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Abstract

The MUltiple SIgnal Classification (MUSIC) estimator has been widely studied for a long time
for its high resolution capability in the domain of the direction of arrival (DOA) estimation, with
the sources assumed to be point. However, when the actual sources are spatially distributed with
angular dispersion, the performance of the conventional MUSIC is degraded. In this paper, the
impact of the array geometry on the DOA estimation of spatially distributed sources impinging
on a sensor array is considered. Taking into account a coherently distributed source model, we
establish closed-form expressions of the MUSIC-based DOA estimation error as a function of the
positions of the array sensors in the presence of model errors due to the angular dispersion of
the signal sources. The impact of the array geometry is studied and particular array designs are
proposed to make DOA estimation more robust to source dispersion. The analytical results are
validated by numerical simulations. 1

Keywords: array signal processing, distributed sources, angular dispersion, array geometry,
performance, MUSIC

1. Introduction

The DOA estimation based on snapshots received on a sensor array has been widely studied
with plenty of methods [2]. Among these methods, the MUltiple SIgnal Classification (MUSIC) [3]
is famous for its high resolution in the case of point sources. However, in many applications, such
as acoustic source imaging [4] and mobile channel communication [5], where angular dispersion of
the sources up to 10◦ may occur, the physical sources can no longer be considered as points. In this
case the performance of the DOA estimation obtained by the conventional MUSIC are degraded,
and a spatially distributed model of the sources would be more appropriate.

The models for spatially distributed sources have been classified into two types, namely inco-
herently distributed (ID) sources and coherently distributed (CD) sources [6]. On one hand, for
ID sources, signals coming from different points of the same distributed source can be considered
uncorrelated. On the other hand, in the scenario of CD sources, the received signal components
are delayed and scaled replicas from different points of the same one [6]. For CD sources, the
performances of MUSIC with discretely distributed sources and continuously distributed sources
have been investigated in [7], and [8], respectively. As expected, due to the angular dispersion

1This work has been partially published in [1].
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the mismatch between the steering vector model of MUSIC and the actual steering vectors of the
sources causes estimation errors. Plenty methods such as the joint estimation of both the DOA and
the angular dispersion parameter [6][9][10] have been proposed to solve these problems. However,
these methods require a high computational burden or a knowledge of the shape of the source an-
gular distribution for the model, which motivates us to rather keep the conventional point-source
MUSIC for the DOA estimation and seek other ways to improve the performances as, for example,
the optimization of the array geometry.

The array geometry effect on the DOA estimation has been studied in plenty of publications
and in different contexts. The uniform linear array (ULA) is the simplest. However, a more
complex geometry can lead to better performance. Optimal array geometries have been designed
to reach isotropic and/or optimal performance based on the Cramér-Rao bound (CRB) criterion
(eg : [11, 12, 13]), the lower bound of the mean square error (MSE) can be uniform for all the
possible DOAs, or the inferior bound of the MSE of the DOA in the elevational and horizontal
direction can be decoupled. More recently, based on the spatial aliasing phenomenon, a class
of non-uniform array geometries composed of two or more uniform linear arrays (ULAs) with
different inter-element spacing has been used to reduce the computational burden of the Maximum
Likelihood (ML) estimator [14]. Also, many techniques have been applied in the sparsity array
design or large-scale broadband array to reduce the number of elements in an array, to offer a lower
cost, power consumption, and heat dissipation (eg : [15] [16] [17]).

In this paper, we focus on the impact of the array geometry on the performance of the MUSIC
estimator with the CD source model, in the presence of errors due to modeling mismatch of
source dispersion. Based on the work in [8], the first contribution of this paper is to propose an
analytical expression of the DOA estimation error as an explicit function of the sensor positions
for a single source, and to establish the sufficient and necessary conditions for ensuring robustness
to the angular dispersion in the case of one source. Besides we investigate some particular array
geometry designs. The second contribution concerns the case of two sources. The expression of
the DOA estimation error with a uniform circular array (UCA) provides insights into the source
separation properties of MUSIC in case of a mismatch model due to CD sources. Simulation results
illustrate these theoretical results.

The organization of this paper is as follows. The signal model and a brief recall of MUSIC are
given in section 2. The impact of array geometry on the performance of MUSIC and on the crossed
terms of the CRB are studied in section 4. Particular geometry designs are studied in section 5.
UCA for the case of two sources are studied in section 6. Finally, conclusions are given in section
7.

2. Signal model

Let us consider q spatially CD far-field narrow-band sources impinging on an array of M sensors.
The sources arrive from the DOA θ1, ..., θq, and the position of the m − th sensor is given by the
polar coordinates ρm and αm. Without loss of generality, the signals and the sensors are assumed
to be in the same plane, as shown in Figure 1. The q source signals and the M signals received
by the array at moment t are denoted by s(t) = [s1(t), . . . , sq(t)]

T and y(t) = [y1(t), . . . , yM (t)]T ,
respectively. In the case of CD sources, it is common to exploit the model proposed in [6] in order
to express the received signal:

y(t) = C(θ)s(t) + n(t), (1)
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where n(t) ∈ CM×1 represents the complex Gaussian distributed additive noise, C(θ) = [ch1(θ1), . . . ,
chq(θq)] ∈ CM×q is the array steering matrix composed of q steering vectors chi(θ) that can be
written by:

chi(θi) =

∫ π
2

−π
2

a(θi + φ)hi(φ)dφ, (2)

where i = 1 . . . q, and a(θ) is the steering vector for a point source, which can be given by:

a(θi) =
[
e−j2π

ρ1
λ

cos(θi−α1), . . . , e−j2π
ρM
λ

cos(θi−αM )
]T
, (3)

where λ is the wavelength, and [·]T is the transpose operation.
The functions hi(φ) are introduced in (2) to describe the angular spread distribution (for

instance, Uniform and Gaussian distributions). The source signals and the additive noise are
considered to be complex centered Gaussian independent random variables. Assuming that signals
and noises are uncorrelated and the sources are uncorrelated with each other, the correlation matrix
is given by:

R = E[yyH ] = CRsC
H + σ2

b I, (4)

where E[.] is the expectation operator, Rs and σ2
b are the source covariance matrix and the noise

variance, respectively.
Under the hypothesis that q < M and Rs and C are not rank deficient, it is well known that

the decomposition of R into eigenvalues λm and eigenvectors em is as follows :

R =
M∑
m=1

λmemem = UΛsU
H + σ2

bVVH , (5)

where U = [e1, . . . , eq] spans the signal subspace defined by the columns of C, V = [eq+1, . . . , eM ]
spans the noise subspace defined as the orthogonal complement of U, and Λs = diag{λ1, . . . , λq}.

3. MUSIC estimator and performances

The MUSIC [3] method makes use of the orthogonal property of the subspaces spanned by C(θ)
and V to estimate the DOAs θi. In practice it is difficult to know exactly the angular dispersion
of the actual sources, consequently, the steering vector model of the point source a(θ) is used here
instead of chi(θ) to estimate the value of θ:

θ̂i = argmax
θ

1

‖aH(θ)V‖2
. (6)

Here, we assume that the number of snapshots is large enough such that the estimation error
of the noise subspace can be neglected and the DOA estimation error comes mainly from the
model error, it is to say, the mismatch of the angular dispersion parameter between the model of
the MUSIC estimator a(θ) and the actual source chi(θi). We recall here the standard analysis in
order to express the estimation error ∆θi = θ̂i − θi, θ̂i should satisfy that the first derivative of
denominator in (6) is null:

∂a(θ)HVVHa(θ)

∂θ

∣∣∣
θ̂i

= 0, (7)
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which gives:
2Re{ȧ(θ̂i)

HVVHa(θ̂i)} = 0, (8)

where ȧ(θ̂i) = ∂a(θ)
∂θ

∣∣∣
θ̂i

.

Assuming that, θ̂i is not far away from θi, we make the first order approximation of Taylor:

a(θ̂i) ≈ a(θi) + ∆θiȧ(θi), (9)

and:
ȧ(θ̂i) ≈ ȧ(θi) + ∆θiä(θi), (10)

where ä(θi) = ∂ȧ(θ)
∂θ

∣∣∣
θi

.

Note ∆c(θi) = a(θi)− c(θi) the error on the steering vector due to the mismatch between the
estimator model and the actual signals. Note also ∆V = Ṽ−V the error on the noise eigenvectors
matrix, where Ṽ is the noise eigenvectors matrix which would appear if the steering vectors a(θi)
would replace c(θi) in (1), where i = 1, . . . , q. Introducing (9) and (10) into (8), and keeping only
the first order of ∆θi, the DOA estimation error for source θi can be expressed as:

∆θi =
Re{ȧHi Π̃ci}

ȧHi Π̃ȧi
, (11)

where Π̃ = I− ṼṼ
H

is the noise subspace projector of the steering vector model of the estimator,
which would correspond to the case of point sources, I is the M ×M identity matrix. Note that
θi is omitted in ȧ(θi), a(θi) and c(θi) which are now noted ȧi, ai and ci, respectively.

4. Array geometry analyses for one source

In this section, we firstly investigate the array geometry condition for MUSIC to be robust to
the source angular dispersion. Then, we link and compare our results with the existing results
based on the CRB for an isotropic array in the case of point source. At last, we derive the CRB for
joint estimation of the DOA and the angular distribution in the scenario of a distributed source.

4.1. Array geometry for MUSIC

In this subsection, we study the estimation error of the point source MUSIC estimator defined
in (6) in the case where there is only one source arriving from the DOA θ. Notice that in this case
Π̃ = I− 1

M a1a
H
1 . From (11) the DOA estimation error can then be given by:

∆θ =
Re{ȧHc− 1

M ȧHaaHc}
ȧH ȧ− 1

M |ȧ
Ha|2

, (12)

where c1 and a1 have been replaced by c and a. In the following, we wish to express the estimation
error as an explicit function of the sensor positions, so as to study the impact of the sensor array
geometry on the performance of MUSIC.
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Figure 1: Planar array and source DOAs

For the m− th sensor as illustrated in Figure 1, let us define:

ϕm = 2π
ρm
λ

cos(θ − αm),

ϕ̇m = −2π
ρm
λ

sin(θ − αm),

ϕ̈m = −2π
ρm
λ

cos(θ − αm),

um =

∫
cos(ϕm(θ + φ)− ϕm(θ))h(φ)dφ,

vm =

∫
sin(ϕm(θ + φ)− ϕm(θ))h(φ)dφ. (13)

Assuming that the angular dispersion of the distributed source is small enough with a symmet-
rical distribution, we introduce a third order Taylor approximation in φ of ϕm(θ + φ) − ϕm(θ) so
as the last equation in (13) yields:

vm ≈
1

2
ϕ̈mσ

2, (14)

where:

σ2 ,
∫
φ2h(φ)dφ, (15)

remark that σ is the angular dispersion of the source signal.
Introducing the notations (13) in (12), ∆θ can be given by:

∆θ =
ϕ̇ · v − ϕ̇ · v
ϕ̇2 − (ϕ̇)2

, (16)

where · is operator to calculate the ”average” of a deterministic series such that x = 1
M

∑M
m=1 xm.

Eq (16) makes it possible to design the geometry in order to minimize ∆θ.
Let us introduce (14) in (16), ∆θ can be given by:

∆θ =
1

2
σ2 ϕ̇ · ϕ̈− ϕ̇ · ϕ̈

ϕ̇2 − (ϕ̇)2
. (17)

We can observe that this expression of the DOA estimation error is proportional to the square
of the source angular dispersion σ2.
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Let us introduce the notations xm and ym as the Cartesian coordinates of the mth sensor, to
get rid of the nonlinear operator sin and cos in the array location parameters. From (17), the
estimation error as a function of xm and ym can be derived as:

∆θ =
1

4
σ2 ·

sin(2θ)
[
x2 − (x)2 − y2 + (y)2

]
− cos(2θ)(xy − x y)

sin2 θ
[
x2 − (x)2

]
+ cos2 θ

[
y2 − (y)2

]
− sin(2θ) [xy − x y]

. (18)

The sufficient and necessary condition for ∆θ to be zero is thus given by:{
x2 − (x)2 = y2 − (y)2,
xy = x y.

(19)

If the condition (19) is verified then the modelling mismatch introduced in (6) by using point
source steering vector does not introduce estimation error. Despite the fact that the sensor coor-
dinate are deterministic, one can give a statistical interpretation, xy = x y means that the sensor
on the abscissa and ordinate are uncorrelated, and x2 − (x)2 = y2 − (y)2 means that the standard
deviation on abscissa and ordinate are the same. Geometrically, this means that the sensor position
should not exhibit a specific direction and that the spread of the sensor position is the same in all
the directions.

Notice that (19) can be exploited to improve an existing array by adding (or removing) one
sensor such that the condition (19) is verified.

Figure 2 illustrates an example of the optimal geometry of the sensor array obtained by
minimizing numerically the criterion

∫ 2π
0 |∆θ|dθ, where ∆θ is given in (18), for a source with

a uniform angular distribution 10◦. The numerical ”greedy research” method proposed in [12]
is used here to avoid the ambiguity problem. In this case, condition (19) is verified, since:
x2 − (x)2 = y2 − (y)2 ≈ 0.49, xy = x y ≈ 0.21.

−2 −1.5 −1 −0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1

x (λ/2)

y
(λ
/
2
)

Figure 2: one example of a nine-element optimal array for MUSIC

4.2. Link with the Cramer-Rao bound

Firstly, one can note that the condition to obtain an isotropic array in the scenario of point
source proposed in [11] is identical to (19).

Secondly, we investigate the CRB for the joint estimator of the DOA and the source angular
dispersion. We now consider, the scenario with one distributed source, where the shape of angular
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distribution hi is known but the angular dispersion parameter σ is unknown and has to be jointly
estimated with the DOA. An example of such an estimator is the 2D MUSIC-like estimator named
DSPE [6]. Under the unconditional-model assumption (UMA) [18], the CRB matrix is composed
of the derivatives of the elements in the parameter vector Φ0 = [θ, σ, σ2

s , σ
2
b ]. We will compute

the CRB in this case, and express the condition such that the lower bound on the covariance of
the estimation of θ and σ is null. When this condition is fullfilled, the consistent estimator is
known to be robust to the model error due to the source dispersion since cov(θ̃, σ̃) →

N→∞
0, where

θ̃ = θ̂ − θ, σ̃ = σ̂ − σ. In other words, error on σ does not impact on the θ̂ estimation.
It is well known that for point sources, the variances of parameters of signal and noise power

are decoupled of the variance of the DOA. Similar results can be found for distributed sources
when the angular dispersion is small [19]. Therefore, without loss of generality, we assume that σ2

s

and σ2
b are known. The CRB expression for distributed sources has been derived in [19]:

CRB(θ, σ|σ2
s , σ

2
b ) =

1 + βSNR

2NβSNR

[
Re{CH

Ψ ΠCΨ}+ Ω
]−1

, (20)

where β = cHc,Ω = 2bbT

β(1+βSNR) ,b = Re{CH
Ψc},CΨ =

[
∂c
∂θ ,

∂c
∂σ

]
and SNR is the value of the signal

to noise ratio.
Exploiting the approximation proposed in (14), we develop the CRB expression as an explicit

function of the parameters:

CRBθθ =
fσσ

η [fθθfσσ − |fθσ|2]
, (21)

CRBσσ =
4

σ2
ση
· fθθ
fθθfσσ − |fθσ|2

, (22)

CRBθσ =
2

σση
· fθσ
fθθfσσ − |fθσ|2

, (23)

where:

σσ ,
∫
φ2∂h(φ)

∂σ
dφ =

∂σ2

∂σ
= 2σ,

η =
2Nσ4

s

σ2
b (σ

2
s(M + σ2Real{äHa}) + σ2

b )
,

fθθ =M ȧH ȧ− |ȧHa|2 + σ2Real{...aH ȧM + ȧH ȧäHa− aH ȧ(
...
aHa + ȧH ä)},

fθσ =Real{M ȧH ä− ȧHaaH ä},

fσσ =M äH ä +Real{aH äaH ä} − 2Mσ2
sReal{äHa}2

σ2
b + σ2

s(M + σ2Real{äHa})
. (24)

Taking into account the notations in (13), fθσ can be rewritten as:

fθσ = M2
(
ϕ̇ · ϕ̈− ϕ̇ · ϕ̈

)
. (25)

As discussed previously, in order to design array geometry for which consistent DOA estimators
are robust to mismodelling, the condition is fθσ = 0. From (25) it yields ϕ̇ · ϕ̈ = ϕ̇ · ϕ̈, we can see
that the results of (19), (25), and the results in [18] are identical.
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5. Particular array geometries design

In this section, we investigate particular array geometries with pretty simple structures which
satisfy the optimal condition proposed in (19) in the case of one source.

5.1. Uniform circular array

Inspired by (17), we find that for a UCA with an even number of symmetrical elements, where

ρm = ρ, and αm = 2π (m−1)
M with M even, ϕ̇ and ϕ̇ · ϕ̈ can be zero:

ϕ̇ = − 1

M
2π
ρ

λ

M∑
m=1

sin(θ − αm)

= − 1

M
2π
ρ

λ

 M
2∑

m=1

sin(θ − αm) +

M
2∑

m=1

sin(θ − αm + π)


= 0, (26)

and similarly :

ϕ̇ · ϕ̈ =
(2π ρλ)2

M

M∑
m=1

sin(θ − αm) cos(θ − αm)︸ ︷︷ ︸
1
2

sin(2θ−2αm)

= 0. (27)

This result illustrates that a symmetrical with even elements UCA can be robust to the model error
due to the source dispersion, in the scenario of one source. In addition, a sensor array composed
of a combination of UCAs with such a structure with a same center but different radii, can also be
proved, with a similar demonstration, to be robust to the model error.

5.2. V-shape array

Figure 3: Illustration of V-shape arrays

The V-shape array (VA) is another type of particular geometry which has been widely studied,
thanks to its easiness to be parameterized. It has been proved in [12] that with the array angle
fixed to a specific value, a VA with any size can have an isotropic behavior, and outperforms the
UCA in terms of CRB.

Let us assume that, without loss of generality, the two identical branches are symmetrical with
respect to the y axis, with no sensor placed at the origin, as depicted in Figure 3, and that, the
inter-sensor distance is fixed to d. The coordinates of the sensors can be expressed as:

ρm =

{
md, 1 6 m 6 M

2

(m− M
2 )d, M

2 6 m 6M
, (28)
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and,

αm =

{
α, 1 6 m 6 M

2

π − α, M
2 6 m 6M

. (29)

Considering the above described V-shape geometry, (17) can be derived as:

∆θ =
1

2
σ2 sin θ cos θ

[
(4 + 4M) cos2 α+ (2−M) sin2 α

]
(4 + 4M) cos2 α sin2 θ + (2−M) sin2 α cos2 θ

, (30)

which shows that the DOA estimation error is independent of d. In addition, we can see that ∆θ
can be zero, under the condition that the numerator of (30) vanishes, which yields:

tan2 α =
4M + 4

M − 2
. (31)

This expression reveals that the array angular α can be fixed to a special value to be robust to the
model error due to the source dispersion, which depends roughly on the array size, and is robust
to other parameters. For example, in the case M = 10 and 5 sensors on each branch, (31) yields
α ≈ 66.9◦.

5.3. Linear array

Notice that the scenario of αm = 0 corresponds to the linear array (LA). After some straight-
forward calculus from (13)-(17) with αm = 0, the DOA estimation error is derived as:

∆θ =
1

2
σ2 cot θ, (32)

which reveals that in the case of LA, the DOA estimation error does not depend on the sensor
positions but only on the DOA and the square of the angular dispersion of the source σ2. Taking
into account that the model error can not be modified, the sensor array should be rotated to
reduce the value of cot θ, so as to get a smaller estimation error, if θ is roughly known. Besides,
this result is identical to the conclusion that we have for point sources: it is better to have the
DOA perpendicular to the array than in the axis of the array.

5.4. Simulation results

In this subsection, we validate the theoretical results through numerical experiments in the
scenario of one source. In all experiments, one uniformly distributed source with a support within[
θ − ∆0

2 , θ + ∆0
2

]
is considered, where ∆0 = 10◦ is the angular width of the source, for uniform

distribution σ2 =
∆2

0
12 . Signals received on the sensor array are simulated with N = 1000 snapshots

and 100 Monte-Carlo experiments, with SNR = 10dB. The UCA are composed of M = 20 sensors.
The VA are composed of 10 sensors identically uniformly placed at the two branches, spaced by
d = λ/2, and the VA with α = 0 is considered as the case of LA. Such array configurations ensure
that the UCA and the LA have the same horizontal aperture.

In Figure 4, we consider a V-shaped array and compare the theoretical value of the optimal β
to the value obtained by simulation: βsimmin is the value of β which minimize the estimation error
of MUSIC for 100 trials. This result can be similarly obtained by exploiting the cross term of the
CRB as proposed in section 4.1. To illustrate this, we plot also the value of β corresponding to the

9
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minimum |Cov(θσ)| = |E[(θ̂ − θ)(σ̂ − σ)]| obtained by the joint estimator DSPE [6]. Let us recall
the definition of the DSPE, assuming that the distribution shape of the source is known, the DOA
and the angular dispersion parameter can be estimated as:

{θ̂, σ̂} = argmax
θ,σ

1

‖cHh (θ)V‖2
. (33)

As one may expect, for a V-shape array, the optimal geometry for an 1D estimator is robust to the
DOA of the source, in addition, this optimal geometry makes it possible to decouple the estimation
of the DOA and the angular dispersion parameter for a 2D estimator.

In Figure 5, the DOA estimation error of MUSIC versus the angular dispersion of the signal
source with θ = 45◦ is presented, in the case of LA and VA with β = 100◦. We can observe the
validation of expression (30) and (32) which makes it possible to consider the DOA estimation error
as an explicit convex quadratic function of the angular dispersion of the signal source. Furthermore,
regardless of a more complicated geometry, VA outperforms LA, which reveals the interest to
optimize the array geometry to have a better performance.

6. Two sources in the case of a UCA

6.1. Theoretical results

In this subsection, we focus on the above-mentioned case of a UCA with an even number of
symmetrically positioned sensors, which is easier to manipulate mathematically comparing to other
geometries.

Assuming two sources arriving from θ1 and θ2, with θ2 > θ1. For the m − th sensor, let us
introduce the notation:

∆ϕm = ϕm(θ2)− ϕm(θ1) = ϕm,2 − ϕm,1. (34)

Notice that with a UCA:

Re{ȧHi ai} = −
M∑
m=1

2π
ρ

λ
sin(θ − αm) = 0, (35)

and:

Re{ȧHi ci} =
M∑
m=1

ϕ̇m,ium,i =

M/2∑
m=1

Φ(θi) +

M/2∑
m=1

Φ(θi + π)

 = 0, (36)

where Φ(θi) =
∫
ϕ̇m(θi) [cos(ϕm(θi + φ)) cos(ϕm(θi))+ sin(ϕm(θi + φ)) sin(ϕm(θi))]h(φ)dφ.

Introducing (35), (36), and the steering matrix A = [a1,a2] in (11) gives:

∆θ1 =
Re{−M ȧH1 a2a

H
2 c1 + ȧH1 a2a

H
1 c1a

H
2 a1}

ȧH1 ȧ1(M2 − |aH2 a1|2)−M |ȧH1 a2|2
. (37)

We introduce the following notations: u(i) = 1
M

∑M
m=1 um,i, v(i) = 1

M

∑M
m=1 vm,i, ϕ(i) =

1
M

∑M
m=i ϕm,i, where um,i, vm,i, and ϕm,i are simplified for um(θi), vm(θi), ϕm(θi), respectively.
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i = 1, 2 in the case of two sources. Introducing the notations of (13) and (34) in (37), with the
results in appendix A, ∆θ1 can be derived as:

∆θ1 = −1

2
σ2

(
18ϕ̇2

(1) − 3δ2ϕ̇2
(1) + ϕ̇4

(1)

)
(ϕ̇2

(1) − ϕ̇
2
(1))

2

δ
[
−9(ϕ̇2

(1))
3 + 12ϕ̇2

(1) · ϕ̇
4
(1) + ϕ̇2

(1) − δ2(ϕ̇2
(1) + ϕ̇4

(1))
2
] , (38)

where δ = θ2 − θ1. We can see that (38) is proportional to the square of the angular dispersion
σ2. The value of the estimation error is inversely proportional to the value of δ for small δ, which
illustrates that the estimation error decreases as the sources move away from each other.

In order to explore the peak separation, let us consider the sign of ∆θ1. Firstly, Π̃ is Hermitian,
so the denominator ȧHi Π̃ȧi in (11) is non-negative, it is enough to focus on the numerator in (11)

for θ1 which yields 1
2σ

2δ3(18ϕ̇2
(1) − 3δ2ϕ̇2

(1) + ϕ̇4
(1))(ϕ̇

2
(1) − ϕ̇

2
(1))

2 (see (A.5) in appendix) after some

straightforward calculus. Secondly with a small δ, 18ϕ̇2
(1) − 3δ2ϕ̇2

(1) + ϕ̇4
(1) can be approximated

by 18ϕ̇2
(1) which is positive, and obviously (ϕ̇2

(1) − ϕ̇
2
(1))

2 is positive. Therefore, in the case that
θ1 < θ2, ∆θ1 is opposite to the sign of δ.

For θ2, after similar calculus in appendix B, we have:

∆θ2 = −∆θ1. (39)

∆θ1 is negative and ∆θ2 is positive, on the opposite of the well known result for point source,
the lower DOA is underestimated and the other one is overestimates, in consequence, the two
peaks move away. This implies that when the two sources are close to each other, MUSIC is always
able to give the estimation of two DOAs separately, despite that the value of the estimation error
increases as it is illustrated in Figure 6.

6.2. Numerical results

In this section, we validate the theoretical results through numerical experiments in the scenario
of two sources. In all experiments, two uniformly sources with the angular dispersion ∆0 = 10◦

are considered. Signals received on the sensor array are simulated with N = 1000 snapshots and
100 Monte-Carlo experiments, with SNR = 10dB. The array configurations are the same for the
UCA, VA and LA as in subsection 5.4.

Figure 6 illustrates the peak separation of criterion MUSIC in the case of 2 sources. A UCA
is used for the DOA estimation of two uniformly distributed sources coming from 29.5◦ and 30.5◦

with angular dispersion 10◦, assuming that the correlation matrix is perfectly known. Two peaks
can be detected, but for arguments which are different from the actual DOAs. The analyses of the
signs of the two sources in section 6.1 can be verified in this figure.

In Figure 7, we compare the performance of MUSIC with the UCA and with the LA versus the
DOA separation, in the scenario of two sources. The DOA separation varies with θc = 1

2(θ1 + θ2)
fixed to 60◦, assuming that θ2 > θ1. We can see that when the two sources are too close to each
other, the estimation error can not be ignored despite the array geometry, due to the interference
between the sources. For LA, ∆θ1 decreases as the DOA separation increases and as θ1 tends to
zero, by contrast, ∆θ2 decreases as the interference phenomenon fades, but increases again along
with the DOA separation, which coincides with the well-known conclusion that the ULA has a
better performance for broadside sources. For UCA, both ∆θ1 and ∆θ2 tend to zero quickly as the

12
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Figure 6: Pseudo-spectrum of MUSIC for two distributed sources with a UCA
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DOA separation increases, which is in adequacy with the scenario of one source where the DOA
estimation error is null and outperforms its LA counterpart. In addition, it is interesting to see
the validity of the approximated expression (38) and (39) for describing the trend and the sign of
the estimation error when the sources are close to each other.

In Figure 8, ∆θ1 and ∆θ2 is plotted versus the angular extension of the sources, two sources of
θ1 = 55◦ and θ2 = 65◦ are used in this experiment. The goal is to validate the expression (38) as

an explicit function of the angular extension ∆0 (recall that for uniform source σ2 =
∆2

0
12 ).

7. Conclusion

In this paper, we have studied the impact of the array geometry on the performance of the
MUSIC DOA estimation in the presence of spatially distributed sources. We have found that the
DOA estimation error can be reduced and even canceled for particular array geometries in the
case of one source or in the case where the DOA separation between two sources is large enough.
Additionally, the impact of the array geometry on the crossed terms of CRB has been studied, and
the condition for decoupling the estimation of the DOA from the angular dispersion parameter has
been found the same as the one for canceling the DOA estimation error of MUSIC. The separation
property of MUSIC in the scenario of two distributed sources has been explored with a UCA, and
motivates the further investigation of the array geometry design in the scenario of two sources.
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Appendix A.

Introducing (13) and (34) in (37), ∆θ1 is given as:

∆θ1 =
Re{jϕ̇(1)e−j∆ϕ · ej∆ϕ(u(1) − jv(1))− jϕ̇(1)e−j∆ϕ · (u(1) − jv(1)) · ej∆ϕ}

ϕ̇2
(1)(1− ‖e−j∆ϕ‖2)− ‖ϕ̇(1)e−j∆ϕ‖2

. (A.1)

where e−j∆ϕ = 1
M

∑M
m=1 e

−j∆ϕm , ej∆ϕ(u(1) − jv(1)) = 1
M

∑M
m=1 e

j∆ϕm(um,1 − jvm,1).
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Noting that e−j∆ϕm = cos(∆ϕm)− j sin(∆ϕm), we have:

sin(∆ϕ) =
1

M

M∑
m=1

sin(∆ϕm) =
1

M

M∑
1

[
sin
(

2π
ρ

λ
cos(θ2 − αm)

)
cos
(

2π
ρ

λ
cos(θ1 − αm)

)
− cos

(
2π
ρ

λ
cos(θ2 − αm)

)
sin
(

2π
ρ

λ
cos(θ1 − αm)

)]
=

1

M
{

M
2∑
1

[
sin
(

2π
ρ

λ
cos(θ2 − αm)

)
cos
(

2π
ρ

λ
cos(θ1 − αm)

)
− cos

(
2π
ρ

λ
cos(θ2 − αm)

)
sin
(

2π
ρ

λ
cos(θ1 − αm)

)]
−

M
2∑
1

[
sin
(

2π
ρ

λ
cos(θ2 − αm + π)

)
cos
(

2π
ρ

λ
cos(θ1 − αm + π)

)
− cos

(
2π
ρ

λ
cos(θ2 − αm + π)

)
sin
(

2π
ρ

λ
cos(θ1 − αm + π)

)]
} = 0. (A.2)

Similarly, v(i) and ϕ̇(i) · cos(∆ϕ) equal to 0. Considering the terms which equal to 0, (A.1)
yields:

∆θ1 =
ϕ̇(1) · sin(∆ϕ)

[
cos(∆ϕ) · u(1) − cos(∆ϕ) · u(1) + sin(∆ϕ) · v(1)

]
ϕ̇2

(1) − ϕ̇
2
(1) · cos2(∆ϕ)−

(
ϕ̇(1) sin(∆ϕ)

)2 . (A.3)

We take the third order of Taylor approximation in δ to develop (B.1) rather than the first
order, because the angular separation between the sources can be up to 50◦ − 60◦. Hence, noting
that δ = θ2 − θ1, the approximated sin(∆ϕm) and cos(∆ϕm) can be given by:

sin(∆ϕm) ≈∆ϕm −
1

6
∆ϕ3

m

=2π
ρ

λ

[
cos(θ1 + αm)(δ − 1

6
δ3)− 1

2
sin(θ1 + αm)δ2

]
− 1

6
(2π

ρ

λ
)3 cos3(θ1 + αm)δ3,

cos(∆ϕm) ≈1− 1

2
∆ϕ2

m

=1− 1

2
(2π

ρ

λ
)2
[
cos2(θ1 + αm)δ2 − cos(θ1 + αm) sin(θ1 + αm)δ3

]
. (A.4)

Introducing (A.4) in (B.1), ∆θ1 results in:

∆θ1 =
δ3
(

18ϕ̇2
(1) − 3δ2ϕ̇2

(1) + ϕ̇4
(1)

)(
ϕ̇2

(1) · u(1) − ϕ̇2
(1) · u(1)

)
δ4
[
−9(ϕ̇2

(1))
3 + 12ϕ̇2

(1) · ϕ̇
4
(1) + ϕ̇2

(1) − δ2(ϕ̇2
(1) + ϕ̇4

(1))
2
] (A.5)

=

(
18ϕ̇2

(1) − 3δ2ϕ̇2
(1) + ϕ̇4

(1)

)(
ϕ̇2

(1) · u(1) − ϕ̇2
(1) · u(1)

)
δ
[
−9(ϕ̇2

(1))
3 + 12ϕ̇2

(1) · ϕ̇
4
(1) + ϕ̇2

(1) − δ2(ϕ̇2
(1) + ϕ̇4

(1))
2
] . (A.6)

Taking into consideration that um,1 ≈
∫

cos(ϕm(θ1 + φ) − ϕm(θ1))h(φ)dφ ≈
∫

cos(φϕ̇m(θ1) +
1
2φ

2ϕ̈m(θ1) + 1
6φ

2...
ϕm(θ1))h(φ)dφ ≈ 1− 1

2σ
2ϕ̇2

m(θ1), ∆θ1 results in (38) .
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Appendix B.

Similarly to (A.1), ∆θ2 can be given as:

∆θ2 =
Re{jϕ̇(2)ej∆ϕ · e−j∆ϕ(u(2) − jv(2))− jϕ̇(2)ej∆ϕ · (u(2) − jv(2)) · e−j∆ϕ}

ϕ̇2
(2)(1− ‖e−j∆ϕ‖2)− ‖ϕ̇(2)e−j∆ϕ‖2

. (B.1)

Recalling that θ2 = θ1 + δ, the notations in θ2 can be approximated as functions of notations
in θ1 and δ:

ϕ̇m,2 = −2π
ρm
λ

sin(θ1 + δ − αm)

≈ ϕ̇m,1 − 2π
ρm
λ

[
−1

2
δ2 sin(θ1 − αm) + (δ − 1

6
δ3) cos(θ1 − αm)

]
, (B.2)

vm,2 ≈
1

2
ϕ̈m,2σ

2

≈ vm,1 − πσ2 ρm
λ

[
−1

2
δ2 cos(θ1 − αm)− (δ − 1

6
δ3) sin(θ1 − αm)

]
(B.3)

um,2 =

∫
cos [ϕm(θ1 + φ+ δ)− ϕm(θ1 + δ)]h(φ)dφ

≈ um,1−∫ (
cos
[
2π
ρm
λ

(cos(θ1 + φ)− cos θ1)
] [

(π
ρm
λ

)2(δ2φ sin θ1 + δφ2 sin θ1 − 2δφ cos θ1)
]

+ sin
(

2π
ρm
λ

(cos(θ1 + φ)− cos θ1)
)

sin
(

2π
ρm
λ

(−δ2φ sin θ1 − δφ2 sin θ1 + 2δφ cos θ1)
))

h(φ)dφ

(B.4)

Putting (B.2), (B.3), and (B.4) in (B.1), and keeping the third order of Taylor approximation
in δ, the final expression of ∆θ2 results in (39).
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