
HAL Id: hal-01355122
https://centralesupelec.hal.science/hal-01355122v1

Submitted on 22 Aug 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Challenges in Android Malware Analysis
Valérie Viet Triem Tong, Jean-François Lalande, Mourad Leslous

To cite this version:
Valérie Viet Triem Tong, Jean-François Lalande, Mourad Leslous. Challenges in Android Malware
Analysis. ERCIM News, 2016, Special Theme: Cybersecurity, 106, pp.42-43. �hal-01355122�

https://centralesupelec.hal.science/hal-01355122v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Challenges in Android Malware Analysis

Valérie Viet Triem Tong1, Jean-François Lalande2, and Mourad Leslous1

1 EPI CIDRE
CentraleSupelec, Inria Université de Rennes 1 CNRS, IRISA UMR 6074

F-35065 Rennes, France
valerie.viettriemtong@centralesupelec.fr

2 INSA Centre Val de Loire
Univ. Orléans LIFO EA 4022,

F-18020 Bourges, France

The best protection against malware is to execute it: a security paradox.

Android has become the world’s most popular mobile operating system, and consequently the most
popular target for unscrupulous developers. These developers seek to make money by taking advantage of
Android users who customise their devices with various applications, which are the main malware infection
vector.

Indeed, the most likely way a user will execute a repackaged application is by downloading a seemingly
harmless application from a store and executing it. Such an application will have been modified by an
attacker in order to add malicious pieces of code. Consequently, a user will have to deal with one of the
many different types of malware, such as aggressive adware that constantly display ads making the device
unusable, ransomware that encrypt user’s data and require a ransom to be paid to decrypt it or remote
administration tools (RAT) that take control of the device and allow the attacker to use it as his own.

To fight repackaged applications containing malicious code, most official application marketplaces have
implemented security analysis tools that try to detect and remove malware. In this battle between application
stores and malware developers, the latter are a step ahead. Malware developers have imagined a lot of
countermeasures to defeat security analysis. These countermeasures can be divided into two main approaches:
avoiding static analysis and avoiding dynamic analysis.

A static analysis of an application consists of analysing its code and its resources without executing it. For
instance, this can simply amount to listing all the permissions required by the application, while checking that
these permissions cannot be used maliciously. Static analysis is also used to evaluate the similarity between
the application under review and well-known malicious code. Thus to avoid static analysis detection, a
developer needs only create unreachable or unintelligible malicious code. Obfuscation techniques, encryption
and dynamic loading of code are used to achieve this and disqualify static analysers.

Conversely, dynamic analysis stands for any kind of analysis that requires executing the application in
order to observe its actions. Dynamic analysis grants understanding of how an application interacts with
other objects in its environment. This kind of analysis is not influenced by the nature of the code executed,
whether obfuscated, encrypted or protected by any other means against static analysis. As a matter of fact,
the main protection against dynamic analysis coined by malware developers is merely to delay execution of
the malicious code. This can be done by waiting for a special event, such as a command sent by a remote
server before triggering the malicious code. Moreover, if the malicious code is hard to trigger, dynamic
analysis will most likely detect nothing.

The Kharon project goes a step further from classical dynamic analysis of malware. Founded by the
Labex CominLabs and involving partners of CentraleSupélec, Inria and INSA Centre Val de Loire, this
project aims to capture a compact and comprehensive representation of malware. To achieve such a goal
we have developed tools [1] to monitor operating systems’ information flows induced by the execution of a
marked application.

Figure 1 illustrates an example of such a representation. The studied application’s code (.dex file) has been
marked and monitored. The graph explains how this piece of code has infected the operating system: which
files, sockets and processes have been created or modified. Finally, if the malicious code has been executed,
the graph summarises the attack. For example, the execution that has led to the graph represented in

http://kharon.gforge.inria.fr


Fig. 1: Comprehensive representation of malware

Figure 1 has been computed from the observation of the execution of a ransomware : SimpleLocker [2]. The
graph shows that the malware starts by encrypting a user’s files (*.enc files) and then initiates a remote
communication through the TOR anonymous network to check if the user has paid the ransom.

In the Kharon project, we support the idea that the best way to understand malware impact is to observe
it in its normal execution environment i.e., a real smartphone. Additionally, the main challenge is to be able
to trigger malicious behaviours even if the malware tries to escape dynamic analysis.

In this context, we have developed an original solution that mainly consists of ‘helping the malware to
execute’. In other words we slightly modify the bytecode of the infected application in order to defeat the
protection against dynamic analysis and we execute the suspicious code in its most favourable execution
conditions. Thus, our software helps us understand malware’s objectives and the consequences on the health
of a user’s device.

Based on these observations, our main research direction and challenge is to develop new and original
protections against malicious applications that try to defeat classical dynamic analysis.

References

[1] A. Abraham et al.: “GroddDroid: a gorilla for triggering malicious behaviors”, in 10th International
Conference on Malicious and Unwanted Software, MALCON 2015, IEEE Computer Society, pp. 119-127,
2015.
[2] N. Kiss, J.-F. Lalande, M. Leslous, V. Viet Triem Tong : “Kharon dataset: Android malware under a
microscope”, in Learning from Authoritative Security Experiment Results, IEEE Symposium on Security
and Privacy Workshop, 2016.

2

https://hal.inria.fr/hal-01201743
https://hal-centralesupelec.archives-ouvertes.fr/hal-01311917
https://hal-centralesupelec.archives-ouvertes.fr/hal-01311917

	Challenges in Android Malware Analysis

