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Any discontinuous PWA function is optimal solution to a parametric
linear programming problem

N. A. Nguyen1, S. Olaru1, P. Rodriguez-Ayerbe1

Abstract— Recent studies have investigated the continuous
functions in terms of inverse optimality. The continuity is a
primordial structural property which is exploited in order to
link a given piecewise affine (PWA) function to an optimization
problem. The aim of this work is to deepen the study of the
PWA functions in the inverse optimality context and specifically
deal with the presence of discontinuities. First, it will be shown
that a solution to the inverse optimality problem exists via
a constructive argument. The loss of continuity will have an
implication on the structure of the optimization problem which,
albeit convex, turns to have a set-valued optimal solution. As
a consequence, the original PWA function will represent an
optimal solution but the uniqueness is lost. From the numerical
point of view, we introduce an algorithm to construct an
optimization problem that admits a given discontinuous PWA
function as an optimal solution. This construction is shown to
rely on convex liftings. A numerical example is considered to
illustrate the proposal.

I. INTRODUCTION

Piecewise affine (PWA) functions have been shown to
provide relevance in control design through many studies
e.g. [3], [8], [23], [9], [19], [2], [18], [20], [4]. It is known
that from the practical point of view, PWA control law has
two major limitations in terms of implementation once the
number of regions in the state space becomes large:
• it requires substantial memory to store the state space

partition and the associated control law gains,
• the point-location problem, determining to which region

the current state belongs, becomes more expensive.
Due to the above limitations, many studies have been focused
on the complexity reduction of PWA control laws e.g.
[11], [10], [12], [6]. Recently, inverse parametric convex
programming problem has received an increasing attention in
control community as a promising approach to realize this
purpose. It is shown in [1] that any continuous nonlinear
function is obtainable through a parametric convex program-
ming problem without any hint for the construction of such
an inverse optimality problem. Subsequently, some recent
studies focus on the recovery of continuous PWA functions
defined over polyhedral partitions via the decomposition into
the difference of two convex functions as in [7], or via
convex liftings as in [16], [17]. As emphasized, all these
studies focus on the continuous PWA functions, and the
present study aims to compensate the lack of interest for
the discontinuous PWA functions by investigating the inverse
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optimality. Note also that due to the continuity of the given
PWA function, the optimal solution to inverse optimality for-
mulation is unique. However, the uniqueness may no longer
be preserved for discontinuous PWA functions. Therefore,
finding an optimization problem, whose optimal solution
is unique and equivalent to the given discontinuous PWA
function, may render this optimization problem nonlinear
(non-convex) at least from the point of view of the cost
function.

Motivated from the above discussion, in this paper, we
restrict our effort to show how to construct a convex opti-
mization problem that admits the given discontinuous PWA
function as an optimal solution at the price of non-unicity.
Note also that the equivalence between PWA functions is
understood in the sense that the boundary between two
neighboring regions sharing the same affine function, can
be adjusted (subdivided). This optimization problem will be
shown to be of parametric linear programming type.

II. PROBLEM FORMULATION

A. Generalities and basic notions

Throughout the paper, R,R+,N,N>0 denote the field of
real numbers, the set of non-negative real numbers, the
set of nonnegative integers and the positive integer set,
respectively. The following index set is also defined, for
ease of presentation, with respect to a given N ∈ N>0:
IN = {i ∈ N>0 | i ≤ N}.

Given a finite set S := {s1, . . . , sL}, then Card(S) denotes
the cardinal number of S, i.e. Card(S) = L. conv(X )
denotes the convex hull of X . Moreover, if R is a set of
vectors, by cone(R), we denote the cone which has elements
of R as its extreme rays.

A polyhedron is defined as the intersection of a finite
number of halfspaces. A polytope is defined as a bounded
polyhedron. Given a full dimensional polyhedron P ⊂ Rd,
then V(P ) denotes the set of its vertices, and R(P ) denotes
the set of its extreme rays. We use k−face to denote a face
of dimension k of P . A 0−face is also called a vertex,
an 1−face is alternatively called an edge, a (d − 1)−face
amounts to a facet. Also, F(P ) denotes the set of facets of
P . Furthermore, by int(S), we denote the interior of a full
dimensional set S. If S is a vector space, and S is an arbitrary
set, then Proj S S represents the orthogonal projection of the
set S onto the space S. Also, we use dim(S) to denote the
dimension of the affine hull of S.

Given two full dimensional sets P1, P2 ⊂ Rd, then the
Minkowski sum of these two sets, denoted by P1 ⊕ P2, is



defined as follows:

P1 ⊕ P2 =
{
y ∈ Rd | ∃x1 ∈ P1, x2 ∈ P2, y = x1 + x2

}
.

The following definitions represent extensions of the ones
introduced in [17], [16], [14].

Definition 1: A collection of N ∈ N>0 full-dimensional
polyhedra Xi ⊂ Rd is called a polyhedral partition of a
polyhedron X ⊆ Rd if:

1) X =
⋃

i∈IN Xi,
2) int(Xi)

⋂
int(Xj) = ∅ with i 6= j, (i, j) ∈ I2N ,

Also, (Xi,Xj) are called neighbours if (i, j) ∈ I2N , i 6= j
and dim(Xi ∩ Xj) = d− 1.
The notion of cell complex was presented by Grünbaum in
[5]. For simplicity, a cell complex can be understood as a
polyhedral partition whose facet-to-facet property is fulfilled
i.e. any pair of neighboring regions share a common facet.

For ease of presentation, a slight abuse of notation is used
in the remainder of this paper: X denotes simultaneously
a polyhedral partition/cell complex of a polyhedron and this
polyhedron itself. Its meaning will be clear from the context.

Note that a PWA function fpwa(x) : Rd → Rn defined
over a polyhedral partition X =

⋃
i∈IN Xi ⊆ Rd, can be

described as follows:

fpwa(x) = hix+ gi for x ∈ Xi.

With respect to Definition 1, a PWA function is continuous
as long as for any neighboring regions (Xi,Xj),

hix+ gi = hjx+ gj , ∀x ∈ Xi ∩ Xj .

Otherwise, if fpwa(x) is discontinuous, this discontinuity
happens at frontiers between neighboring regions. Thus, such
a discontinuous function fpwa(x) can be defined as follows:

fpwa(x) =

{
hix+ gi for x ∈ int(Xi),

hix+ gi or hjx+ gj for x ∈ Xi ∩ Xj ,

for every pair of neighboring regions (Xi,Xj). An alternative
way to deal with the discontinuities is to allow multiple
values in the codomain Rn for a given point x. In this case,
we are not dealing anymore with a function but a set-valued
map.

Definition 2: For a given polyhedral partition X =⋃
i∈IN Xi ⊆ Rd, a piecewise affine lifting is described by

a real-valued function z : X → R with:

z(x) = aix+ bi for any x ∈ Xi, (1)

and ai ∈ Rd, bi ∈ R, ∀i ∈ IN .
Definition 3: Given a polyhedral partition X =

⋃
i∈IN Xi

⊆ Rd, a piecewise affine lifting z(x) = aix + bi ∀x ∈ Xi,
is called convex piecewise affine lifting if the following
conditions hold true:
• z(x) is continuous over X ,
• for each i ∈ IN , z(x) > ajx + bj for all x ∈ Xi\Xj

and all j 6= i, j ∈ IN .
For ease of presentation, a convex piecewise affine lifting is
called, throughout the rest of this paper, convex lifting. It is

shown in [21], [15] that a polyhedral partition which admits
a convex lifting, is a cell complex. Therefore, a convex lifting
is always defined over a cell complex instead of a polyhedral
partition.

As discussed above, a given polyhedral partition has to
fulfill some conditions for the existence of a convex lifting.
A summary of these conditions can be found in [21], [17].

Definition 4: A given cell complex X =
⋃

i∈IN Xi ⊆
Rd has an affinely equivalent polyhedron if there exists a
polyhedron X̃ ⊂ Rd+1 such that for each i ∈ IN :

1) ∃Fi ∈ F(X̃ ) satisfying: ProjRd Fi = Xi,

2) if z(x) = min
z
z s.t.

[
xT z

]T ∈ X̃ , then
[
x
z(x)

]
∈ Fi

for x ∈ Xi.

B. Problem formulation

As mentioned above, the solutions to inverse parametric
linear/quadratic programming problems in [7], [17], [16]
are known to only recover continuous PWA functions and
to exclude the class of discontinuous PWA functions. This
paper concentrates on inverse optimality for the latter class
of functions and shows that it can be obtained via convex
liftings. This problem can be stated as follows:
Problem statement:
Let a polyhedral partition of a polyhedron X =

⋃
i∈IN Xi ⊆

Rdx , and a discontinuous PWA function: fpwa(·) : X →
Rdu . The goal is to determine J(x, z, u), Hx, Hu, Hz,K
such that: fpwa(x) ∈ ProjRdu arg min

[z uT ]T
J(x, z, u),

s.t: Hxx+Hzz +Huu ≤ K.
(2)

The following assumption is necessary for guaranteeing a
well-posed problem.

Assumption 1: Polyhedral partition X is convexly liftable.
Note that Assumption 1 is not restrictive, in view of Theorem
IV.2 in [17]. This theorem is recalled here for completeness.

Theorem 2.1: Given a non convexly liftable polyhedral
partition X =

⋃
i∈IN Xi ⊆ Rd, there exists at least one sub-

division, preserving the internal boundaries of this partition,
such that the new cell complex is convexly liftable.

In virtue of this result, if a given polyhedral partition is not
convexly liftable, one can subdivide it into a convexly liftable
partition such that the internal boundaries are maintained.
This new partition is equivalent to the initial one. Therefore,
we can focus on convexly liftable partitions throughout the
rest of this paper.

Note that this result holds true not only for polytopic
partitions (bounded polyhedral partitions) as shown in [17]
but also for polyhedral partitions of a polyhedron. The proof
is similar to the one presented therein and is omitted for
brevity.

III. CONSTRUCTIVE SOLUTION

A. Parametric linear programming

Constructive solution to inverse optimality problem in this
paper is based on convex liftings. It is worth mentioning



that the algorithm to construct convex liftings, put forward
in [17], is not directly applicable for polyhedral partition of
polyhedra, since this algorithm is based on the constraints
imposed at related vertices. An extension to convex liftings
for polyhedral partitions of a polyhedron is referred to [13].
Based on the above necessary condition, we can state the
main result of this paper.

We consider a cell complex of a polyhedron X =⋃
i∈IN Xi ⊆ Rdx satisfying Assumption 1 and a possibly

discontinuous PWA function fpwa(·) : X → Rdu defined as
follows:

fpwa(x) =

{
hix+ gi for x ∈ int(Xi),

hix+ gi or hjx+ gj for x ∈ Xi ∩ Xj ,
(3)

where (Xi,Xj) are neighbors. We use `(x) to denote a
convex lifting of this cell complex, i.e.

`(x) = aix+ bi, for x ∈ Xi. (4)

Also, by f
(i)
pwa(x), we denote the ith component of the

function fpwa(x) at x for i ∈ Idu . The following sets are
defined:

Vx =
⋃

i∈IN

V(Xi), Rx =
⋃

i∈IN

R(Xi),

f
(i)

pwa(x) = max
j∈IN |x∈Xj

h
(i)
j x+ g

(i)
j ,

f (i)
pwa

(x) = min
j∈IN |x∈Xj

h
(i)
j x+ g

(i)
j .

(5)

Note that f
(i)

pwa(x)
(
f (i)
pwa

(x)
)

is defined as the maximal
(minimal) value among the values of the ith component of
the affine functions composing fpwa(x) at x, defined over
the regions which contain x.

U(x) =


 u

(1)(x)
...

u(du)(x)

 ∣∣∣∣∣ u(i)(x) ∈
{
f
(i)

pwa(x), f (i)
pwa

(x)
} ,

V[xT z uT ]T =


 x
`(x)
u(x)

 ∣∣∣∣∣ x ∈ Vx, u(x) ∈ U(x)

 ,

R[xT z uT ]T =


 r̂̀(r)
ĥ(r)

 ∣∣∣∣∣
r ∈ Rx,̂̀(r) = air

ĥ(r) = hir
if r ∈ R(Xi)

 ,

Πv = conv(V[xT z uT ]T ), Πr = cone(R[xT z uT ]T ),

Π = Πv ⊕Πr.
(6)

Note that V[xT z uT ]T

(
R[xT z uT ]T

)
represents the set of

extended vertices (extreme rays) of the partition X in the
augmented space. Also from the above construction, if for a
given x ∈ X , we have f (i)

pwa
(x) = f̄

(i)
pwa(x) for all i ∈ Idu ,

then the function fpwa(x) is continuous at x. In this case,
Card(U(x)) = 1. The following observation is useful for
the next development.

Proposition 3.1: For any x ∈ X and U(x) defined in (6),
U(x) = V(conv(U(x))).

Proof: Suppose V(conv(U(x))) ⊂ U(x), then there
exists a point u0(x) ∈ U(x) for a given x ∈ X such that
u0(x) can be described via a convex combination of the other
points u(x) ∈ U(x), u(x) 6= u0(x), then

u0(x) =
∑

u(x)6=u0(x), u(x)∈U(x)

α(u(x))u(x),

α(u(x)) ≥ 0,
∑

u(x)6=u0(x), u(x)∈U(x)

α(u(x)) = 1.
(7)

We need to find a contradiction. Indeed, u
(1)
0 (x) takes

value in the discrete set
{
f
(1)

pwa(x), f (1)
pwa

(x)
}
, and any

of these two values cannot be described by a convex
combination of the other one if they are different. Thus,
u
(1)
0 (x) =

∑
u(x)6=u0(x), u(x)∈U(x) α(u(x))u(1)(x) holds true

if u(1)(x) = u
(1)
0 (x), meaning:∑

u(x)6=u0(x),u(x)∈U(x),u(1)(x)=u
(1)
0 (x)

α(u(x)) = 1,

α(u(x)) = 0 for u(1)(x) 6= u
(1)
0 (x).

The same argument, applied for the other components
u
(i)
0 (x), i ∈ Idu , leads to:

α(u(x)) = 1, for u(x) = u0(x),

α(u(x)) = 0, for u(x) 6= u0(x).

This inclusion is clearly contradictory with (7).
Proposition 3.2: V[xT z uT ]T = V(Πv).

Proof: Suppose there exists a point of V[xT z uT ]T ,

denoted by
[
xT `(x)uT0 (x)

]T
, which can be described via a

convex combination of the other points in this set. Formally,
this leads to the following relationship: x

`(x)
u0(x)

 =
∑ v

`(v)
u(v)

 6=
 x
`(x)
u0(x)

 ,
 v
`(v)
u(v)

 ∈ V[xT z uT ]T

α

 v
`(v)
u(v)

 v
`(v)
u(v)

 ,

(8)
where

α

 v
`(v)
u(v)

 ≥ 0,
∑ v

`(v)
u(v)

 6=
 x
`(x)
u0(x)


 v
`(v)
u(v)

 ∈ V[xT z uT ]T

α

 v
`(v)
u(v)

 = 1.

Due to the fact that any
[
xT `(x)

]T
, x ∈ Vx, can-

not be described via a convex combination of the other



[
vT `(v)

]T
, v 6= x, v ∈ Vx, then relation (8) only holds true

for v = x, leading to α

 v
`(v)
u(v)

 = 0 for v 6= x. The

remaining coefficients only depend on u(x), therefore for
ease of presentation, we denote the remaining coefficients

by α(u(x)) instead of α

 x
`(x)
u(x)

 .

To complete the proof, we need to show that

u0(x) =
∑

u(x)6=u0(x), u(x)∈U(x)

α(u(x))u(x),

α(u(x)) ≥ 0,
∑

u(x)6=u0(x), u(x)∈U(x)

α(u(x)) = 1,
(9)

leads to a contradiction. This end is easily deduced from
Proposition 3.1 and the proof is complete.
Based on the above inclusions, the main result of the paper
is presented below.

Theorem 3.3: Any possibly discontinuous PWA function
(3) defined over a partition of a polyhedron satisfying As-
sumption 1, is the image via the orthogonal projection onto
Rdu of an optimal solution to the following optimization
problem:

min
[z uT ]T

z s.t.
[
xT z uT

]T ∈ Π, (10)

where Π is defined as in (6).
Proof: Given a point x ∈ Xi in the cell complex X ,

due to the Minkowski-Weyl theorem (see Corollary 7.1b in
[22]), x can be written as a convex combination as follows:

x =
∑

v∈V(Xi)

α(v)v +
∑

r∈R(Xi)

β(r)r,

where α(v), β(r) ≥ 0,
∑

v∈V(Xi)
α(v) = 1. Due to Assump-

tion 1, let `(x) denote a convex lifting of the cell complex
X , i.e. `(x) = aix+bi for x ∈ Xi. For an x ∈ Xi, it follows
that:
`(x) = aix+ bi

=
∑

v∈V(Xi)

α(v)(aiv + bi) +
∑

r∈R(Xi)

β(r) air.

Thus, if we define the following sets:

V[xT z]T =

{[
x
`(x)

]
| x ∈ Vx

}
,

R[xT z]T =

{[
r̂̀(r)
]
|
r ∈ Rx,̂̀(r) = air if r ∈ R(Xi)

}
,

then Π[xT z]T = conv(V[xT z]T ) ⊕ cone(R[xT z]T ) is an
affinely equivalent polyhedron of the cell complex X .

Following the definition of an affinely equivalent polyhe-
dron, for a region Xi in the given cell complex X , there
exists a lower facet of Π[xT z]T , denoted by F[xT z]T such
that ProjRdx F[xT z]T = Xi and the optimal solution to the
following optimization problem:

min
z
z s.t.

[
xT z

]T ∈ Π[xT z]T ,

falls in F[xT z]T for x ∈ Xi. Note however that, due to
the construction in (6), every dx−face, denoted by F# and
defined as follows:

F# = F#
1 ⊕ F

#
2 ,

F#
1 = conv

{[
vT `(v) uT (v)

]T | v ∈ V(Xi)
}
,

F#
2 = cone

{[
rT air (hir)

T
]T | r ∈ R(Xi)

}
,

u(v) ∈ conv(U(v)),

(11)

satisfies: ProjRdx+1 F# = F[xT z]T . Also, consider a point
x ∈ Xi, optimizer of the optimization problem (10) at x,
locates on such a dx−face F#. Due to this non-uniqueness,
we can choose the following dx−face, denoted by F̃ , defined
as in (11) with u(v) = hiv + gi for v ∈ Xi. Then, for any
x ∈ Xi, the optimizer, located on F̃ , satisfies: x
z∗(x)
u∗(x)

 =
∑

v∈V(Xi)

α(v)

 v
`(v)

hiv + gi

+
∑

r∈R(Xi)

β(r)

 r
air
hir

 ,
meaning u∗(x) = hix+ gi = fpwa(x).

Remark 1: Note that one can easily fix a large enough box
in Rdu to bound every U(x), ∀x ∈ Vx. Such a constraint
can avoid the computation of U(x) at each vertex of the cell
complex X . However, such a choice ignores the structure
of the given PWA function and cannot exploit its continuity
property whenever this exists.
Algorithm 1 summarizes the construction presented above.

Algorithm 1 Constructive solution to inverse optimality
problem for discontinuous PWA functions
Input: A discontinuous PWA function (3), i.e. fpwa(x)
defined over convexly liftable cell complex X .
Output: Hx, Hu, Hz,K, J(x, z, u).

1: Compute a convex lifting `(x) of the cell complex X .
2: Construct a constraint set Π as in (6).
3: Define J(x, z, u) = z.
4: Solve the following parametric linear programming

problem:

min
[z uT ]T

z s.t.
[
xT z uT

]T ∈ Π.

B. Connections to parametric quadratic programming

Similar to the above construction, a simple extension from
parametric linear programming to a parametric quadratic
programming problem is introduced below.

Theorem 3.4: Given a possibly discontinuous PWA func-
tion (3) defined over a partition of a polyhedron satisfying
Assumption 1, one of its associated convex lifting (4), let
σ(x) be a function σ(x) ≤ `(x) for x ∈ X . The given
PWA function (3) is the image via the orthogonal projection
onto Rdu of an optimal solution to the following parametric
quadratic programming problem:

min
[z uT ]T

(z − σ(x))2 s.t.
[
xT z uT

]T ∈ Π, (12)



where Π is defined as in (6).
Proof: Due to the assumption that σ(x) ≤ `(x) for

x ∈ X , the optimization problem (12) amounts to the
minimization of z subject to the same constraints. Therefore,
by Theorem 3.3, fpwa(x) is a sub-component of an optimal
solution to problem (12). The proof is complete.
To conclude the analysis of piecewise affine functions and
their inverse optimality, the following theorem presents the
main message of the paper.

Theorem 3.5: Any possibly discontinuous PWA function,
defined over a polyhedral partition of a polyhedron, can be
equivalently obtained as a selection among the optimal solu-
tions of a parametric linear/quadratic programming problem.

Proof: Let fpwa(x) denote a given PWA function,
defined over a polyhedral partition X . If the partition X is
convexly liftable, Theorems 3.3, 3.4 show in a constructive
manner parametric linear/quadratic programming problems
for which fpwa(x) is a sub-component of an optimal solu-
tion.

Otherwise, if X is not convexly liftable, as per Theorem
2.1, one can subdivide X into a convexly liftable cell com-
plex such that the internal boundaries are maintained. Ac-
cording to this new cell complex, fpwa(x) is also subdivided
into an equivalent PWA function, say f̃pwa(x). Note also that
this equivalent function f̃pwa(x) is defined over a convexly
liftable partition. Again, according to Theorems 3.3, 3.4,
f̃pwa(x) can be obtained via parametric linear/quadratic
programming problems.

IV. NUMERICAL EXAMPLE

Consider a simple discontinuous PWA function fpwa(x),
defined over a partition in R as follows:

fpwa(x) =



0.8116x+ 0.5328 for − 0.4 ≤ x < −0.3

0.3507x+ 0.9390 for − 0.3 ≤ x < −0.2

0.8759x+ 0.5502 for − 0.2 ≤ x < −0.1

0.6225x+ 0.5870 for − 0.1 ≤ x < 0

0.2077x+ 0.3012 for 0 ≤ x < 0.1

0.4709x+ 0.2305 for 0.1 ≤ x < 0.2

0.8443x+ 0.1948 for 0.2 ≤ x < 0.3

0.2259x+ 0.1707 for 0.3 ≤ x ≤ 0.4

One can easily check the discontinuity of this function via its
values at the vertices of the regions in the parameter space
partition (see Fig.1). A convex lifting of this partition denoted
by `(x), is presented below:

`(x) =



−3.5x+ 0.4 for − 0.4 ≤ x ≤ −0.3

−2.5x+ 0.7 for − 0.3 ≤ x ≤ −0.2

−1.5x+ 0.9 for − 0.2 ≤ x ≤ −0.1

−0.5x+ 1 for − 0.1 ≤ x ≤ 0

0.5x+ 1 for 0 ≤ x ≤ 0.1

1.5x+ 0.9 for 0.1 ≤ x ≤ 0.2

2.5x+ 0.7 for 0.2 ≤ x ≤ 0.3

3.5x+ 0.4 for 0.3 ≤ x ≤ 0.4

Also, this convex lifting is shown in Fig.2. Following the
approach presented previously, an optimization problem that
admits the given PWA function as an optimal solution, is
presented in (13).

The given discontinuous PWA function is presented in
Fig.1 wherein the line along the horizontal axis describes the
parameter space x and the multicolored lines above describe
the given PWA function. Also, in the extended space of
parameter x, the original function fpwa(x), lifting `(x), the
green lines in Fig.3 represent the given PWA function. The
shaded pink polytope represents a set of constraints Π in
the inverse optimization problem. Note also that the solid
pink lines describe an optimal solution to this optimization
problem. Moreover, the images of these lines onto the space
of (x, fpwa(x)) coincide with the given PWA function. It
is also worth emphasizing that for each segment of state
space partition, the set of optimal solutions to the above
optimization problem represents a facet of the pink polytope
Π, which is orthogonal to the space (x, z). As illustrated in
Fig.4, the pink facets represent the set of optimal solutions
to the optimization problem (13).

min
[z uT ]T

z s.t.

−0.8944 0
−0.5805 0.1893
−0.4462 0.3412
−0.5547 0
−0.2547 0.6733
−0.3714 0
−0.2747 0
−0.4473 −0.3356
−0.8944 0
−0.8200 0.2018
0.2738 0.7989
0.3139 0.8057
−0.6351 −0.2551
−0.5547 0
−0.3714 0
−0.4659 −0.5706
−0.2747 0
−0.3217 −0.8334
−0.1827 −0.9733
−0.0951 −0.9955
0.0455 −0.9968
0.8700 0.4919



[
z
u

]
≤



−0.4472
−0.7920
−0.8273
−0.8321
−0.6941
−0.9285
−0.9615
−0.8290
0.4472
0.5356
−0.5355
−0.5022
0.7291
0.8321
0.9285
0.6763
0.9615
0.4494
0.1390
0.0045
−0.0659
0.0325



x+



−0.8944
−0.4693
−0.2459
−0.4992
0.1406
−0.2600
−0.1099
−0.4799
−0.8944
−0.7015
0.9156
0.9763
−0.7119
−0.4992
−0.2600
−0.6378
−0.1099
−0.5727
−0.4759
−0.3766
−0.1520
1.6815


(13)

V. CONCLUSIONS

This paper presents an inverse optimality result for the
class of discontinuous PWA functions. The solution is based
on convex liftings and leads to a linear programming type
of solution. It is also emphasized that optimal solution to
such an optimization problem is no longer unique but a
set of solutions containing the given discontinuous PWA
function. A numerical example is considered to illustrate
these results. The result is mainly theoretical and sheds light



Fig. 1. A discontinuous PWA function defined over a partition in R.

on the difficulties of discontinuous PWA control law design
via convex optimization. Basically, it shows that convex
lifting can emulate the polyhedral partition and translate to
the constraint set of an optimization problem. However, in
order to recover the unicity of the optimizer, the cost function
needs to embed the discontinuity via a nonlinear function.

Fig. 2. A convex lifting of the given cell complex.

Fig. 3. Graphical illustration of the recovered optimization problem.
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