended sphere in known Feedback
MAGLEV system is investigated in order to show the
effectiveness of our proposed MPC tuning approach.

The remainder of this paper is organized as follows. In Sec-
tion 2, the MPC parameters tuning problem is introduced
and formulated as an optimization program to be solved
later using the proposed metaheuristic-based technique.
A brief overview on MPC approach is firstly described in
this paragraph. Section 3 presents the proposed perturbed
PSO-based algorithm as well as its original implementa-
tion under graphical LabVIEW tool. This algorithm is
validated through an optimization benchmark functions
from the literature. An application to the MPC tuning
parameters for a MAGLEV system using GA and the
proposed pPSA is investigated in Section 4. All simulation
results, obtained for the unconstrained and constrained
formulations of such a problem, are presented and dis-
cussed. Section 5 concludes this paper.

2. MODEL PREDICTIVE CONTROL PARAMETERS
TUNING PROBLEM

2.1 Basic Concepts of MPC Design

The MPC design approach focuses on constructing and
optimizing feedback controllers at each discrete-time in-
stant, see Rawlings and Mayne (2013); Bao-Cang (2010);
Rossiter (2004), as shown in Fig. 1. Such predictive con-
trollers can adjust the control action before a change in the
output setpoint actually occurs. The ability of handling
operational constraints in an explicit manner is one of the
main reasons for the popularity and success of MPC strate-
gies in various industrial applications, as shown in Sandou
and Olaru (2009); Sandou (2009).

As depicted in Fig. 1, the main elements of the discrete-
time model predictive control are the plant input, the
controlled output and the reference trajectory which are
denoted by u ∈ R, y ∈ R, and r ∈ R, respectively. The
plant model determines the predicted plant outputs on
the prediction horizon, denoted Np. The optimization al-
gorithm is aimed at determining the control sequence given
by {u (k − 1 + i) , i = 1, 2, . . . , Nc} for the control horizon,
denoted Nc. Only the first element u∗ (k) of the optimized
control sequence is applied to the plant and the control in-
put is updated at each sampling instant. The optimization
process is repeated at the next sampling time, on the basis

Fig. 1. Model Predictive control structure.

of the measured (or estimated from the available output
y (k)) state x (k). This sequence minimizes the specified
cost function (2) in the MPC design formalism, subject
to problem constraints on the input, change in input and
output of the plant. The optimization algorithm assumes
that u (k − 1 + i) = u (k +Nc − 1) for Nc < i ≤ Np.
A model describing the behavior of the controlled plant
is required in MPC framework. It is assumed that such a
plant is represented by a discrete-time model of the form:{

x (k + 1) = AAAx (k) +BBBu (k)
y (k) = CCCx (k)

(1)

This model is used to compute system predictions over
a finite prediction horizon of Np samples. So, at every
sampling time and for a specified prediction and control
horizons, the MPC controller attempts to minimize the
following cost function:

J (k) =

Np∑
i=1

ê (k + i|k)
T
QQQê (k + i|k) +

Nc−1∑
i=0

[
∆uT (k + i|k)RRR∆u (k + i|k)

] (2)

where ê (k + i|k) = ŷ (k + i|k) − r (k + i|k), ŷ (k + i|k),
r (k + i|k) and ∆u (k + i|k) are the predicted plant output,
the output setpoint profile and the predicted increment
of change in control action at time k + i, given all mea-
surements up to and including those at sampling-time k,
respectively. QQQ = QQQT > 0 and RRR = RRRT > 0 are weighting
matrices on the output error and input increments.

Minimizing the cost function (2) is usually subject to the
operational constraints on the control action, its rate of
change and plant output signals. Thus, limitations of these
entities can be defined, respectively, as given by Eqs. (3),
(4) and (5):

umin ≤ u (k) ≤ umax (3)

∆umin ≤ ∆u (k) ≤ ∆umax (4)

ymin ≤ y (k) ≤ ymax (5)

2.2 MPC Tuning Parameters Problem Formulation

A formulation of an optimization based tuning problem of
parameters in MPC paradigm is given in the followings.
Since prediction and control horizons, as well as opera-
tional constraints of MPC problem are fixed, weightings
matrices QQQ and RRR of Eq. (2) are tuned in this study.



Fig. 2. Proposed pPSA based MPC tuning approach.

The concept of the proposed pPSA based MPC tuning
procedure is depicted in Fig. 2.

In this paper, we consider the control of SISO systems so
that QQQ and RRR weighting matrices become scalars to be
tuned within a time-domain framework. So, the cost func-
tion, which penalizes tracking errors and to be minimized,
is given as follows:

J1 (τ,QQQ,RRR) =

+∞∑
τ=0

[y (τ)− r (τ)]
2

(6)

where τ is the time expressed as number of samples from
the beginning of simulation until achieving the steady-
state domain.

3. PROPOSED PERTURBED PSO-BASED
APPROACH FOR MPC TUNING

3.1 Perturbed PSO Algorithm

The perturbed particle swarm optimizer pPSA maintains
a swarm of nPART particles in the search space with
dimension D. Each particle in the swarm is characterized

by its current position xxxit =
(
xi,1t , xi,2t , . . . , xi,Dt

)
, the

previous best position pppit =
(
pi,1t , pi,2t , . . . , pi,Dt

)
, and

the velocity vvvit =
(
vi,1t , vi,2t , . . . , vi,Dt

)
at iteration t ∈

[[1, nGEN ]]. Where nGEN is the number of generations.

The trajectory of each particle is updated according to its
own flying experience and that of the best particle in the
swarm as given by the followings motion equations:

xxxit+1 = xxxit + vvvit+1 (7)

vvvit+1 = wvvvit + c1r
i
1,t

(
pppit − xit

)
+ c2r

i
2,t

(
p̂̂p̂pgt − xxxit

)
(8)

where w represents the inertia factor, c1 and c2 are the
cognitive and the social scaling factors respectively, ri1,t
and ri2,t are random numbers uniformly distributed in

the interval [[0, 1]], and pppit is the best previously obtained
position of the ith particle.

In contrast to the standard PSO algorithm, the gbest p̂̂p̂pgt in
Equation (8) of pPSA, denoted as p-gbest for ”possibly at
gbest”, is characterized by a normal distribution as follows:

p̂̂p̂pgt = N (pppgt , σ) (9)

where σ represents the degree of uncertainty about the
optimality of the gbest pppgt of the standard PSO algorithm
as shown in Xinchao (2010).

So, for perturbed particle updating strategy, σ is modeled
as some non-increasing function of the number of cycles
t, called max-min model and given by Xinchao (2010) as
follows:

σ (t) =

{
σmax, t < α× nGEN
σmin, otherwise

(10)

where σmax, σmin and α are manually fixed parameters.

Two others non-increasing models (linear and random)
are proposed in Xinchao (2010) and can be used instead
Eq. (10). On the other hand, the function of p-gbest is to
encourage the particles to explore a region beyond that
defined by the search trajectory. It provides a simple and
efficient exploration at the early stage when α is large and
encourages local fine-tuning at the latter stage when α is
small.

Finally, a pseudo code of this swarm algorithm is given,
for a minimization problem, as follows:

• Step 1: Initialize a population of nPART particles
having random positions and velocities on D dimen-
sions of the search space;

• Step 2: At every iteration t and for each particle xxxit,
evaluate the considered optimization fitness function
on the D decision variables;

• Step 3: Compare particle’s fitness evaluation J i1,t =

J1
(
xxxit
)

with its pbestit = J1
(
pppit
)
. If J i1,t ≤ pbestit then

pbestit = J i1,t and pppit = xxxit;
• Step 4: Identify the particle in the neighborhood

with the best success so far and assign its position
to the global best variable noted gbest;

• Step 5: Change the velocity and position of the par-
ticle according to the motion equations (7) and (8);

• Step 6: If the termination criterion is met (satisfied
fitness or max of iterations), the algorithm terminates
with the solution xxx∗ = arg min

xxxi
t

{
J1
(
xxxit
)
,∀i, t

}
. Oth-

erwise, go to Step 2.

3.2 Implementation of the pPSO Algorithm

In order to validate the LabVIEW implementation of
perturbed PSO algorithm, a benchmark optimization with
8 functions are adopted (see Appendix A.). In order to
have a fait comparison between PSO and pPSA in Xinchao
(2010) and our LabVIEW coded pPSA, the parameters
settings are as follows: dimension of search space D = 30,
number of particles nPART = 30, number of generations
nGEN = 2000, cognitive and social coefficients c1 = 0.5
and c2 = 0.3, inertia weight w = 0.9 and σmax =
0.15, σmin = 0.001, α = 0.5.

All the statistical results over 30 independent runs of
the implemented algorithms, as well as those published
in Xinchao (2010), are summarized in Tables 1 and 2. From
these numerical optimization results, it is clear that the
pPSA greatly outperforms the standard PSO algorithm.
The good performance, in terms of better exploring ability
for promising area and exploiting for locating the optima,
is carried out.



Fig. 3. Feedback Magnetic Levitation system.

4. APPLICATION TO THE MAGLEV SYSTEM
CONTROL

4.1 Plant Description and Modeling

The Feedback Magnetic Levitation system (MAGLEV 33-
006) of Fig. 3 is used as a process example to validate the
pPSA-based approach for MPC tuning parameters.

In required range of operation, the distance h of the
suspended sphere is given by the infrared photo-sensor
voltage y as follows :

y = γh+ y0 (11)

where γ is a positive gain depending on the position sensor,
and y0 is the offset voltage such that y ∈ [−2V,+2V ].

The coil current is regulated by an inner control loop
within the driver block. Its characteristic is linearly related
to the input voltage u as follows, neglecting its high
frequency dynamics:

i = ρu+ i0 (12)

where ρ > 0 is the coil resistor and i0 > 0 is the offset
value of current.

Table 1. Numerical optimization results over
30 runs of standard PSO from Xinchao (2010).
Where Best, Mean, Median and STD mean the
best, average, median result and the standard

deviation over 30 runs.

Function Best Mean Median STD

f1 4.39 42.37 27.02 49.76

f2 2.03 19.95 15.37 18.04

f3 1.23e+03 6.77e+03 4.88e+03 5.37e+03

f4 1.47e+02 2.81e+03 9.98e+02 5.23e+03

f5 1.67e+02 5.62e+02 5.04e+02 2.94e+02

f6 3.81e-01 8.20e-01 7.2e-01 3.79e-01

f7 39.50 84.85 82.76 22.71

f8 1.03 1.55 1.27 7.58e-01

Table 2. Numerical optimization results over
30 runs of pPSA under LabVIEW.

Function Best Mean Median STD

f1 5.72e-06 0.00 7.32e-06 8.15e-07

f2 1.19e-02 2.4e-01 5.62e-02 5.56e-01

f3 1.66e-03 1.90 6.55e-01 2.79

f4 1.73e+01 62.40 28.10 57.10

f5 0.00 24.10 12.00 56.10

f6 1.93e-11 0.00 6.42e-11 1.88e-11

f7 53.72 81.22 82.58 15.56

f8 3.24e-07 0.00 7.40e-03 2.33e-02

The working excursion of u is limited between -3V, cor-
responding to a null coil current, and +5V that defines
the saturation value as given in Feedback; Santos et al.
(2010). For this process, the predictive control of the
suspended sphere position is investigated. The dynamics
of the vertical movement of such a sphere is modeled as
follows:

m
d2h

dt2
= mga −K

i2

h2
(13)

where K is an electromechanical conversion gain depend-
ing on the MAGLEV system, m is the mass of the sphere,
ga is the acceleration of gravity, and i is the coil current.

According to the given sensor and current driver charac-
teristics (11) and (12), the equation (13) can be re-written
as:

m
d2y

dt2
= γmga −K

(ρu+ i0)
2
γ3

(y − y0)
2 (14)

Taking x = [ y ẏ ]
T

as state vector, the following state
space representation of the studied system is obtained:

ẋ1 = x2

ẋ2 = γga −K
(ρu+ i0)

2
γ3

m (x1 − y0)
2

(15)

Finally, while using the values for the physical model
parameters, a linear discrete-time model of the MAGLEV
plant, where a zero-order-hold with 5 ms sampling period
was adopted at the input of the system as in Santos et al.
(2010), is given by the following state-space representation: xk+1 =

[
1.0108 0.0050
4.3185 1.0108

]
xk +

[
−0.0142
−5.6779

]
uk

yk = [ 1 0 ]xk

(16)

4.2 Simulation Results and Discussion

As described in section 2.2, the optimization is performed
on a SISO system using the unconstrained control prob-
lem (6). For this design, we use the control parameters
of Table 3. The simulation results for the pPSA and
GA algorithms are summurized in Table 4. Recall that
the GA algorithm is also implemented and executed un-
der LabVIEW environment, see W. Golebiowski (2009)
and National Instruments (2009).

Table 3. GA and pPSA control parameters.

pPSA GA (WAPTIA)

dimension 2 2

max iterations 100 100

population size 40 40

other parame-
ters

c1 = 0.5, c2 = 0.3,
w = 0.9, σmax =
0.15, σmin = 0.001
and α = 0.5.

crossover prob.
0.85, mutation rate
0.005, min mut.
rate 0.0005, max
mut. rate 0.25 and
relative fitness 1

The controlled position of the suspended sphere as well as
the control input voltage of the MAGLEV current driver
are shown in Fig. 4 and Fig. 5, respectively. The tracking
performances of the controlled system are satisfactory but
a high amplitude of the control action is noted and exceeds
the saturation value, see Fig. 5. In an experimental point
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Fig. 4. pPSA-based control of the MAGLEV suspended
sphere position: unconstrained optimization case.

A
m

pl
it

u
d

e 
[V

o
lt

s]

30

-30

-25

-20

-15

-10

-5

0

5

10

15

20

25

Time [Seconds]
10 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,55 0,6 0,65 0,7 0,75 0,8 0,85 0,9 0,95

u

Control Action

Fig. 5. pPSA-based control input voltage of the MAGLEV
current driver: unconstrained optimization case.

of view, this control voltage amplitude can not be applied
to the real MAGLEV system which have an upper limit of
+5V. This then requires the reformulation of the control
problem to incorporate this kind of operational constraints
in the MPC synthesis procedure.

In order to control the real MAGLEV system and to show
the effectiveness of the proposed pPSA based MPC ap-
proach, operational constraint on upper limit of the control
action signal umax = 1V is considered. The problem can be
formulated using as a constrained optimization problem:

J2 (τ,QQQ,RRR) =

+∞∑
τ=0

[y (τ)− r (τ)]
2

s.t : max
τ≥0
|u (τ)| ≤ umax

(17)

PSO being an unconstrained optimization algorithm, the
objective function, to be minimized using the LabVIEW

Table 4. Performances comparison of GA and
pPSA for Problem (6).

pPSA GA (WAPTIA)

weight factor QQQ 36.8780 0.6050

weight factor RRR 0.0004 7.00e-06

gbest value 0.1889 0.1887

umax 26.3265 25.9861

computation time 12min, 22sec 2h, 29min, 52sec
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Fig. 6. pPSA-based control of the MAGLEV suspended
sphere position: constrained optimization case.

A
m

pl
it

u
d

e 
[V

o
lt

s]

1,4

-1,4

-1,2

-1

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

1,2

Time [Seconds]
10 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,55 0,6 0,65 0,7 0,75 0,8 0,85 0,9 0,95

u

Control Action

Fig. 7. pPSA-based control input voltage of the MAGLEV
current driver: constrained optimization case.

coded pPSO algorithm, is augmented with the external
static penalty technique, that is proportional to the degree
of constraint infeasibility, and becomes as follows:

J2 (τ,QQQ,RRR) =

+∞∑
τ=0

[y (τ)− r (τ)]
2

+exp

1000

max
τ≥0
|u (τ)| − umax

umax

 (18)

The LabVIEW implementation for the constrained op-
timization problem (18) leads to the simulation results
of Fig. 6 and Fig. 7 as well as the results in Table 5.
For this design, both metaheuristic algorithms improve
good performances of tuned MPC controller in terms of
stability, tracking dynamic behavior and handling oper-
ational constraints. However, the superiority of our pro-
posed LabVIEW pPSA based approach is shown mainly
in terms of the fastness convergence and the simplicity of
implementation.

It is important to highlight that in the MPC parametersQQQ
andRRR optimization, only the ratio of these two coefficients
is most important. The same setting is obtained if we
divide by 2 these two coefficients. This is shown in the
comparison of the LabVIEW implemented pPSA and GA,
i.e., 0.898/0.226 = 3.97 and 59.36/14.95 = 3.97.



Table 5. Performances comparison of GA and
pPSA for Problem (18).

pPSA GA (WAPTIA)

weight factor QQQ 14.9501 0.226115

weight factor RRR 59.3676 0.898016

gbest value 2.85314 2.85314

umax 0.995273 0.995252

computation time 18min, 47sec 2h, 21min, 23sec

As depicted in Table 5, this is the same tuning for the two
proposed methods. The main observation is that these are
the same two settings found by two different metaheuristic
algorithms, so there is a greater probability that the ob-
tained solution is the global optimum of the MPC tuning
optimization problem. The superiority of the proposed
pPSA technique is shown mainly at the remarkable fast-
ness convergence in solving the MPC tuning problem as
well as its simple software implementation and algorithm
parameters choice.

5. CONCLUSION

In this paper, a new perturbed PSO based approach
for MPC parameters tuning have been proposed and
successfully applied to the position control of a MAGLEV
system. The proposed pPSA algorithm is implemented
under LabVIEW graphical environment and validated
through a benchmark of test functions from the literature.
All optimization results are compared with the standard
PSO and statistical analysis are carried out in order to
show the validity of such an implementation. The MPC
tuning problem, such as the choice of weighting factors
on the output error and input increments signals, is
after that formulated as an optimization problem, with
and without operational constraints, and solved using the
GA (WAPTIA) and the proposed LabVIEW-based pPSA
algorithm for the considered MAGLEV plant.

Forthcoming works deal with final implementation of the
control laws on the real MAGLEV benchmark available
in our laboratory. Increasing the size of the optimization-
based tuning problem, i.e. while considering full weighting
matrices, is also investigated.
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Appendix A. TEST FUNCTIONS BENCHMARK

Function Domain fmin

f1 =
n∑

i=1

x2i [−100, 100]n 0

f2 =
n∑

i=1

|xi|+
n∏

i=1

|xi| [−10, 10]n 0

f3 =
n∑

i=1

(
i∑

j=1

xj

)2

[−100, 100]n 0

f4 =
n∑

i=1

[
100
(
xi+1 − x2i

)2
+ (xi − 1)2

]
[−30, 30]n 0

f5 =
n∑

i=1

(xi + 0, 5)2 [−100, 100]n 0

f6 =
n∑

i=1

ix4i + random [0, 1] [−1.28, 1.28]n 0

f7 =
n∑

i=1

[
x2i − 10 cos (2πxi) + 10

]
[−5.12, 5.12]n 0

f8 = 1
4000

n∑
i=1

x2i −
n∏

i=1

cos

(
xi√
i

)
+ 1 [−600, 600]n 0


