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Noisy Compressive Sampling Based on
Block-Sparse Tensors: Performance Limits and

Beamforming Techniques
Rémy Boyer and Martin Haardt

Abstract—Compressive Sampling (CS) is an emerging research
area for the acquisition of sparse signals at a rate lower than
the Shannon sampling rate. Recently, CS has been extended to
the challenging problem of multidimensional data acquisition. In
this context, block-sparse core tensors have been introduced as
the natural multidimensional extension of block-sparse vectors.
The (M1, . . . ,MQ)-block sparsity for a tensor assumes that
Q support sets, characterized by Mq indices corresponding
to the non-zero entries, fully describe the sparsity pattern
of the considered tensor. In the context of CS with Gaussian
measurement matrices, the Cramér-Rao Bound (CRB) on the
estimation accuracy of a Bernoulli-distributed block-sparse core
tensor is derived. This prior assumes that each entry of the core
tensor has a given probability to be non-zero, leading to random
supports of truncated Binomial-distributed cardinalities. Based
on the limit form of the Poisson distribution, an approximated
CRB expression is given for large dictionaries and a highly
block-sparse core tensor. Using the property that the mode
unfolding matrices of a block-sparse tensor follow the Multiple-
Measurement Vectors (MMV) model with a joint sparsity pattern,
a fast and accurate estimation scheme, called Beamformed mOde
based Sparse Estimator (BOSE), is proposed in the second part
of this work. The main contribution of the BOSE is to “map” the
MMV model onto the Single MV model thanks to beamforming
techniques. Finally, the proposed performance bounds and the
BOSE are applied in the context of CS to (i) non-bandlimited
multidimensional signals with separable sampling kernels and
(ii) for multipath channels in a multiple-input multiple-output
(MIMO) wireless communication scheme.

I. INTRODUCTION

Tensors or multi-way arrays are now a prominent research
area in signal processing [1]–[6] and in particular at the era
of big data processing [7]–[9]. However, structured tensors
represent a relatively little-examined topic. Ignoring this a
priori knowledge leads to sub-optimal algorithms and de-
graded estimation performances. We can find several types of
structured tensors. The first type of structure occurs when the
entries of the measured tensor follow a particular arrangement
as Toeplitz or Hankel, for instance, in case of higher-order
statistics tensors [10]–[14] or symmetric in the decomposition
of high-order Volterra series [15]. The second type of structure
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Signaux et Systèmes (L2S lab.), Gif-Sur-Yvette, France (e-mail:
remy.boyer@l2s.centralesupelec.fr).

Martin Haardt is with Ilmenau University of Technology, Communica-
tions Research Laboratory, Ilmenau, Germany (e-mail: Martin.Haardt@tu-
ilmenau.de or haardt@ieee.org).

This work was supported by the following projects: MAGELLAN (ANR-
14-CE23-0004-01), MI-CNRS TITAN, MH ICode blanc, and the DFG project
EXPRESS (HA 2239/6-1).

arises in the decomposition of a measured tensor into the q-
mode products of an unstructured core tensor with a sequence
of structured factor matrices [16]. The last type of structure
occurs when the core tensor admits a specific structure. The
most evident case occurs when the core tensor is diagonal
as in the Multidimensional Harmonic Retrieval problem [17]–
[19], but a different structure appears when only a few entries
of the core tensor are non-zeros, i.e., the core tensor is sparse.

The compressed sensing theory [20]–[22] is now a very well
established framework. Compressive Sampling (CS) is closely
related to the compressed sensing philosophy. In CS, the data
acquisition is performed at a rate lower than the Shannon
sampling rate [23]. CS has been extensively studied from a the-
oretical point of view [24,25] and has been exploited in many
operational applications as, for instance, in array processing
[26], wireless communication [27], video processing [28] or
in MIMO radar [29]. Recently, the natural complementarity
of CS and sparse tensors has been demonstrated in [30]–
[33] and the concept of block-sparse core tensors turns out
to be a natural multidimensional extension of the notion of
block-sparse vectors [34,35] or also the Multiple-Measurement
Vectors (MMV) model with joint sparsity pattern [36]–[39].
Block-sparse tensors arise naturally in a wide range of ap-
plications as, for instance, in Magnetic Resonance Imaging
(MRI), hyper-spectral imaging, multidimensional inpainting,
missing data problems for EEG, super-resolution imaging
(see [32] and the references therein) or in MIMO wireless
channel communication [39]. Our context is based on the
definition of block-sparse tensors introduced by Caiafa and
Cichocki [32]. In addition, our contribution follows a different
“philosophy” to [30,31] since the main goal in these works is
to reduce the initial problem into parallelizable sub-problems
for tensor mode recovery. Reference [33] studies restricted
isometry/incoherence properties of the mode loading matrices;
but it does not deal with tensor compression.

Performance bounds constitute an important research do-
main since they can predict the best estimation accuracy in
terms of the Mean Square Error (MSE) [40,41]. In the CS
context, performance bounds for the estimation accuracy of
sparse vectors have been derived in [42]–[47], for instance. In
the tensor context, performance bounds have been proposed in
[16,19,48,49]. The goal of this work is to study the estimation
performance of the non-zero entries of the block sparse core
tensor from noisy compressive measurements. Unlike the
existing approaches, the proposed analysis is performed (i)
in the case of random supports with random cardinalities,
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i.e., each entry of the block-sparse core tensor has a given
probability to take a non-zero value and (ii) for multidimen-
sional Gaussian measurements. Note that the assumption (i)
models our uncertainty knowledge on the support sets and on
the cardinalities. Many popular sparsity based estimators as
for instance the Orthogonal Matching Pursuit (OMP) [50,51],
the Compressive Sampling Matching Pursuit (CoSaMP) [52],
the Basis Pursuit (BP), the BP De-Noising (BPDN) [53], the
Lasso [54] or again the Iterative Hard Thresholding (IHT)
[55] algorithms have been historically developed to solve
the SMV model. Based on this fact, a second goal of this
work is to propose an efficient and generic pre-processing
strategy to adapt any sparsity based estimators to the MMV
model. Our results are illustrated for CS of non-bandlimited
multidimensional signals [56]–[58] with separable sampling
kernels and for compressive channel estimation for wireless
MIMO systems.

This article contains four main sections. The first part
introduces the noisy compressive sampling context with block-
sparse tensors. In particular, the structure of the vectorized
measurement tensor and the mode unfolding matrices are
described. The second part presents a closed-form expression
of the CRB for the estimation of the non-zero entries of the
core tensor with a random support of random cardinalities.
The third part proposes a new fast estimator called BOSE
for a Beamformed mOde Sparse Estimator adapted to the
estimation of the entries of a block-sparse core tensor. Finally,
the proposed lower bound and the BOSE are applied in the
context of CS of non-bandlimited multidimensional signals
with separable sampling kernels.

Notation: The notation used through this paper is the fol-
lowing: scalars, vectors, matrices and tensors are represented
by italic lower-case, boldface lower-case, boldface upper-case
and boldface calligraphic upper-case symbols, respectively.
Sets are denoted by calligraphic upper-case symbols, e.g.,
X and its i-th element is X{i}. The union of two sets is
denoted by ∪. The symbols (·)T , (·)†, Tr(·) and (·)! denote
the transpose, the pseudo-inverse, the trace operator and the
factorial, respectively. Furthermore, Binomial(N,P ) stands
for the Binomial distribution parametrized by N independent
yes/no experiments, with a success probability P [59]. The
Binomial coefficient is defined by

(
a
b

)
= a!

b!(a−b)! . Moreover,
N (µ, σ2) stands for the real Gaussian probability density
function (pdf) with mean µ and variance σ2, and Poisson(θ)
stands for the Poisson distribution with parameter θ. The
distributions χ2

n and χ2
n(v) stand for the central and the non-

central chi-squared distribution with n degrees of freedom and
non-centrality parameter v. In addition, the function QX (·)
denotes the right tail of the distribution X . The notation
∼ (resp. a∼) means that a random variable follows (resp.
asymptotically follows) a particular distribution. The symbol
diag(x) denotes a diagonal matrix, where the elements of the
vector x specify its diagonal elements. Furthermore, 1X (x)
is the indicator function with respect to the set X , i.e.,
1X (x) = 1 if x ∈ X and 0 otherwise. The symbol •, denotes
the Schur-Hadamard product. Moreover, δ(·, . . . , ·) is is the
multidimensional Dirac delta symbol and δ̄(·) is the Kro-

necker delta. The symbol vec(·) stands for the vectorization
operator which converts the S × T matrix X = [x1 . . .xT ]
into a (ST )× 1 vector x obtained by staking the T columns
of the matrix X according to x = [xT1 . . .x

T
T ]T . The matrix

unfoldq(X ) is the q-mode unfolding of the tensor X [6],
i.e., the matrix of all q-mode vectors where the q-th index is
varied in each column, and all other indices are kept fixed.
In this paper, we use the forward column ordering, where
we start by varying the first index, then the second, up to
index (q − 1), continue with index (q + 1) up to index Q.
The scalar entry localized at indexes m1, . . . ,mQ in the
tensor X is denoted by [X ]m1,...,mQ . The tensor, denoted by
[X ]X ,Y,Z and extracted from the larger tensor X contains
the entries [X ]x,y,z with ∀(x, y, z) ∈ X × Y × Z , where
× denotes the cartesian product. Furthermore, R(·) stands
for the range space. The notation λk(X) denotes the k-th
eigenvalue of the positive semi-definite matrix X. Moreover,
λmax(X) is defined as the maximal eigenvalue of the eigen-
spectrum of X, i.e., λmax(X) = maxk λk(X). The operator
Pmax(X) computes the eigenvector associated with the largest
eigenvalue λmax(X) of the matrix X. Furthermore, det(·)
denotes the determinant. The (r, p)-norm is defined according

to ||X||r,p =
(∑N

i=1 ||[X]i||pr
)1/p

. Finally, O(·) stands for the
big-O notation.

II. NOISY COMPRESSIVE ACQUISITION WITH
BLOCK-SPARSE TENSORS

A. The Compressed Sensing framework

1) Single Measurement Vector (SMV): Let y be the N × 1
noisy measurement vector in a (standard) compressed sensing
(CS) model [21,24]:

z = Ψr + w, (1)

where w represents a zero-mean white Gaussian noise of un-
known variance σ2 and Ψ is the N ×K measurement matrix.
Let r

def.
= Φxspar where the matrix Φ is a K×K orthonormal

basis and xspar ∈ WM
def.
= {xspar ∈ RK , ‖xspar‖0 =

card(S) ≤M} with ‖·‖0 denoting the pseudo-norm l0 and S
being the support of xspar, i.e., the collection of the positions
of the non-zero entries in vector xspar. Defining the N ×K
dictionary matrix D

def.
= ΨΦ, the model in eq. (1) can be

recast as

z = Dxspar + w. (2)

The optimization problem is given by

min ||xspar||0 subject to ||z−Dxspar|| ≤ ε

for a positive ε. The above optimization problem is NP-
hard because of the nonconvexity of the l0 pseudo-norm.
Furthermore, it is standard to relax the above problem by
considering the l1 norm of xspar instead of the pseudo-norm
l0. By doing this, the relaxed optimization problem is convex,
and thus can be implemented as a linear program.
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2) Multiple Measurement Vectors (MMV): The MMV
model is an extension of the SMV model given by eq. (2)
for {z(t), 1 ≤ t ≤ T} where T is the number of snapshots.
Generalizing the model of eq. (2), we obtain

Z =
[
z(1) . . . z(T )

]
= DXspar + W

where W =
[
w(1) . . . w(T )

]
is the matrix composed by

multiple noise vectors and

Xspar =
[
xspar(1) . . . xspar(T )

]
.

Note that the matrix Xspar consists of a set of jointly sparse
vectors with a common support [38,60]. The MMV model
aims to recover the sparse representations of SMVs simul-
taneously. The MMV model is useful in several operational
contexts as for instance for recovery of sparse brain excitations
[36], in direction of arrival (DOA) estimation [61] or in
wireless communication [39]. The convex relaxed optimization
problem for the MMV model is given by

min ||Xspar||2,1 subject to ||Z−DXspar|| ≤ ε.

3) Pseudo-isometric random dictionary: Classical sam-
pling theory says that, to ensure that no information is lost, the
number of measurements, N , should be at least equal to K.
In contrast, in CS theory this goal is reached for N � K as
long as the K × 1 amplitude vector xspar is sparse in a given
basis Φ (e.g., the canonical basis of RK , the Fourier basis,
etc.) [20]. This allows one to consider the CS theory to solve
the ill-posed problem where the dictionary D is a redundant
matrix. A fundamental question in CS is to determine how
large N must be to enable the recovery of xspar.

Remark 2.1: [62] Assume that D is drawn according to a
distribution for which the concentration inequality [21,22,63]
holds for δ ∈ (0, 1):

Pr
(∣∣∣ ‖Dxspar‖2 − ‖xspar‖2

∣∣∣ ≥ δ ‖xspar‖2
)
≤ 2e−δ

2N (3)

then all M -sparse vectors can be stably recovered with high
probability from a number of measurement given by N =
O
(
M log K

M

)
< K [64].

4) Universal design strategy: Determining whether the
dictionary D satisfies the the concentration inequality is com-
binatorially complex but a strategy called universal has been
introduced, for instance, in [21,22,63]. Assume that Ψ is an
orthonormal basis and Φ is drawn from independent and iden-
tically distributed Gaussian entries of zero mean and variance
1/N . Recall that Gaussian matrices satisfy the concentration
inequality [62]. Consequently, the adopted strategy leads to a
dictionary D fulfilling Remark 3.1.

B. Extension to block-sparse tensors

1) Preliminary notions:
Definition 2.2: The Kronecker product of matrices X and

Y of size I × J and K ×N , respectively is given by

X⊗Y =

[X]11Y . . . [X]1JY
...

...
[X]I1Y . . . [X]IJY

 ∈ R(IK)×(JN).

Lemma 2.3 ( [65]):
1) For non-singular matrices X and Y, the following

property holds (X ⊗ Y)−1 = X−1 ⊗ Y−1. Note that
the non-singularity of the matrices X and Y means that
X⊗Y is also non-singular.

2) In addition, we have Tr(X⊗Y) = TrX · TrY.
Definition 2.4: The n-mode product denoted by ×n between

a tensor X ∈ RM1×...×MN and a matrix U ∈ RK×Mn is
denoted by X ×n U ∈ RM1×...×Mn−1×K×Mn+1×...×MN with

[X ×n U]m1,...,mn−1,k,mn+1,...,mN =

Mn∑
mn=1

[X ]m1,...,mN [U]k,mn

where 1 ≤ k ≤ K.
Definition 2.5: [66] The Tucker model of order N is defined

according to

[X ]k1,...,kN =
∑

m1,...,mN

[S]m1,...,mN

N∏
n=1

[Un]kn,mn

where S is the M1 × . . .×MN core tensor and Un is the n-
th factor matrix of size Kn ×Mn. An equivalent formulation
using the n-mode product is

X = S ×1 U1 ×2 . . .×N UN ∈ RK1×...×KN .

Definition 2.6: The n-mode unfolding matrix of size Mn×(∏N
k=1,k 6=nMk

)
denoted by X(n) = unfoldn(X ) of a tensor

X ∈ RM1×...×MN is defined according to

[X(n)]mn,h = [X ]m1,...,mN

where h = 1+
∑N
k=1,k 6=n(mk−1)

∏k−1
v=1,v 6=nMv . The n-mode

unfolding admits the following decomposition:

X(n) = UnS(n) (UN ⊗ . . .⊗Un+1 ⊗Un−1 . . .⊗U1)
T

(4)

where S(n) = unfoldn(S) is n-mode unfolding of the core
tensor.

Definition 2.7: Let x be the
(∏N

n=1Mn

)
× 1 vectorization

representation of the tensor X ∈ RM1×...×MN . The vector x
is defined as the columns stacking of the 1-mode unfolding
matrix, i.e., x = vecX(1). Using eq. (4) and the property
vec(ABC) = (CT ⊗A)vecB, we get

x = (UN ⊗ . . .⊗U2)⊗U1vecS(1) = Us

where s = vecS(1) and U = UN ⊗ . . .⊗U2 ⊗U1.
2) Definition of a block-sparse tensor: Assume that the

real-valued tensor R of size K1× . . .×KQ follows a Tucker
model (see Definition 2.5):

R = X spar ×1 Φ1 ×2 . . .×Q ΦQ (5)

where the K1 × . . .×KQ tensor X spar is (M1 × . . .×MQ)-
block sparse with respect to a set of Q basis matrices
Φ1, . . . ,ΦQ each of size Kq × Kq with Mq � Kq . More
formally, define the q-th support set Fq composed by the
Mq indices corresponding to the non-zero values in the q-
th dimension of the tensor X spar. Let F = F1 × . . . × FQ
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be the cartesian product set associated with the Q supports
sets, then the block-sparsity property is defined by

[X spar]m1,...,mQ

{
6= 0, ∀(m1, . . . ,mQ) ∈ F ,
= 0, otherwise.

In the context of the CS, Q measurement/sensing matrices,
denoted by Ψ1, . . . ,ΨQ, each of size Iq × Kq with Iq <
Kq are introduced to achieve dimensionality reduction of the
available measurement tensor according to

Y = R×1 Ψ1 ×2 . . .×Q ΨQ. (6)

Now, introduce Q overcomplete dictionaries D1, . . . ,DQ

with Dq = ΨqΦq . Using eq. (5) and eq. (6), the noisy CS
model is given by

Z = X spar ×1 Φ1 ×2 . . .×Q ΦQ

×1 Ψ1 ×2 . . .×Q ΨQ + W
= X spar ×1 D1 ×2 . . .×Q DQ + W (7)

in which each entry of the noise tensor W has additive,
circular and Gaussian entries that are uncorrelated in the Q
dimensions according to [W ]k1,...,kQ ∼ N (0, σ2

∏Q
q=1 δ̄(kq−

k′q)). A more compact and useful expression can be introduced
when the zero values in X spar are removed. Define the
Iq × Mq matrix DFq = ΨqΦFq in which the Kq × Mq

matrix ΦFq corresponds to the Mq columns of Φq associated
with the support Fq . Define XF as the M1 × . . . × MQ

tensor constituted by the non-zero entries in X spar. It is now
straightforward to obtain an alternative and more compact
expression of the model

Z = XF ×1 DF1
×2 . . .×Q DFQ + W , (8)

in which the block-sparsity property can be written in the
following manner:

XF = [X spar]F1,...,FQ . (9)

C. MMV structured q-mode unfoldings
Let Y(q) = unfoldq(Y) and W(q) = unfoldq(W) be the

q-mode unfoldings given in Definition 2.6, i.e., the matrix
unfolding along the q-th dimension, of the tensors Y and
W , respectively. Using the mode decomposition specified in
Definition 2.6, the noisy q-mode unfolding of the tensor Z
is given by

Z(q) = unfoldq(Z) = Y(q) + W(q) = DqQq + W(q), (10)

where Z(q) is a Iq × Ĩq matrix with Ĩq = Ī/Iq and

Qq = X(q)
spar (DQ ⊗ . . .⊗Dq+1 ⊗Dq−1 . . .⊗D1)

T

= X
(q)
F
(
DFQ ⊗ . . .⊗DFq+1

⊗DFq−1
. . .⊗DF1

)T
(11)

in which X
(q)
spar = unfoldq(X spar) and X

(q)
F = unfoldq(XF ).

This particular structure in the q-mode unfoldings leads to
the following remark.

Remark 2.8: First note that thanks to the block-sparse
property assumption of the core tensor, the columns of the
matrix Qq are Mq-sparse with a common support Fq (see Fig.
1). This structure is well-known under the name of Multiple-
Measurement Vectors (MMV) model with a joint sparsity
pattern.

Fig. 1. Sparsity structure of the matrix Qq for the support Fq =
{Fq{1},Fq{2}} of cardinality Mq = 2. The symbol × stands for a non-
zero entry. Clearly, each columns exhibits the same sparsity pattern.

D. Kronecker structured dictionary

Using Definition 2.7, the vectorized representation of the
tensor Z given in eq. (7) is

z = vecZ(1) = Dxspar + w (12)

where w = vecW(1) ∼ N (0, σ2I), xspar = vecX(1) is a
sparse vector, and D = DQ⊗ . . .⊗D1. Given the knowledge
of the mapping function between the supports S and F , the
following relation holds

Dxspar = DFxS ,

where

DF = DFQ ⊗ . . .⊗DF1

and

xS = [xspar]S = vec (unfold1(XF )) (13)

are a dense (i.e., all entries are non-zero) tensor and vector,
respectively. This expression characterizes the block-sparse
property and is an alternative formulation of eq. (9) in a
vectorial formalism. The

(
1+
∑Q
q=1(mq−1)

∏q−1
k=1,k 6=qMk

)
-

th entry of the support S is given by

1 +

Q∑
q=1

(
Fq
{
mq

}
−1
) q−1∏
k=1,k 6=q

Kk (14)

for 1 ≤ mq ≤Mq .
Example 1: The vectorization of a third-order (Q = 3)

(M1,M2,M3)-block sparse tensor is illustrated in Fig. 2. The
entry u in X spar is located at(
F1{m1 = 2} = 3,F2{m2 = 1} = 2,F3{m3 = 2} = 2

)
.

According to eq. (14), the (m1 + (m2 − 1)M1 + (m3 −
1)M1M2)-th entry of support S, is given by

F1{2}+ (F2{1} − 1)K1 + (F3{2} − 1)K1K2.

Finally, we get S{6} = 15.
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Fig. 2. Illustrative example of the vectorization of a third-order
(M1,M2,M3)-block sparse tensor with M1 = M2 = M3 = 2.

III. PERFORMANCE ANALYSIS FOR RANDOM SUPPORTS OF
RANDOM CARDINALITIES

A. Stable recovery guarantee

CS with Kronecker structured dictionaries has been exten-
sively studied in for instance [32,67]–[69]. In the following,
Remark 3.1 provides an extension to the multidimensional
case.

Remark 3.1: [62] Assume that D = DQ⊗. . .⊗D1 is drawn
according to a pdf for which the concentration inequality given
by eq. (3) holds for δ ∈ (0, 1) where N =

∏Q
q=1Nq . Then,

all (M1, . . . ,MQ)-sparse vectors can be stably recovered with
high probability from a number of measurement given by

N = O

(
Q∏
q=1

Mq

Q∑
q=1

log
Kq

Mq

)
.

B. Description of the statistical prior for the core tensor

A natural model to introduce a random activation/selection
mechanism of the entries of a K1 × . . . × KQ dense (non-
sparse) tensor, denoted by X , is described in this section. Let
X spar be a (M1, . . . ,MQ)-block sparse tensor on the supports
{F1, . . . ,FQ}. The tensor X spar is defined according to

X spar = X •Q (15)

where the binary-valued entries of the K1 × . . .×KQ tensor
Q activate or not the corresponding entries of the core tensor
X according to the relation [Q]m1,...,mQ =

∏Q
q=1 1Fq (mq).

Using Definition 2.4 of the q-mode product, eq. (15) can be
reformulated according to X spar = X ×1 VF1

×2 . . .×QVFQ
in which VFq = diag

{
1Fq (1), . . . , 1Fq (Kq)

}
is a Kq ×Kq

diagonal selection matrix. This matrix has to
1) guarantee the model identifiability constraint with high

probability

P id
q = Pr

(
Mq ∈ Vq = {1, . . . , Iq − 1}

)
, (16)

i.e., for all q, the number of unknown parameters, Mq ,
does not exceed the number of available measurements,
Iq .

2) introduce a statistical prior which randomly “activates
or not” the entries of the core tensor. Towards this goal,
define the probability of the event “mq ∈ Fq”, i.e.,

Pq = Pr(mq ∈ Fq)

and define 1F1(m1), . . . , 1FQ(mQ) as Q mutually
independent Bernoulli random variables such that
Pr(1Fq (mq) = 1) = Pq and Pr(1Fq (mq) = 0) =
1−Pq. Bernoulli priors are widely used in the literature
(see [46,70]–[75], for instance).

The cardinality of Fq is the number of “1”s on the diagonal
of the matrix VFq , i.e., Mq = TrVFq =

∑Kq
mq=1 1Fq (mq).

So, Mq is the sum of Kq mutually independent Bernoulli
random variables and thus Mq ∼ Binomial(Kq, Pq) with
EMq = KqPq = M̄q , where M̄q is the a priori fixed
mean cardinality [59]. As the cardinalities {M1, . . . ,MQ}
are generally unknown, it makes sense to assume that these
parameters are i.i.d. random.

Observe that the assumed statistical model in point 2)
can potentially violate the model identifiability constraint
described in the point 1). So, introduce the truncated Binomial
distribution [59] on the interval Vq according to

Pr
(
Mq = mq

∣∣Mq ∈ Vq
)

=
Pr(Mq = mq)1Vq (mq)

P id
q

where P id
q =

∑
mq∈Vq

(
Kq
mq

)
P
mq
q (1− Pq)Kq−mq .

C. CRB for random supports with truncated Binomial-
distributed cardinalities

Let M = {M1, . . . ,MQ} where Mq = {Mq|Mq ∈ Vq}.
Define an unbiased estimated vector x̂S(z,DF ,M) of xS as
in eq. (13). The averaged MSE is given by

MSEav. = EMEDF |MMSE (17)

where

MSE =
1

Ī
Ez|DF ,M ‖xS − x̂S(z,DF ,M)‖2

in which Ī =
∏Q
q=1 Iq .

Result 3.2: Assume that the noisy real-valued measured
tensor follows the model of eq. (8), where the unknown core
tensor is (M1, . . . ,MQ)-block sparse. Consider the following
assumptions:

1) We are given Q random overcomplete dictionaries
D1, . . . ,DQ defined according to the universal design
strategy of Section II-A4.

2) Moreover, we assume the statistical model introduced
in Section III.A and the known mean cardinalities
{M̄1, . . . , M̄Q}.

In this scenario, the averaged MSEav. defined by eq. (17) for
the estimation of the non-zero entries of the core tensor is
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lower bounded by the following expected CRB:

C = σ2

Q∏
q=1

1

P id
q

∑
mq∈Vq

mq

Iq −mq

(
Kq

mq

)
Pmqq (1− Pq)Kq−mq .

(18)

Proof See the Appendix VII-A.

D. Approximated CRB for large dictionaries and a highly
sparse core tensor

We are interested in deriving a bound C for
• largely redundant dictionaries, i.e., ∀q, Kq →∞, and
• a highly (M̄1, . . . , M̄Q)-block sparse core tensor, i.e.,

for sufficiently small Pq such that KqPq = M̄q is finite.
The corresponding bound is defined by

C∞ = lim
K1,...,KQ→∞

C s.t. lim
Kq→∞

KqPq = M̄q <∞

for 1 ≤ q ≤ Q.
Unfortunately, the numerical computation of the lower

bound given by eq. (18) is impractical for large Kq and thus
there is a need to derive a closed-form expression of the
bound C∞. To this end, we use the limit form of the Poisson
distribution (see [59], for instance), i.e., for Kq →∞ and for
sufficiently small Pq such that limKq→∞KqPq = M̄q <∞,
we have

Mq
a∼ Poisson(M̄q). (19)

In the following remark, we specify the probability that the
model identifiability constraint, denoted by P id

q and defined in
eq. (16), is fulfilled.

Remark 3.3:
1) The probability P id

q for Kq →∞ can be approximated
according to

P id
q = lim

Kq→∞
P id
q ≈ 1− e−M̄q − ε(Iq), (20)

where ε(Iq) = limKq→∞ Pr(Iq ≤Mq ≤ Kq).
2) For Kq, Iq →∞, we have

lim
Iq→∞

P id
q = 1− e−M̄q ,

since ε(Iq)→ 0.

Proof The proof of the first statement is given in Appendix
VII-B. The proof of the second statement is straightforward
and thus is omitted.

As we see the above probability can be considered as high
because function e−M̄q is rapidly decreasing for growing M̄q .
In the next result, an approximated CRB expression based on
Result 3.2 is provided for large dictionaries and a highly
sparse core tensor.

Result 3.4: For the scenario where ∀q, limKq→∞KqPq =
M̄q < ∞ and Iq � 1, an approximated closed-form expres-
sion of the CRB given in Result 3.2 is

C∞ ≈ σ2

Q∏
q=1

M̄q

(1− e−M̄q )(1− eM̄q−Iq )(Iq − M̄q)
. (21)

Proof See the Appendix VII-C.

Inspecting the bound given in eq. (21), we can note that
for M̄q → Iq , the terms in the denominator 1 − eM̄q−Iq and
Iq−M̄q go to zero. This behavior is natural since in this case
the degrees of freedom characterizing the system go to zero.

IV. BEAMFORMED MODE SPARSE ESTIMATOR (BOSE)
FOR BLOCK-SPARSE TENSORS

A. MMV to SMV mapping - the detection theory approach

Based on Remark 2.8, the set of sparse vectors sharing
a common support is closed under any linear combination.
This property has first been noticed in [61,76] in the context
of source localization for array processing and in ultrasound
imaging [77]. Consequently, for any non-zero vector hq ,
sq = Qqhq is a Mq-sparse vector on the support Fq . In the
context of the BOSE scheme, the vector hq is viewed as a
beamforming filter [77,78].

Towards the derivation of an optimal beamforming filter,
define the two-sided binary hypothesis detection problem [79]:{

H0 : [sq]Fq = 0, zq ∼ N (0,RW(q))
H1 : [sq]Fq 6= 0, zq ∼ N (Dqsq,RW(q)).

(22)

Using the decorrelation of the noise with respect to the Q
dimensions, we have R̂W(q) = σ2

qI where σ2
q = σ2||hq||2.

A popular hypothesis discrimination criterion is the sym-
metrized Kullback-Leibler Divergence (KLD) [80]–[82]. The
symetrized KLD is a measure of difference between the
probability distributions p(zq|H1) and p(zq|H0) and is given
by

KLDq(H0,H1) =
||Ezq|H1

(zq)− Ezq|H0
(zq)||2

σ2
q

(23)

for the considered binary hypothesis test. The above expres-
sion is derived in Appendix VII-D.

According to the binary hypothesis detection test described
by eq. (22) and the fact that Ezq|H1

(zq) = Dqsq and
Ezq|H0

(zq) = 0, the symetrized KLD is given by the follow-

ing simple expression KLDq(H0,H1) =
||Dqsq||2

σ2
q

. Inspecting
the above expression, we can note that the KLDq(H0,H1)
is in fact the output SNRq

1. Therefore, it makes sense to
derive the optimal beamforming vector, denoted by hopt.

q , by
maximizing the output SNRq . More precisely, the following
constrainted and convex optimization problem is considered:

max
hq

hTq Σqhq s.t. ||hq||2 = 1

with Σq = QT
q DT

q DqQq where Qq is defined by eq. (11).
The solution of the above problem is given by the eigen-
vector, hopt

q = Pmax(Σq), associated with λmax(Σq). Note
that Σq is a positive semi-definite rank-Mq matrix admitting
the following sorted eigendecomposition Σq = UqOqU

T
q

1The KLDq(H0,H1) can be interpreted in the framework of the Gen-
eralized Likelihood Ratio Test (GLRT) [79]. Indeed, the GLRT, denoted by
T (zq), for unknown sq decides H1 if T (zq) > γq with a probability of
false alarm given by PFA = Qχ2

Mq
(γq) and a probability of detection of

PD = Qχ2
Mq

(SNRq)
(γq). Maximizing the non-centrality parameter SNRq

maximizes the hypothesis discrimination.
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where [Oq]kk = λk(Σq) with λk(Σq) ≥ λk+1(Σq) and
Uq is an orthonormal matrix. Unfortunately, the matrix Dq ,
i.e., the eigenspectrum of Σq , is not directly available. But
observe that the covariance matrix of Z(q) admits the following
eigendecomposition RZ(q) = Uq(O

2
q + σ2I)UT

q . Note that
RZ(q) and Σq share the same dominant right eigenspace
denoted by R(Uq). Now, it is straightforward to obtain
λmax(Σq) = maxk

√
λk(RZ(q))− σ2. It is obvious that the

above criterion is maximized for λmax(RZ(q)). Thus, picking
the eigenvector associated with the largest eigenvalue of the
matrix RZ(q) leads to the selection of the desired optimal
beamforming vector hopt

q . In practice, we have to resort to the
eigendecomposition of the sample covariance matrix (SCM)
R̂Z(q) = 1

Iq
Z(q)TZ(q) such that hopt.

q = Pmax(R̂Z(q)). We
can now formulate the BOSE scheme in Algorithm 1.

B. Evaluation of the dominating computational cost in flops

The OMP is known to have a relatively low computational
cost as compared to other sparsity-based estimators. The
dominating computational cost of the OMP on the (

∏Q
q=1 Iq)×

(
∏Q
q=1Kq) dictionary is

∏Q
q=1O(MqIqKq) flops ( FLoating-

point OPerationS) [83]. In Table I, we summarize the cost
of each step of the proposed method. The proposed method
involves as an initial step, the unfolding operations which is
essentially a reorganization of the data. The second step is
the computation of the eigenvector associated to the largest
eigenvalues of a SCM of size Ĩq × Ĩq . Using, for instance,
the orthogonal iteration method [84], this cost is evaluated as
O(Ĩ2

q ) flops. The third step is the OMP algorithm applied to
each mode. This cost can be evaluated as

∑Q
q=1O(MqIqKq)

for the Q modes. Finally, the last step is the solution of Q
ordinary LS problems. This final cost can be evaluated as∑Q
q=1O(KqM

2
q ). So, we can conclude that the dominating

cost of the proposed method is given by
∑Q
q=1O(MqIq(Kq+

Mq)). As by assumption, Kq �Mq , then the dominating cost
is given by the third step.

V. APPLICATIONS TO TYPICAL OPERATIONAL PROBLEMS

To illustrate the proposed contributions, the two following
important and challenging signal processing based applications
are considered:

1) CS for non-bandlimited multidimensional signals,
2) CS-based channel estimation for MIMO wireless com-

munication.

A. CS for non-bandlimited multidimensional signals

1) The 1D-case: A typical real-valued time-continuous
non-bandlimited signal is described by [56,57,85,86]:

r(t) =

M∑
m=1

xmδ(t− τm). (24)

The vectors x = [x1 . . . xM ]T and τ = [τ1 . . . τM ]T denote
the unknown amplitudes and the time-delays. Let g(t) be a

time-continuous sampling kernel. The regular sampling at rate
1/T of the signal s(t) is given by

rk =

∫
g(t− (k − 1)T )r(t)dt =

M∑
m=1

xmg(τm − (k − 1)T )

for 1 ≤ k ≤ K. Define the K × K basis matrix Φ by
[Φ]k,k′ = g((k′ − k + 1)T ) and the M -sparse vector x̄
of length K on support F = {τ1, . . . , τM}. Then we have
z = [z1 . . . zK ]T = r + w where w is the noise in the digital
domain, r = Φxspar = ΦFxS in which [xspar]S = xS and
[ΦF ]k,m = g(τm − (k − 1)T ). Therefore, the sampled signal
according to eq. (24) is sparse in the time domain.

2) Multidimensional QD-sampling extension:
a) Model definition: A QD-sampling is defined accord-

ing to [58]:

r(t1, . . . , tQ) =

M1∑
m1=1

. . .

MQ∑
mQ=1

xm1,...,mQ

× δ
(
t1 − τ (1)

m1
, . . . , tQ − τ (Q)

mQ

)
.

(25)

Define the Q support sets as Fq = {τ (q)
1 , . . . , τ

(q)
Mq
} and

let {T1, . . . , TQ} be Q sampling periods. The sampling co-
efficients arranged in a K1 × . . . × KQ tensor are given by
eq. (26) for a separable sampling kernel. We formulate the
following important remark.

Remark 5.1: X spar is a (M1, . . . ,MQ)-block sparse K1 ×
. . . × KQ tensor since [X spar]F1,...,FQ = XF where XF
contains the terms xm1,...,mQ and is of size M1× . . .×MQ.

Result 5.2: The noisy I1×. . .×IQ compressed measurement
tensor for the QD-sampling of eq. (25) is given by eq. (7),
where [Φq]kq,k′q = g((k′q−kq+1)Tq) is the q-th Kq×Kq basis
matrix. Thus, Result 3.2 provides the CRB for the compressive
QD-sampling with a separable sampling kernel.

b) Numerical illustrations: In this section, we assume a
separable QD-Gaussian sampling kernel with Q = 2, defined
by g(t1, . . . , tQ;σ2

g) =
∏Q
q=1 g(tq;σ

2
g) where g(tq;σ

2
g) =

e
− 1

2σ2g
(
tq
T )2

is a 1D-Gaussian kernel. The standard deviation
σg determines the width of the kernel. The MSE curves
are obtained by computing the trimmed/truncated mean over
500 Monte-Carlo trials of the squared error defined by
SE(trial) = ||x̂Ŝ(trial) − xS ||2. In the trimmed/truncated
mean, an equal amount of minimal and maximal squared
errors are discarded. The number of rejected squared errors
is usually given as a percentage of the total number of Monte-
Carlo trials. In our context, this percentage is fixed to less than
1%. For a small percentage, the trimmed/truncated mean is
well-known to be less sensitive to outliers but leaves the global
tendency unchanged [87,88]. The tensor X is generated as a
single realization of a multidimensional Gaussian distribution.
So, X spar = X •Q is random because of the random tensor
Q. As a consequence, the SNR in dB is defined by averaging
of 10 log10

||X spar||2
K1K2σ2 over the cardinalities.

In Fig. 3, the ratio of the lower bounds defined by C
C∞ and

given by Results 3.2 and 3.4 is drawn as a function of the
dimensions I1 and I2. We can observe that for growing I1 and
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Algorithm 1 Beamformed mOde based Sparse Estimator (BOSE)
Require: Z , {D1, . . . ,DQ}, {M̄1, . . . , M̄Q}, any sparsity-based estimator A(·) (e.g. OMP, CoSaMP, BP, Lasso, IHT,...)

1: for 1 ≤ q ≤ Q do
2: Z(q) = unfoldq(Z) . q-mode unfolding
3: R̂Z(q) = 1

Iq
Z(q)TZ(q) . Estimated SCM

4: hopt.
q = Pmax(R̂Z(q)) . Optimal based beamforming

5: zq = Z(q)hopt.
q . Beamformed vector

6: A(zq,Dq, M̄q)→ F̂q . Estimation of the q-th support set
7: end for

Ensure: {F̂1 . . . , F̂Q} . Return of the Q estimated supports
8: X̂ F̂ = Z ×1 D†

F̂1
×2 . . .×Q D†

F̂Q
. Least squares based estimation

Ensure: X̂ F̂

TABLE I
COST IN FLOPS FOR THE BOSE ASSOCIATED WITH THE OMP

Step Operation Cost for Q dimensions Cost for (M, . . . ,M )-block sparse cubic tensor
1st Unfoldings 0 0

2nd Beamforming
∑Q
q=1O(Ĩ2q ) Q ·O(I2(Q−1))

3rd Supports estim.
∑Q
q=1O(MqIqKq) Q ·O(MIK)

4th LS estim.
∑Q
q=1O(KqM2

q ) Q ·O(KM2)

Global cost Proposed scheme
∑Q
q=1O(MqIq(Kq +Mq) + Ĩ2q ) Q ·O(MI(K +M) + I2(Q−1))

[R]k1,...,kQ =

∫
. . .

∫
g
(
t1 − (k1 − 1)T1, . . . , tQ − (kQ − 1)TQ

)
r(t1, . . . , tQ)dt1 . . . dtQ

=

M1∑
m1=1

. . .

MQ∑
mQ=1

xm1,...,mQ

Q∏
q=1

g(τ (q)
mq − (kq − 1)Tq) (26)

I2, this ratio tends to one which illustrates the significance
of the approximated closed-form expression C∞.

In Fig. 4, the lower bound C is computed by the aver-
aging of 500 Monte-Carlo trials of the expression given by
eq. (27) and C∞ is given in Result 3.4. We can note the
good agreement of the numerically computed bound and the
closed-form expression given in Result 3.4. In addition, the
BOSE is associated with the OMP where the acronyms “Opt.”
or ”Ave.” indicate that the BOSE is derived with the max-
SNR beamforming filter or with “column averaging”, i.e.,

hq = [1/
√
Ĩq . . . 1/

√
Ĩq]

T [76,77]. We can see that the Opt.
BOSE drastically outperforms the Ave. BOSE. In particular,
the Opt. BOSE reaches the lower bounds at a much lower
SNR than the Ave. BOSE.

In Fig. 5, the Opt. BOSE(OMP) is compared to the OMP
estimator applied on the vectorized measurement tensor and
on the Kronecker structured dictionary D2 ⊗ D1 as defined
in eq. (12). The popular Modified FOCal Underdetermined
System Solver (MFOCUSS) estimator [36] is also tested. More
precisely, we have q-MFOCUSS(Dq,Z

(q)) → (Q̂q, F̂q).
Thanks to eq. (10) and eq. (11), we have

X̂
(q)

F̂
= Q̂F̂q

(
DT
F̂Q
⊗ . . .⊗DT

F̂q+1
⊗DT

F̂q−1
. . .⊗DT

F̂1

)†
where Q̂F̂q contains the Mq rows of Q̂q in the set F̂q . We
can see that this tensor-based extension of the MFOCUSS

estimator exhibits a higher MSE than the BOSE. In addition,
the Opt. BOSE(OMP) scheme globally outperforms the OMP
with a Kronecker structured dictionary for a much lower
computational cost.
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Fig. 3. Ratio C
C∞ vs. I1 and I2 where I1 ∈ [M̄1+1, 60], I2 ∈ [M̄2+1, 60],

K1 = K2 = 100, M̄1 = M̄2 = 4

The CPU times (in seconds) evaluated with MatLab for the
tested algorithms are presented in Fig. 6 for several values of
I = I1 = I2 and N = N1 = N2. We can see that the OMP
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Fig. 5. MSEs vs. SNR with I1 = I2 = 50, K1 = K2 = 100, M̄1 = M̄2 =
3.

based on a Kronecker dictionary has the highest computational
cost, in particular for large I and/or N . Conversely, the cheaper
methods is the BOSE(OMP) based on column averaging.
Finally, BOSE(OMP) based on optimal beamforming shows
a lower cost than the MFOCUSS algorithm and is approx-
imatively equivalent to the BOSE(OMP) based on column
averaging.

B. Channel estimation for MIMO wireless communication

In the context of the MIMO wireless communication [89],
we are interested in multi-path channel estimation in a pilot-
assisted context. As illustrated in Fig. 7, pilot symbol se-
quences are sent by the transmitter to the multi-antenna
receiver. The receiver in each channel performs a uniform
sampling at rate 1/T thanks to a lowpass sampling kernel
h(t). For an a priori known time-delay sets {τ1, . . . , τM1

},
the aim is to estimate the time-varying coefficient xm,` in
each channel resulting from different fading and shadowing
effects.

1) Multichannel compressive sampling with a common sup-
port: According to [39], the considered application is well
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Fig. 6. CPU times in seconds and in log scale evaluated with MatLab

Fig. 7. Multipath channels in a MIMO wireless communication context

described by multichannel sampling according to a common
support. More precisely, a multichannel time-continuous non-
bandlimited signal is defined by

r`(t) =

M1∑
m=1

xm,`δ(t− τm),

where ` ∈ L = {1, . . . , L} and L is the number of channels.
The k-th sampled coefficients at rate 1/T in the `-th channel
is given by

rk,` =

∫
h(t− (k − 1)T )r`(t)dt

=

M1∑
m=1

xm,`h(τm − (k − 1)T ).

This multichannel model exhibits a common support F1 =
{τ1, . . . , τM1

} in each channel (see Fig. 7).
Remark 5.3: The K1×K1 basis matrix Φ1 is defined by the

sampling of the kernel h(t). Then, the following expression
holds

R = Xspar ×1 Φ1 ×2 IL = ΦF1
XF1



10

where R is K1 × L and Xspar is (M1, L)-block sparse since
[Xspar]F1,L = XF1 where XF1 is M1 × L.

Now, consider the CS framework and let Ψ1 be a measure-
ment matrix of size I1 ×K1 with I1 < K1. We have

Y = Ψ1R = Ψ1Φ1X
sparIL = D1X

spar.

Now, we are ready to describe the noisy (I1L) × 1 mea-
surement vector according to

z = (IL ⊗D1)xspar + w

where (IL ⊗D1)xspar = (IL ⊗DF1
)xS . In the multichannel

context, we assume that the noise in each channel can have a
different variance, denoted by σ2

` . More precisely, we have
E(wk,`wk′,`′) = σ2

` δ`−`′δk−k′ where δ· is the Kronecker delta
symbol and wk,` is the noise sample in the `-th channel for
the k-th sample.

Result 5.4: Under the above assumptions and the model of
Section III.A and as

z|DF1
,xS ∼ N

(
(IL ⊗DF1

)xS , σ
2IL
)
,

where σ2IL = diag{σ2
1 , . . . , σ

2
L}⊗ II1 , Result 3.2 holds with

Q = 1 and σ2 =
∑L
`=1 σ

2
` .

2) Numerical illustrations: In this section, we assume a
sinus cardinal sampling kernel defined as h(t) = 1

T sinc
(
t
T

)
which is an ideal lowpass filter with frequency support
[−π/T, π/T ] [23]. According to Fig. 8, we can see the
efficiency of the BOSE(OMP) based on optimal beamforming.
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VI. CONCLUSION

Compressive Sampling (CS) of sparse signals allows to
overcome the limits of Shannon’s sampling theorem. In the
era of big data, tensors provide a natural representation for
such massive multidimensional data and the concept of block-
sparse core tensors is the multidimensional generalization of
the concept of block sparsity for vectors. In this work, it is
assumed that each unknown entry of a block-sparse core tensor
is Bernoulli-distributed, meaning that each entry has a given
probability to be non-zero. This statistical prior leads to a set
of random supports of truncated Binomial-distributed cardinal-
ities. In this context a Cramér-Rao lower Bound (CRB) on the

Mean Squared Error (MSE) of the estimated non-zero entries
of the core tensor is derived in a compact form for Gaussian
measurement matrices. Based on the limit form of the Poisson
distribution, an approximated CRB expression is provided for
large dictionaries and a highly block-sparse core tensor. The
second part of this work is dedicated to the proposition of the
Beamformed mOde based Sparse Estimator (BOSE) which
exploits the property that the mode unfolding matrices of a
block-sparse tensor follow the Multiple-Measurement Vectors
(MMV) model with joint sparsity patterns. More precisely, the
initial step of the BOSE is to “map” the MMV model onto
the Single MV model thanks to a beamforming filter. Next,
any standard sparsity-based estimator adapted to the Single
MV model can be associated to the BOSE. The estimation
performance of the BOSE and its statistical efficiency are
illustrated by means of numerical simulations in the context
of CS of non-bandlimited multidimensional signals and for
MIMO wireless channel communication. As a straightforward
perspective, the BOSE seems well adapted to the sparse source
localization in array processing.

VII. APPENDIX

A. Proof of Result 3.2

It is well-known that the CRB [40,87] is a lower bound of
the MSE for an unbiased estimator according to

MSE ≥ CRB =
1

Ī
Tr

[(
Var

(
∂ log p(z,DF |xS)

∂xS

))−1
]

where the joint log-pdf of class C1 is given by
log p(z,DF |xS) = log p(z|xS ,DF ) + log p(DF ). As DF is
not a function of xS , the score function can be simplified
according to ∂ log p(z,DF |xS)

∂xS
= ∂ log p(z|xS ,DF )

∂xS
. Consequently

the averaged MSE is lower bounded by the averaged CRB
given by

MSEav. ≥ C = EMEDF |MCRB

=
1

Ī
EMEDF |MTr

[(
Var

(
∂ log p(z|DF ,xS)

∂xS

))−1
]
.

The statistics of the measurement vector are z|DF ,xS ∼
N (µ, σ2I), where µ = E(z|DF ,xS) = DFxS . So, using the
Slepian-Bang formula [41], we obtain

Tr

[(
Var

(
∂ log p(z|DF ,xS)

∂xS

))−1
]

= Tr
[
F−1

]
where the Fisher Information Matrix (FIM) is given by

FS =
1

σ2

(
∂µ

∂xS

)T
∂µ

∂xS
=

1

σ2
DT
FDF

=
1

σ2
DT
F1

DF1
⊗ . . .⊗DT

FQDFQ .

Using the property of the Kronecker product with respect
to the matrix inversion (see Lemma 2.3), the inverse of the
FIM is easily obtained according to

F−1
S =

1

σ2

(
DT
F1

DF1

)−1 ⊗ . . .⊗
(
DT
FQDFQ

)−1

.



11

Thus, using the property of the Kronecker product with
respect to the trace operator (see Lemma 2.3), we obtain

C =
σ2

Ī
EMEDF |MTr

[
F−1
S
]

= σ2EM
Q∏
q=1

1

Iq
EDFq |MTr

[
(DT
FqDFq )

−1
]

= σ2EM
Q∏
q=1

EDFq |MTr
[
(D̄T
FqD̄Fq )

−1
]
, (27)

where the i.i.d. entries of the matrix D̄Fq =
√
IqDFq follows

the distribution N (0, 1). Using [90,91], we get

EDFq
Tr
[
(D̄T
FqD̄Fq )

−1
]

=
Mq

Iq −Mq
.

Using the independence assumption of the random variable
Mq and taking into account the model identifiability constraint,
the CRB is given by

C = σ2

Q∏
q=1

EMq

(
Mq

Iq −Mq

)

= σ2

Q∏
q=1

Kq∑
mq=1

mq

Iq −mq
Pr (Mq = mq | Mq ∈ Vq)

= σ2

Q∏
q=1

1

P id
q

Kq∑
mq=1

mq

Iq −mq
Pr(Mq = mq)1Vq (mq)

= σ2

Q∏
q=1

1

P id
q

∑
mq∈Vq

mq

Iq −mq
Pr(Mq = mq).

B. Approximation of P id
q

Recalling the definition of P id
q given in eq. (16) and using

the binomial formula, we have

P id
q = lim

Kq→∞
P id
q = 1− lim

Kq→∞
Pr
(
Mq = 0

)
− ε(Iq) (28)

where ε(Iq) has been defined previously and

Pr
(
Mq = 0

)
= (1− Pq)Kq = eKq ln(1−Pq) = eKq(−Pq+O(P 2

q ))

using the Taylor expansion of the natural logarithm. Recall that
Pq has to be sufficiently small to satisfy limKq→∞KqPq =
M̄q <∞. Thus, it is realistic to discard the term in O(P 2

q ) in
the Taylor expansion of function ln(1 − Pq). By doing this,
we obtain

lim
Kq→∞

Pr
(
Mq = 0

)
≈ lim
Kq→∞

e−KqPq = e−M̄q .

Using the above approximation and eq. (28) lead to eq. (20).

C. Proof of Result 3.4

Lemma 7.1: For X ∼ Poisson(θ), we have

E
(

X

N −X

)
≈ θ

(N − θ − 2)(1− e−(N−θ−1))
. (29)

Proof 1) According to [92], for X ∼ Poisson(θ) we
have E (Xf(X)) = θE (f(X + 1)) for every bounded
function f(·) on a given domain.

2) In addition, the inverse moment of Y ∼ Poisson(θ′)
can be approximated according to E

(
Y −1

)
≈

1
(θ′−1)((1−e−θ′ ) [93].

So, consider the bounded function f(X) = 1
N−X on

{0, . . . , N − 1}. Then, we have E
(

X
N−X

)
= θE

(
1

N−X−1

)
.

Now let Y = N − X − 1, then E
(

1
N−X−1

)
= E

(
Y −1

)
for Y ∼ Poisson(θ′). Thus E

(
X

N−X

)
= θE

(
Y −1

)
with

θ′ = N − EX − 1 = N − θ − 1 give eq. (29). �

The CRB for K1, . . . ,KQ →∞ is defined as

C∞ = lim
K1,...,KQ→∞

C

= σ2

Q∏
q=1

lim
Kq→∞

1

P id
q

∑
mq∈Vq

mq

Iq −mq
Pr(Mq = mq)

= σ2

Q∏
q=1

1

P id
q

∑
mq∈Vq

mq

Iq −mq
lim

Kq→∞
Pr(Mq = mq)

= σ2

Q∏
q=1

1

P id
q

∑
mq∈Vq

mq

Iq −mq

M̄
mq
q

mq!
e−M̄q

using the limit form of the Poisson distribution given by
eq. (19).

For sufficiently large Iq � 1, P id
q ≈ 1 − e−M̄q (see the

second point of Remark 3.3), and using Lemma 7.1 for Mq
a∼

Poisson(M̄q), we get the following approximation:

C∞ ≈ σ2

Q∏
q=1

1

1− e−M̄q
EMq

(
Mq

Iq −Mq

)

≈ σ2

Q∏
q=1

1

(1− e−M̄q )(1− e−(Iq−M̄q−1))

M̄q

Iq − M̄q − 2

≈ σ2

Q∏
q=1

M̄q

(1− e−M̄q )(1− e−IqeM̄q )(Iq − M̄q)
.

D. Symetrized KLD for real Gaussian pdf

Consider the following binary hypothesis test:{
H0 : z ∼ N (µ0,R0)
H1 : z ∼ N (µ1,R1)

where µi = Ez|Hi(z) and Ri are L × L non-singular
covariance matrices under hypothesis Hi. Therefore, the
problem of interest is the discrimination of multidimensional
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real Gaussian processes. The two KLDs for real Gaussian
pdfs [59] are given by

KLD(H1|H0) =

∫
p(z|H1) log

p(z|H1)

p(z|H0)
dz

=
1

2

(
Tr[R−1

0 R1]− L

+ (µ0 − µ1)TR−1
0 (µ0 − µ1) + ln

det(R0)

det(R1)

)
KLD(H0|H1) =

∫
p(z|H0) log

p(z|H0)

p(z|H1)
dz

=
1

2

(
Tr[R−1

1 R0]− L

+ (µ1 − µ0)TR−1
1 (µ1 − µ0) + ln

det(R1)

det(R0)

)
.

Generally KLD(H0|H1) and KLD(H1|H0) are not sym-
metric with respect to the hypothesis H0 and H1. As a
consequence, the KLD cannot serve as a distance. Despite
of this technical problem, the KLD is a central pseudo-
metric intensively used in many real applications. This can
be partially explained by the existing strong link between the
KLD and the optimal Neyman-Pearson test [94]. To alleviate
this problem, it is usual to consider the symetrized KLD [82]
defined by

KLD(H0,H1) = KLD(H1|H0) + KLD(H0|H1)

=
1

2

(
Tr[R−1

0 R1 + R−1
1 R0]− 2L

+ (µ1 − µ0)TR−1
1 (µ1 − µ0)

+ (µ0 − µ1)TR−1
0 (µ0 − µ1)

+ ln
det(R1)

det(R0)
+ ln

det(R0)

det(R1)

)
=

1

2
Tr[R−1

0 R1 + R−1
1 R0]− L

+ (µ1 − µ0)T
R−1

1 + R−1
0

2
(µ1 − µ0).

Now assume that R0 = R1 = σ2I, then the symetrized
KLD simplifies to

KLD(H0,H1) =
||µ1 − µ0||2

σ2

which coincides with eq. (23).
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